Statistics Departament
University of Adelaide, South Australia
Instytut Matematyki
Uniwerstet Marii Curie-Skłodowskiei

Kerwin W. MORRIS, Dominik SZYNAL

Some Asymtotic Results for Binomial Models

Pewne graniczne własności w modelach dwumianowych

Некоторые предельные свойства в биномяльных моделях

1. Introduction. Let $\pi(u)$ be a given strictly increasing distribution function. We assume that the probability P that an individual 'responds' depends on the values of l determining variables $t_1, ..., t_l$, and is given by $P = \pi(t'\theta^*)$ for some unknown parameter values $\theta^* \in \mathbb{R}^l$.

For p = 1, 2, ..., k > l a sample of n_p individuals are examined with $t = t_p$, of which f_p are observed to respond. We write $T = (t_1, ..., t_k) = (t_{ij})$, and assume that T has rank l. We also write $\mathcal{P}_p = f_p/n_p$, $N = \text{diag}(n_1, ..., n_k)$

$$d\pi/du = g(u), d^2\pi/du^2 = h(u), d^3\pi/du^3 = k(u),$$

 $\pi_p = \pi_p(\theta) = \pi(t_p'\theta), g_p = g(t_p'\theta), h_p = h(t_p'\theta),$
 $k_p = k(t_p'\theta), \text{ and } \alpha_p = 1/\pi_p(1-\pi_p).$

We denote the values of π_p , g_p , ... evaluated at the true value θ^* by π_p^* , g_p^* , ..., and write

$$G^* = \text{diag } (g_1^*, ..., g_k^*), \Delta^* = (\alpha_1^*, ..., \alpha_k^*).$$

Then $\partial \pi_p/\partial \theta_i = g_p t_{ip}$, $\partial g_p/\partial \theta_i = h_p t_{ip}$, $\partial h_p/\partial \theta_i = k_p t_{ip}$ and $\partial \alpha_p/\partial \theta_i = \alpha_p^2 (2\pi_p - 1) g_p t_{ip}$. Since $f_p \sim B$ (n_p, π_p^*) and $f_1, ..., f_k$ are independent, then the log-likelyhood function for θ is

$$L(\theta) = \operatorname{const} + \sum_{p=1}^{k} n_p \left(\overline{y}_p \ln \pi_p + (1 - \overline{y}_p) \ln (1 - \pi_p) \right), \theta \in \mathbb{R}^l$$

and the score-vector has components

$$\partial L/\partial\theta_{i} = \sum_{p} n_{p} \left(\overline{y}_{p} - \pi_{p} \right) \alpha_{p} \mathbf{g}_{p} t_{ip}, i = 1, ..., l .$$

The MLE $\hat{\theta}_N = \hat{\theta}_N(\bar{y}_N)$ is obtained by solving $\partial L/\partial \theta_1 = ... = \partial L/\partial \theta_l = 0$. Since

$$\partial^2 L/\partial\theta_i\partial\theta_j = \sum\limits_p n_p \left(y_p - \pi_p\right) \alpha_p \left(h_p + \alpha_p g_p^2 \left(2\pi_p - 1\right)\right) t_{ip} t_{jp} - \sum\limits_p n_p \alpha_p g_p^2 t_{ip} t_{jp}$$

then the information matrix at θ^* is $w_N^* = (w_n^*)$, where

$$w_{ij}^* = w_{ji}^* = -E \left(\partial^2 L / \partial \theta_i \partial \theta_j \right)_{\theta = \theta^*} = \sum_p n_p \, \alpha_p^* \, g_p^{*2} t_{ip} t_{jp} .$$

Thus

$$w_N^* = TN\Delta^*G^{*2}T' > 0 (1)$$

Denoting by C_N a positive definite symmetric matrix such that

$$C_N w_N^{*-1} C_N = I_1$$
 (2)

we show that $C_N(\hat{\theta}_N - \theta^*) \xrightarrow{D} U \sim N(0, I_l)$, in the multiplyindexed sense of [1]; equivalently, that $\hat{\theta}_N \sim N(\theta^*, w_N^{*^{-1}})$ when all the sample sizes are large.

2. The Taylor expansions. For each N, we consider the parameters $\phi_N^* = C_N \theta^*$. Since by the invariance property of MLE $\hat{\phi}_N = C_N \hat{\theta}_N$, the stated results can be written equivalently

as
$$\hat{\phi}_N - \phi_N \xrightarrow{D} U$$
.
Writing

$$A_N = C_N^{-1} = (a_1, ..., a_l) = (a_{ij})$$
 (3)

then $A_N = A_N$, and the log-likelihood function $L_1(\phi)$ for ϕ is given by $L_1(\phi) = L(A_N\phi)$, and ϕ_N is obtained by solving $\partial L_1/\partial \phi_1 = ... = \partial L_1/\partial \phi_l = 0$. Defining now

$$\Gamma_{j} = \Gamma_{Nj} \left(\theta, \kappa \right) = \sum_{p} n_{p} \kappa_{p} g_{p} \left(\kappa_{p} - \pi_{p} \right) t_{jp}, \ \theta \in \mathbb{R}^{l}, \ 0 < \kappa_{p} < 1 \ \forall_{p}$$

and $G_j = G_{Nj}(\phi, \kappa) = \sum_{i=1}^{l} \Gamma_{Ni}(A_N \phi, \kappa) a_{ij}, j = 1, ..., l$, the equations $G_1 = ... = G_l = 0$

define ϕ implicitly as functions of κ , which we denote by $\Phi_N(\kappa)$, and then

$$\hat{\phi}_N = \Phi_N \, \mathcal{G}_N \,) \, . \tag{4}$$

Since from [1], Theorem 3,

$$Z_N = (N\Delta^*)^{1/2} \left(\widetilde{\mathcal{D}}_N - \pi^* \right) \xrightarrow{D} Z \sim N(0, I_k)$$
 (5)

we consider first the Taylor expansions of G_1 , ..., G_l about the point $M(\phi_N^*, \pi^*)$. For G_i we have

where G_{ϕ}^{i*} , G_{κ}^{i*} are the vectors $(\partial G_i/\partial \phi_j)$, $(\partial G_i/\partial \kappa_p)$ evaluated at M, and $G_{\phi\phi}^i$, $G_{\phi\kappa}^i$, $G_{\kappa\kappa}^i$ are the matrices $(\partial^2 G_i/\partial \phi_j\partial \phi_k)$, $(\partial^2 G_i/\partial \phi_j\partial \kappa_p)$, $(\partial^2 G_i/\partial \kappa_p\partial \kappa_q)$ evaluated at some point M_i $(\overline{\phi}_{Ni},\overline{\kappa}_{Ni})$ between (ϕ,κ) and M, i.e. $\overline{\phi}_{Ni}=\underline{\phi}_N^*+\lambda_i$ $(\phi-\phi_N^*)$, $\overline{\kappa}_{Ni}=\underline{\pi}^*+\lambda_i$ $(\kappa-\underline{\pi}^*)$ for some

$$\lambda_i = \lambda_{Ni}(\phi, \kappa)$$
 between 0 and 1. (6)

Since $\Gamma_{Nj}(\theta^*, \pi^*) = 0$, $\forall N, j$, then $G_{Nj}(\phi_N, \pi^*) = 0$ $\forall N, j$. Furthermore, routine calculations show that at M

$$\partial G_i/\partial \phi_j = -(A_N w_N^* A_N)_{ij} = -\delta_{ij}$$
 (using (2) and (3))

and $\partial G_i/\partial \kappa_p = (B_N \Delta^* G^* N)_{ip}$, where

$$B_N = A_N T = (b_1, ..., b_k) = (b_{ip}),$$
 (7)

and that $\partial^2 G_{i}/\partial \phi_j \partial \phi_k = \sum_p n_p b_{ip} b_{jp} b_{kp} D_{1p}$,

$$\begin{split} &\partial^2 G_i/\partial \phi_j \partial \kappa_p = n_p b_{ip} b_{jp} D_{2p}, \\ &\partial^2 G_i/\partial \kappa_p \partial \kappa_l = 0, \end{split}$$

where

$$D_{1p} = D_{1p}(\theta_p, \kappa_p) = (\kappa_p - \pi_p)A_p - B_p,$$

$$A_p = A_p(\theta_p) = g_p \alpha_p^2 (3h_p (2\pi_p - 1) + 2g_p^2 \alpha_p (2\pi_p - 1)^2 + 2g_p^2) + \alpha_p k_p$$

$$B_p = B_p(\theta_p) = g_p \alpha_p (2\alpha_p g_p^2 (2\pi_p - 1) + 3h_p),$$

$$D_{2p} = D_{2p}(\theta_p) = \alpha_p^2 g_p^2 (2\pi_p - 1) + \alpha_p h_p \text{ and } \theta = A_N \phi.$$
(8)

Writing the I Taylor expansions as a single equation gives

 $G_N = G_N(\phi, \kappa) = (E_N - I)(\phi - \phi_N^*) + (B_N \Delta^* G^* N + F_N)(\kappa - \pi^*)$

where

$$(E_N)_{ij} = \sum_{p} n_p b_{ip} b_{jp} (b'_p (\phi - \phi_N^*)) \tilde{D}_{1pi}$$
 (9)

$$(F_N)_{ip} = n_p b_{ip} (b_p' (\phi - \phi_N^*)) \overline{D}_{2ip} \text{ and } \overline{D}_{1pi} = D_{1p} (\overline{\theta}_{Ni}, \overline{\kappa}_{Nip}),$$

$$\overline{D}_{2pi} = D_{2p} (\overline{\theta}_{Ni}), \overline{\theta}_{Ni} = A_N \overline{\phi}_{Ni}$$

3. The functions Φ_N . From 2, the functions $\Phi_N(\kappa)$ satisfy the equations

$$(E_N-I)\left(\mathop{\Phi}_N-\mathop{\phi}_N^*\right)+(B_N\Delta^*G^*N+F_N)\left(\mathop{\kappa}_N-\mathop{\pi}_N^*\right)=0$$

where now in E_N and F_N .

$$\phi = \Phi_N, \phi_{Ni} = \phi_N^* + \lambda_i (\Phi_N - \phi_N^*) \text{ and } \lambda_i = \lambda_{Ni} (\Phi_N, \kappa)$$
 (10)

Changing variables for each N from κ to $\zeta_N = (N\Delta^*)^{1/2} (\kappa - \pi^*)$, Φ_N , regarded now as a function of ζ_N , satisfies

$$(E_N - I)(\Phi_N - \phi_N^*) + (H_N + F_N (N\Delta^*)^{-1/2}) \zeta_N = 0$$
 (11)

where $H_N = B_N G^* (N\Delta^*)^{1/2}$, and from (1) and (7),

$$H_N H_N' = A_N w_N^* A_N = I_l \tag{12}$$

and κ is replaced by $\pi^* + (N\Delta^*)^{-\frac{M}{2}} \zeta_N$, so that e.g. in (6)

$$\overline{\kappa}_{Nl} = \pi^* + \lambda_l (N\Delta^*)^{-1/2} \zeta_N.$$

To discuss the solution Φ_N (\uparrow_N) of (11) we use the following

Lemma. $\exists C^{\bullet}$ such that $\forall N$ the elements of B_N in (7) satisfy $|b_{ip}| < C^{\bullet} / \sqrt{n_p}$.

Proof. Since $\tau_N = Tr(B_N N B_N') = \sum_p \sum_i n_p b_{ip}^2$, it is enough to show that $\exists C^*$ such

that $\tau_N < C^{*2} \forall N$. From (3) and (7),

$$\tau_N = Tr ((T'A_N)' N (T'A_N)) = \sum_{i=1}^l C'_i NC_i$$
, where $C_i = T'_i a_i$.

Also, since $A_N w_N^{\bullet} A_N = I_l$ then from (1),

$$C_l^* N \Delta^* G^{*2} C_l = 1 \quad \forall i.$$

Writing min $(\alpha_j^* g_j^{*2}) = p^* > 0$, it follows that

$$p^*C_iNC_i \le C_i'N\Delta^*G^{*2}C_i = 1 \ \forall i$$
,

and hence that $\tau_N \le l/p^* = C^{*2}$, as required.

It follows that $\lim_{N\to\infty} B_N = 0$, and hence that $\lim_{N\to\infty} A_N = 0$, since from (7), $A_N = 0$

 $=B_NT'(TT')^{-1}.$

For given a > 0 write $\Re l = \{ \kappa, \kappa' \kappa < a^2, \kappa \in \mathbb{R}^l \}$, and consider values of $\Phi_N(\zeta_N)$ defined by (11) and such that $\Phi_N - \phi_N^* \in \Re l$. We show that given $\epsilon_0 > 0$, $\exists n_0(\epsilon_0, a)$ such that $\forall N > n_0 l \Phi_N - \phi_N^*$ has the form

$$\Phi_N - \phi_N^* = H_N \zeta_N + X_N \zeta_N \text{ where } |(X_N)_{ip}| < \epsilon_0 \quad \forall i, p$$
 (13)

and the matrix X_N is defined below.

From (9) and the Lemma,

$$|(E_N)_{ij}| < alC^{*3} \sum_{p} |D_{1pi}| / \sqrt{n_p}$$

Since $|\bar{\kappa}_{Nip} - \pi_p(\bar{\theta}_{Ni})| < 1$, it follows from (9) that

$$|\overline{D}_{1pi}| < |A_p(\overline{\theta}_{Ni})| + |B_p(\overline{\theta}_{Ni})|$$

where $\bar{\theta}_{Ni} = A_N \bar{\phi}_{Ni} = \theta^* + \lambda_i A_N (\Phi_N - \phi_N^*)$ and $|\lambda_i| < 1$. Since $\lim_{N \to \infty} A_N = 0$ and

$$|\Phi_N - \phi_N^*| < a, \text{ then } \lim_{N \to \infty} \overline{\theta}_{Ni} = \theta^*, \lim_{N \to \infty} A_p(\overline{\theta}_{Ni}) = A_p^* \text{ and } \lim_{N \to \infty} B_p(\overline{\theta}_{Ni}) = B_p^* \quad \forall i,$$

and so the elements of E_N are all arbitrarily small $\forall N$ sufficiently large. The same is then true of \overline{E}_N , where $(I - E_N)^{-1} = I + \overline{E}_N$.

Similarly the elements of F_N are uniformly bounded $\forall i, p$ and $\forall N$ sufficiently large, and so the elements of $F_N(N\Delta^*)^{-1/2}$ are also all arbitrarily small $\forall N$ sufficiently large. Finally, from (12), $|(H_N)_{ip}| \le 1 \ \forall i, p, N$, and so, from (11)

$$\Phi_N - \phi_N^* = (I + \overline{E}_N) (H_N + F_N (N\Delta^*)^{-1/2}) \zeta_N = H_N \zeta_N + X_N \zeta_N$$

where $X_N = \overline{E}_N H_N + \overline{E}_N F_N (N\Delta^*)^{-1/2} + F_N (N\Delta^*)^{-1/2}$ has the stated property.

4. Convergence in distribution of $\phi_N - \phi_N^* = C_N (\mathcal{O}_N - \mathcal{O}^*)$. From Theorem 1 of [1] it is sufficient to prove that $\lim_{N \to \infty} P(\phi_N - \phi_N^* \in \mathcal{O}_U) = P(U \in \mathcal{O}_U)$ for every bounded open 'rectangle' $\mathcal{O}_U = \{\kappa; a_{1i} < \kappa_i < a_{2i}, i = 1, 2, ..., l \} \subset \mathbb{R}^l$.

rectangle $\theta = \{ \kappa; a_{1l} < \kappa_i < a_{2i}, i = 1, 2, ..., l \} \subset \mathbb{R}^l$. Since from (4) $\phi_N = \phi_N(y_N)$, then, choosing in (13) $a = \sup_{\kappa \in \mathbb{R}^n} |\kappa|$ it follows that

 $\forall N > n_0 I$

$$P(\phi_N - \phi_N^* \in \mathcal{A}_V) = P(H_N Z_N + X_N Z_N \in \mathcal{A}_V)$$

where, from (5), $Z_N \xrightarrow{D} Z \sim N(0, I_k)$, and the absolute values of the elements of the random matrix $X_N = X_N(Z_N)$ are all $< \epsilon_0$.

Define now

$$\begin{aligned}
\partial_{N} &= \left\{ \zeta \in \mathbb{R}^{k}; \kappa = H_{N} \zeta + X_{N} \zeta, \kappa \in \mathcal{A} \right\} \\
b_{N} &= \left\{ \zeta \in \mathbb{R}^{k}; \kappa = H_{N} \zeta, \kappa \in \mathcal{A} \right\} \\
\mathfrak{F}_{r} &= \left\{ \zeta \in \mathbb{R}^{k}; \zeta' \zeta < r^{2} \right\}
\end{aligned} \tag{14}$$

Then $P(\hat{\phi}_N - \phi_N^* \in \mathcal{A}) = P(Z_N \in \mathcal{B}_N) = P(Z_N \in \mathcal{b}_N) + P(Z_N \in \mathcal{B}_N \cap \overline{\mathcal{b}}_N) - P(Z_N \in \mathcal{b}_N \cap \overline{\mathcal{b}}_N)$. Since $P(Z_N \in \mathcal{b}_N) = P(H_N Z_N \in \mathcal{A})$, then

$$|P(\widehat{\phi}_{N} - \phi_{N}^{*} \in \mathcal{A}) - P(\widehat{U} \in \mathcal{A})| \leq$$

$$\leq |P(H_{N}Z_{N} \in \mathcal{A}) - P(\widehat{U} \in \mathcal{A})| + P(Z_{N} \in \xi_{N}) + P(Z_{N} \in \xi_{N}) + P(Z_{N} \in \widehat{\mathcal{F}}_{r}),$$

$$(15)$$

where

$$\xi_N = \beta_N \cap \bar{b}_N \cap \bar{\mathcal{F}}, \text{ and } \xi_N' = b_N \cap \bar{\beta}_N \cap \bar{\mathcal{F}},$$
 (16)

Consider now the terms in (15)

(a) From (12) for each N there exists a $k \times k$ orthogonal matrix $R_N = \frac{H_N}{K_N}$. We define new variates

$$Z_{N}^{*} = \begin{pmatrix} U_{N} \\ V_{N} \end{pmatrix} = R_{N} Z_{N} = \begin{pmatrix} H_{N} Z_{N} \\ K_{N} Z_{N} \end{pmatrix}. \tag{17}$$

From (5) and Theorem 1 of [1], the c.f. $\chi_N(\nu)$ of Z_N has the form

$$\chi_N(\nu) = E \left[\exp \left(i \nu' \frac{Z_N}{2} \right) \right] = \exp \left(-\frac{1}{2} \nu' \nu \right) + f_N(\nu)$$

where

$$\lim_{N \to \infty} f_N(\nu) = 0 \text{ uniformly } \forall \nu \text{ in any bounded domain } D \subset \mathbb{R}^k . \tag{18}$$

The c.f. $\xi_N(\nu_1)$ of Z_N^* is then

$$\xi_N(\nu_1) = \frac{1}{N} N(\nu_N)$$
, where $\nu'_N = \nu'_1 R_N$.

Since R_N is orthogonal, then $\nu'_N \nu_N = \nu'_1 \nu_1 \quad \forall N$, whence

$$\xi_N(v_1) = \exp\left(-\frac{1}{2}v_1'v_1\right) + f_N(v_N).$$

For fixed ν_1 , choose in (18) $\mathbb{D} = \{ \kappa; \kappa \kappa \leq \nu_1 \nu_1 \}$. Then $\forall N \nu_N \in \mathbb{D}$, $\lim_{N \to \infty} \xi_N(\nu_1) = \exp(-1/2 \nu_1 \nu_1)$, and so, from Theorem 1 of [1] $\mathbb{Z}_N^* \xrightarrow{D} \mathbb{Z}^* \sim N(0, I_k)$, and, in particular

$$U_N \xrightarrow{D} U \sim N(0, I_l) \text{ and } V_N \xrightarrow{D} V \sim N(0, I_{k-l}).$$
 (19)

It follows that, for given $\epsilon > 0$, $\exists n_1$ such that

$$|P(H_N Z_N \in \mathcal{H}) - P(U \in \mathcal{H})| < \epsilon/5 \quad \forall N > n_1 I.$$

(b) Since $Z \sim N(0, I_k)$, then, for given $\epsilon > 0$, $r = r(\epsilon)$ such that $P(Z \in \overline{\mathcal{F}}_r) < \epsilon/10$,

and since $Z_N \xrightarrow{D} Z$, $\exists n_2 = n_2(\epsilon)$ such that in (15) $P(Z_N \in \overline{\mathcal{F}}_r) < \epsilon/5 \quad \forall N > n_2I$. (c) To discuss $P(Z_N \in \xi_N)$, consider a point $\xi_1 \in \xi_N$. From (14),

$$\kappa_1 = H_N \xi_1 + X_N \xi_1 \in \mathcal{A}, H_N \xi_1 \notin \mathcal{A} \text{ and } \xi_1' \xi_1 < r^2$$
 (20)

Since the solutions ζ of H_N $\zeta = \kappa_1$ are all $\in b_N$, then the distance d_N between ζ_1 and κ satisfies

$$d_N \leqslant \inf_{\zeta : H_N \zeta = \underline{\kappa}_1} (|\zeta - \zeta_1|).$$

Consider now the solution of $H_N \zeta = \kappa_0$. The general solution is of the from $\zeta = K_N' t + H_N' \kappa_0$, $\xi \in \mathbb{R}^{k-l}$ and $\zeta' \zeta = \underline{t}' \underline{t} + \kappa_0' \kappa_0$. From (20), $H_N (\zeta - \zeta_1) = X_N \zeta_1$, whence $d_N^2 \leq \zeta_1' X_N' X_N \zeta_1$. Further from (13) $\forall N > n_0 I$ each component of $X_N \zeta_1$ is less then

 $\epsilon_0 \sum_{p} |\zeta_{1p}|$, whence $\zeta_1' X_N' X_N \zeta_1 < kl \epsilon_0^2 \zeta_1' \zeta_1$, and so

$$d_N < \epsilon_0 r \sqrt{kl} \quad \forall N > n_0 I$$

Consider now a 'face' $\{\kappa; \kappa_i = a_{mi}, a_{1j} < \kappa_j < a_{2j}, j \neq i \}$ of A. Writing $H_N = (h_1, ..., h_l)$, the corresponding 'face' of b_N is

$$\left\{ \zeta; \zeta = K_{N} t + a_{mi} h_i + \sum_{j \neq i} \kappa_j h_j; t \in \mathbb{R}^{k-l}, a_{1j} < \kappa_j < a_{2j}, j \neq i \right\}$$

and since $|h_i| = 1$, the parallel 'face' $\subset b_N$ at a distance d_N has the term $a_{mi}h_i$ replaced by $(a_{mi} + d_N)h_i$, assuming that $a_{mi} > 0$ (if not, the modyfication is trivial). It follows that $\forall N > n_0 I$

$$P(Z_N \in \xi_N) \leq P(Z_N \in \bigcup_{m,i} D_{Nmi}),$$

where $D_{Nmi} = \{ \xi; \xi = K'_N t + H'_N \xi; \xi \in \mathbb{R}^{k-1}; a_{mi} < \kappa_i < a_{mi} + \epsilon_0 r \sqrt{kl}; a_{1j} < \kappa_i < a_{2j}, j \neq i; \xi' \xi < r^2 \}$. From (17), $P(Z_N \in D_{Nmi}) = P(Z_N^* \in D'_{mi})$, where $D'_{mi} = C_N^* \in D'_{mi}$

$$= \left\{ \zeta^* = (\kappa/t); \ t \in \mathbb{R}^{k-l}, a_{ml} < \kappa_i < a_{mi} + \epsilon_0 \ r \sqrt{kl}; \ a_{1j} < \kappa_j < a_{2j}, j \neq i; \ \kappa' \kappa + t' t < r^2 \right\},$$
 and since $D'_{mi} \subset D_{mi} = \left\{ \zeta^*; a_{mi} < \kappa_i < a_{mi} + \epsilon_0 \ r \sqrt{kl} \right\}, \text{ then } P\left(Z_N \in \xi_N \right) \leqslant P\left(Z_N^* \in D \right),$

where $D = \bigcup_{m, i} D_{mi}$. Now $Z_N^* \xrightarrow{D} Z^* \sim N(0, I_k)$, so that $\exists n_3$ such that

$$|P(Z_N^* \in D) - P(Z^* \in D)| < \epsilon/5 \quad \forall N > n_3I.$$

Furthemore, $P(Z^* \in D) < 2l \epsilon_0 r \sqrt{kl} \quad \forall N > n_0 I$, whence $P(Z_N \in \xi_N) < \epsilon/5 + 2l \epsilon_0 r \sqrt{kl}$ $\forall N > n_4 I$, $n_4 = \max(n_0, n_3)$.

We find similarly that $\exists n_5$ such that

$$P(Z_N \in \xi'_N) < \epsilon/5 + 2l \epsilon_0 r \sqrt{kl} \forall N > n_5 I$$

(d) Choosing now $\epsilon_0 = \epsilon/20 \ lr(\epsilon) \ \sqrt{kl}$, it follows from (a), (b), (c) and (15) that $|P(\hat{\phi}_N - \phi_N^*) \in \mathcal{A}) - P(U \in \mathcal{A})| < \epsilon \ \forall N$ sufficently large, which completes the proof. We note that the convergence in distribution of $\hat{\phi}_N - \phi_N^*$ implies that $\hat{\phi}_N - \phi_N^*$ and $H_N Z_N$ asymptotically equivalent, in the sense that

$$w_N = H_N Z_N - (\hat{\phi}_N - \hat{\phi}_N^*) \xrightarrow{D} 0$$
 (21)

To estabilish this, it is sufficient to show that given $\epsilon > 0$, $\eta > 0$, $\exists n$ such that $P(w_N'w_N > \epsilon) < \eta \ \forall N > nI$.

For given a > 0,

$$P(w_N'w_N > \epsilon) \leq P((w_N'w_N > \epsilon) \cap (|\phi_N - \phi_N^*| < a)) + P(|\phi_N - \phi_N^*| > a).$$

Since $\phi_N - \phi_N^* \xrightarrow{D} U$, $\exists a = a(\eta), n_1 = n_1(\eta)$ such that $P(|\hat{\phi}_N - \phi_N^*| > a) < \eta/2$ $N > n_1 I$. Also, from (13), and 4 (c) given ϵ_0 , $n_0 = n_0$ (ϵ_0 , a) such that $\forall N > n_0 I$

$$P((w_N'w_N > \epsilon) \cap (|\hat{\phi}_N - \phi_N^*| < a)) \leq P((Z_N'X_N'X_NZ_N > \epsilon) \cap (|\hat{\phi}_N - \phi_N^*| < a)) \leq$$

$$\leq P((Z_N'Z_N > \epsilon/kl\epsilon_0^2) \cap (|\hat{\phi}_N - \phi_N^*| < a)) \leq P(Z_N'Z_N > \epsilon/kl\epsilon_0^2).$$

Finally, since from (5) $Z_N'Z_N \xrightarrow{D} Z^2 \sim \chi_k^2$, $\exists r = r(\eta), n_2 = n_2(\eta)$ such that $P(Z_N'Z_N > r) < \eta/2 \quad \forall N > n_2I$.

The result then follows by choosing $\epsilon_0^2 = \epsilon/kbr$.

5. A goodness-of-fit test of the model. A standard test of goodness of fit the model uses the statistic $X_N^2 = \sum_p (f_p - n_p \hat{\pi}_p)^2 / n_p \hat{\pi}_p (1 - \hat{\pi}_p)$ where $\hat{\pi}_p = \pi_p(\hat{\theta}_N)$. We show that $X_N^2 \xrightarrow{D} \chi_{k-l}^2$.

Consider first the Taylor expansion of $\pi_p(\kappa)$ about $\kappa = \theta^*$, namely

$$\pi_p(\kappa) - \pi_p^* = g_p^* t_p^* \left(\kappa - \theta^*\right) + \frac{1}{2} h_p(\bar{\kappa}) \left(t_p^* \left(\kappa - \theta^*\right)\right)^2$$

for some κ between κ and θ . Then

$$(n_{p} \alpha_{p}^{\bullet})^{1/2} (\widehat{\pi}_{p} - \pi_{p}^{\bullet}) = (n_{p} \alpha_{p}^{\bullet})^{1/2} g_{p}^{\bullet} t_{p}^{\dagger} (\widehat{\theta}_{N} - \theta^{\bullet}) + \frac{1}{2} (n_{p} \alpha_{p}^{\bullet})^{1/2} h_{p} (\widehat{\theta}_{N}) (t_{p}^{\prime} (\widehat{\theta}_{N} - \theta^{\bullet}))^{2}$$
(22)

for some θ_N between θ_N and θ^* . Now from (12)

$$I = A_N \, w_N^* \, A_N = \sum_p n_p \, \alpha_p \, g_p^{\, 2} \, A_N \, t_p \, t_p' \, A_N \, ,$$

whence $\sqrt{n_p}$ $\alpha_p^* g_p^{*2} (\underline{\kappa}' A_N t_p)^2 \le \underline{\kappa}' \kappa / \sqrt{n_p} \quad \forall \kappa, p.$ Thus $\sqrt{n_p} (t_p' (\hat{\theta}_N - \theta^*))^2 = \sqrt{n_p} ((\hat{\phi}_N - \phi_N^*)' A_N t_p)^2 \le (\hat{\phi}_N - \phi_N^*)' (\hat{\phi}_N - \phi_N^*) / \sqrt{n_p} \alpha_p g_p^{*2}$, and, since $h_p (\overline{\theta}_N) \xrightarrow{D} h_p^*$ and $(\hat{\phi}_N - \phi_N^*)' (\phi_N - \phi_N^*) \xrightarrow{D} U' U \sim \chi_l^*$ it follows that the second term in (22) converges in distribution to zero and hence that

$$(N\Delta^{\bullet})^{1/2} (\hat{\pi}_N - \hat{\pi}^{\bullet}) = (N\Delta^{\bullet})^{1/2} G^{\bullet} T \quad (\hat{\theta}_N - \theta^{\bullet}) + e_{1N} = H'_N (\hat{\phi}_N - \phi^{\bullet}_N) + e_{1N}, \text{ from (12)}$$

where $e_{1N} \xrightarrow{D} 0$. Using now (5), (17) and (21),

$$(N\Delta^{\bullet})^{1} \stackrel{?}{\bigcirc} (N_N - \hat{\pi}_N) = Z_N - H_N' (\hat{\phi}_N - \phi_N^{\bullet}) - \underline{e}_{1N} = K_N' V_N + H_N' \underline{w}_N - \underline{e}_{1N} = K_N' V_N + \underline{e}_{2N}$$
where $\underline{e}_{2N} \stackrel{D}{\longrightarrow} 0$. Writing $\hat{\Delta}_N = \operatorname{diag}(\hat{\alpha}_1, ..., \hat{\alpha}_k)$, we have

$$(N\hat{\Delta}_N)^{1/2} (\bar{\nu}_N - \hat{\pi}_N) = (\hat{\Delta}_N \Delta^{*-})^{1/2} K'_N V_N + e_{3N}$$
,

where $e_{M} \xrightarrow{D} 0$ since $\hat{\Delta}_{N} \xrightarrow{D} \Delta^{*}$. Finally

$$X_{N}^{2} = (\overline{y}_{N} - \widehat{\pi}_{N})' (N \widehat{\Delta}_{N}) (\overline{y}_{N} - \widehat{\pi}_{N}) = V_{N}' V_{N} + V_{N}' K_{N} (I - \Delta^{*-1} \widehat{\Delta}_{N}) K_{N}' V_{N} + 2 e_{3N}' (\Delta^{*-1} \widehat{\Delta}_{N})^{1/2} K_{N}' V_{N} + e_{3N}' e_{3N} \xrightarrow{D} V' V \sim \chi_{k-1}^{2}$$

since $V_N \xrightarrow{D} V \sim N(0, I_{k-1})$, $\Delta^{\bullet-1} \widehat{\Delta}_N \xrightarrow{D} I$, $e_{3N} \xrightarrow{D} 0$ and the elements of K'_N are bounded in modulatby 1.

REFERENCES

- [1] Morris, K. W., Szynal, D., Convergence in Distribution of Multiply-indexed Arrays, with Applications in MANOVA, Ann. Univ. Mariae Curie-Skłodowska, Scct. A, vol. 35 (1980).
- [2] Nelder, J. A., Wedderburn, R. W. M., Generalized Linear Models, J. Roy. Statist. Soc. Ser. A, 135 (1972), 370-384.

STRESZCZENIE

W pracy bada się graniczne własności (w sensie określonym w [1]) estymatorów największej wiarygodności parametrów w uogólnionych liniowych modelach typu binomialnego (opisanych w [2]) oraz graniczne własności testu zgodności.

PE310ME

В работе исследуются предельные свойства (в смысле определенном в [1]) оценек максимального правдоподобия параметров в обобщенных линейных моделях биномялного типа, а также предельные свойства критерия согласия.