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Some Asymtotic Results for Binomial Models
Pewne graniczne wtasnoéci w modelach dwumianowych

HexoTophe npenenbibe cBOACTBAa B GHHOMSIEHEIX MOENAX

1. Introduction. Let w(u) be agiven strictly increasing distribution function. We assume
that the probability P that an individual ‘responds’ depends on the values of I determining
variables t,, .., t;, and is given by P = n(\ *) for some unk nown parameter values 6* R’

Forp =1, 2, ., k > a sample of np, individuals are examined with t = ¢ ,of which
fp are observed to respond We write T (1, .- 2k) = (tjf), and assume that T has rank I’
We also writeYp, =fp/np, N = diag (n,, .., ng)

dn/du = g(u), d*n/du® = h(u),d*n/du’ = k(u),
mp =mp(0) = n(t50). 8p =8(tp6) hp =h(tp0),
We denote the values of mp, gp, ... evaluated at the true value g‘ by 3, &}, .., and write
G* = diag (g1, ... &2), &* =(al, .., af).

Since fp ~ B (np, np) and fi. ... fx ‘are independent, then the log-likelyhood function
for @ is

L(6) = const + 5 Y np (:v'p Inmp +(1 —;p)ln (1—mp)), 0 €Rr!
De
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and the score-vector has components
aL/00; = f np Op —mp) applip i =1,.,1.
The MLE 9 =8 () is obtained by solving 3L/6, = ... = aL/d0; = 0. Since
3*L/06;06; = E np (Vp — mp) ap (hp + apgp (21, — 1)) tiptip — ;‘.‘ npapghliptip
then the information matrix at 0" is w" = (w‘,), where

wy = wg; =—E (9°L/20,20y),_ o0 = Z np o 5% tiptyp -

~

Thus
wl'v =TNA*G**T' >0 1)
Denoting by Cy a positive definite symmetric matrix such that
Cywx Cy =1, @

D
we show that CN(QN —8*) — U~ N(Q, I), in the multiplyindexed sense of [1],
equivalently, that 3~ +N (2' w‘ l) when all the sample sizes are large.

2. The Taylor expansions, For each N, we consider the parameters ¢}, = C, 6*. Since by
the invariance property of MLE ¢N CNO N> the stated results can be written equivalently

D
as ¢N —¢y — U
Writing

AN =CN' =@1..2) = @,) 3

then AN = Ay, and the log-likelihood function L, (¢) for ¢ is given by L, (¢) =L(4 N¢),
and ¢N is obtained by solving aL,/d¢, = ... = oL,/d¢; = 0. Defining now ~

_ - ™ 1
Ty =Dy @) = 27, K8, (6, ~7,)1;, 0 €' 0, < 1Y,

|
and G’. = GN] (?l,z) = fE : Twi (AN,?' K)a,J=1,.,l the equationsG, =...=G,=0
define ¢ implicitly as functions of X, which we denote by _?N(x), and then
"~
Iv=2n0y). @

Since from [1}, Theorem 3,
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D
Zy =AY Gy =) — Z~N Q1)) ®)

we consider first the Taylor expansions of G1 , ..y G about the point M(¢y, *). For G;
we have

Cpi (@) =Gy, (BF. 1) +

l" S ]

+ ? ~N 7, +l ? ~¢1‘V }26
x—n* G 2% RS Gox G‘

-~ ~ ~ bl -w

x e
e:i'zg

where G' G{‘ are the vectors (3G,/3¢y), (3Gi/dk ) evalusted at M, and G 59 be» xx are
the matrices (a’G,/a¢,a¢k) (3*G/0¢dkp), (a2c,/ax,,axq) evaluded at some pomt

Ml@N,.KNi)between(gb,x) and M, i.e. ¢Nz ‘?’ +7\ (¢ ¢*) xm—ﬂ +)\‘(~-—1r‘)
for some

= )\N,.(?, ,'f) between O and 1. 6)

Since FN/(g" '1_r‘) =0, Y N, j, then GNi(¢7V’ n*)=0 vN, j. Furthermore, routine
calculations show that at M

3Gi/agj=—(4 WNAN)l/ 5 (using (2) and (3))

and 3Gy/dkp = (BNA*G*N);p, where

BN=ANT=Q1.--.kk)=(bip)s_ ; U
and that 3*G;/3¢;0¢x =;“"pb(pb[pbkalp !
2 .
2°G,/a8,x,=n b_b_Dap,

achaKpaxl=0,
where
D,p=D,p (g’, kp)=(xp -mp)Ap—Bp,
Ap=Ap@)=8pap (3hp 2mp—1) + 2gpap (2mp — 1)} +2g3) +apky o
=B, (8)=£pap (2 0pgh (21, — 1) + 3hp),

D1p=Dap(§)=0}eh (2m, = 1) +aphp and 6 =Ang.
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Writing the / Taylor expansions as a single equation gives
GN =GN K)=(EN-T) (- 8}) +(BNA*GN + Fy) (x — 1°)
where - =
EnYi= Znpbipbip Gp @~ $¥NDipi ©)
(FNYip =npbip ©p (= $¥N)Dajp and Dy i =Dy p @i i) »
D2pi=Da2p @ni). ONi=ANnENi
3. The functions &y . From 2, the functions ¢ N (%) satisfy the equatjons
En—D(EN~9}) + (BNA*GN + Fy) (k ~7*)=0
where now in £, N and Fy,
$=ON. 8= 9} + N (BN - ¢3) and Ni=dw; @N. %) (10)

Changing variables for each N from X to tn = (VA*)'2 (x- z‘), &y, regarded now as a
function of {y, satisfies W

En—D(@N-$})+ Hy +Fy (VA%) )¢y =0 (11)
where Hy = ByG*(NA*)'?, and from (1) and (7),
HyHYy = AywiAy =1) (12)
and  is replaced by a* + (NA®)” My {N, 50 that e.g. in (6)
X3t HNEAT) Py

To discuss the solution @ () of (11) we use the following

Lemma. 3 C° such that \/' N the elements of By in (7) satisfy lbip 1I<C*/Vnp.

Proof. Since 7y = Tr By NBy)=Z X np b}p, it is enough to show that 3C* such
p i

that ry <C*? ¥ N. From (3) and (7),
1
tn=Tr (T'AN) N (T'Ap) = ;2 . CiNC;, where C;=T"g;.
Also, since ANwR Ay =1 then from (1),

CINA*G*C=1 Y i.
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Writ-ing m}n (of x;’) =p* >0, it follows that
P*CINC < CiNa*GiC=1 Vi,

and hence that 7y <1/ p* = C*?, as required.
It follows that Al’im By = 0, and hence that lim Ay = 0, since from (7),Ay =
- > Na=
=ByT'(IT'y" . i
For given a > 0 write %, = igc;ic'_i.c <a®k ER'} , and consider values of &y (§)

defined by (11) and such that $y — g%, € &Y. We show that given €, >0, J ng(eo,a) such
that Y N >n,l . A $p has the form

Oy~ 8% =Hw ¢ + Xn v where | (Xn)ip| <eo Vip (13)

and the matrix Xy is defined below.
From (9) and the Lemma,

| Ew)il <alC*® £ 1D1pil/Vip
_ P
Since ITcN,-p —-p @N;)l < 1, it follows from (9) that
IDlpi 1< |Ap(2Nl)| + pr(ENi)l
where 8y; = ANgN; = 8% + NAN(By — ¢) and ] < L. Since Jlim A4, =0 and
— & e e I ¢ BOrn)=A* i Bro)=8* Wi
by = ¢% | <a, then g’u?_g,v, Tl ;;T.A,,(gm) A3 and ;\l:"I‘.BP(@N') By Vi,
and so the elements of Ey are all arbitrarily small V N sufficiently large. The same is then
true of E)y, where (/ —Ey)”~ ' =1 +Ey.
Similarly the elements of Fj are uniformly bounded Y i, p and ¥ N sufficiently large,

and so the elements of Fyy (VA*) ™ '" are also all arbitrarily small Y N sufficiently large.
Finally, from (12), |(Hn)ip I S 1 Y i, p. N, and so, from (11)

NN =U+EN) (N +FN(NO*) ') iy =Hy In + XN iN »
where Xy =ENHN + ENFN(NA‘Y ’i’ + Fy(NA*) ! has the stated property.

4. Convergence in distribution of ¢y — ¢ =Cy (On —0*). From Theorem 1 of [1] it
¢% € H)=pP (U € &) for every bounded open

~

is sufficient to prove that Al’im P @N =

‘rectangle’ &= {b'\a”su,- <ay,i=1,2,.,1¢C R'.
Since from (4) ¢y = ®§ (¥n), then, choosing in (13) a = sup“ lx it follows that
~ Y x €

VN >nol
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A
P (¢n - ¢3% € K ) =P (HNZN + XNZN € %)
D
where, from (5),Zy — Z~N (9,‘{,‘), and the absolute values of the elements of the
random matrix Xy = X (Zny) are all < ¢,.
Define now
By = { tERY; k =Hnt + Xnt,x e.A}'
~ ~ ~ ~
by = { fER  x =HnE, x € ki (14)
n~ ~ n N
3, = {1errpr<r]

Thenl’(dw o E &)=P@nveE By)=P@ye by)+P@Ey € ByN by)-
—P(ZNE by By). Since P Zy € by)= P(HyZN € ), then

IP(QN—,?;,E&J—PLQEW)M

- (15)
SIP(HNZN ES)-P({E ) I+PZNEtN) +PENEEN) +P 2N E TF)),
where
tv= Byn byn T, andiy= byn Byn 3, (16)
Consider now the terms in (15) Hy
(a) From (12) for each N there exists a k X k orthogonal matrix Ry = . We
define new variates Ky
U HNZ
Zy= "N\ = RyZy = NEN ) - 17
~ VN} ~ KnZy
~ L

From (5) and Theorem 1 of [1], the c.f. By (») of Zy has the form
I 4)= B exp (9 Z0) )= exp (~> ) + )
where
Al,irzx_ Sn(¥) = 0 uniformly Vg in any bounded domain D) C R¥ , I(18)
The c.f. En(vy) of Z}, is then
Ev@)= %Ny, wherepy =2i R.

Since Ry is orthogonal, then vy = v ¥, /N, whence

1
Ev(ui)=exp (- EZ{L’I) +In@N) .
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For fixed p, , choose in(18) R =‘f}f;f'x <£;£,}.Then VNVNG D, lim Ev(i)=

LY

D
= exp (- 1/2 i 1), and so, from Theorem 1 of (1] Zy, —> Z* ~N (Q, /x), and, in
particular :

~UN—D>~U~N(Q,I,) and Vy —2_>~V~N(_9,lk_l). (19)
It follows that, for given € > 0, 3 n; such that
\P(HNZn € K)-P(UE H)i<e/s YN>n, I
(b) Since Z ~ N (0, 1), then, forgivene >0, r=r(e) such that P vAS § r)<e/10,

D =
and since Zy —> Z, dn, =ny(e)suchthatin (15)P Zy € F,)<e/S YN >n,l.
() To discuss P (Zy € k), consider a point §; € {y. From (14),

Ky =Hy§ + Xy §i € & Hy r. ¢ & and §; §1<r? (20)

Since the solutions § of Hy § = xl are all € b N, then the distance dyy between ;‘, and
N satisfies 3

dy< inf (I{—{' .
5 . HN" = “l ~ !
Consider now the solutlon of Hy (’ = xo The general solution is of the from § = Kyt +
+ Hy Ko, & t€RY 1 and i’ ;‘— ¢’ (ot xo Ko. From (20), Hy (5 §,) XNf,,whence
a"‘ < (, XN Xy §, Further from (13) V' N >nql each component ofXN §‘, is less then

€ Z18p , whence ¢} XNXN'SI <kle}ty t;,and so
p ~ ~ o~
dy<eorVK  YN>nol

Consider now a ‘face’ {x; Ki =amp ayj <Ky <ayj | #:i} of gk . Writing Hy =
=(hy, .., 1), the corresponding ‘face’ of by is

§';§=K}vt+a,,,,- h,—+ 2 x,h,;eeR*",a,,<x,<a,,,/=/=i’l

and since | Ay |= 1, the parallel face (@ b N at a distance dy has the term a,; &; replaced
by (@p; + dN) hy, assuming that a,,; > 0 (if not, the modyfication is trivial). It follows
that YN >npl

P@NEN)<P @NE Y Dym),

Kyt +Hy g ,[ER ,am;<x,<am,+eor\/—7 a./<

~

<kj<ayj#i; § <r23 -From (17), P (Zy € Dy mi) =P (Z§; € D,,;), where Dy =

LY

where Dy i = { & §
5y
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gg"—(x/t) teRk - ,a,,,1<xr<a,,,, + €0 rVEI, <kj<ayy,j#i; K 'x +t t1<r }
and since Dyp; C Dpyi = {; 1ami <Kj <a,,,,+eor\/?]§ thenPgNegNKP@;,eD),

where D= U Dp; . NowZy —>Z‘~N@ 1), so that Jn; such that

m, i

\P(Z} €D)-P(Z°€D)! <¢/S YN>n,I.

Furthemore, P(Z* € D) <2l ey VI VN > n,l, whence P@nEEN) <¢/S+2 ey VH
VN >n,l, ny=max(ng, n,).
We find similarly that 3 ng such that

P(ZyEEN) <e/5+2eg VH YN>nil

(d) Choosing now €, = €/20 Ir (€) V'K, it follows from (a), (b), (c) and (15) that
|P(on - ¢} € &) -PUE )| <e VYN sufficently large, which completes the proof.

We note that the convergenoe in distribution of a,v ¢N implies that ¢N ¢N and
HNZ v asymptotically equivalent, in the sense that

D
wn =HNZN - ($w 40 (21
To estabilish this, it is sufficient to show that given € > 0, n > 0, 3 n such that

P(wywyn > €)<n YN>nl.
For givena > 0,

P@wiwy > €) < P((wivien > &) N (I9n.- 831 <a)) +P( v -93 >a).

Smce¢N [ ——»U 3a =a(n),n, =n,(n) such that P(| fN ¢ >a)<n/2 N>nJ.
Also, from’ (l3), and 4 (c) given €, Ny =n, (€y,a) such that YN >nJ

P((wxwN > €N ([?N - ¢y ! <@ SPUZNXNXNZN >€) N (] fN — gyl <a) <
<P(ZiZn > e/Med) N (I&N - 84| <a)) <P(ZiZn > e/ KIEY).
Finally, since from (5) ZNZN —-->Z2 ~ X3 3r =r(n), n, = ny(n) such that P@ZNZy >
>r)<n/2 VN> nyl.
The result then follows by choosing €3 = €/kir.

S. A goodness-of-fit test of the model A standard test of goodness of fit the model
uses the statistic Xc = 2 (fp - npnp) /n,, 1rp - 1rp) where ﬂp = "p(gN) We show

that X3, —-’x;_l.

Consider first the Taylor expansion of n,,(x) about k =§°, namely

-~

 } I = ] P
Tp(x) - 7p =8p fp (x =87 + Zhp(X) (tp(k ~ 7))’
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for some k between & and 6°. Then

- . 1 = P
(np a)* @p = 75) = (1 3) &35 On = 8°) + > (np ) hp (B) (1 (O = 09"
: (22)
-~ A
for some 6y between 8y and 8°. Now from (12)
I=ANWNAN=Znpopgp’ AN tptp Ay,
P ~F

whence \/.E?}; a; 8;;2 'Q' ANJ;;)’ <5'!§/ v n.p 'Vi\(‘, p. Thus ’:_.'_’_QI" @N _Qa))‘z =
= Viip (Bn - ¢%) AN 1) < BN = o%) (N - ¢%)/ Vnp ahgs?, and, since
-~ ~ "~ ~~ ~ - ~

== #.D 3 T
hp (On) —hp and (@N -g;'v) (,?N -gﬂl) —*y y ~xj it follows that the second
term in (22) converges in distribution to zero and hence that

WVADV? (iy - 1) = (NA") 2 G*T (E?N -0 +ew =Hy (§~ - #%) +ew, from (12)
where € v —2*0. Using now (5), (17) and (21),
(Na%)'? Q'N - v)=Zy ~Hy (:‘?N - 0%) —ew =KNVn +Hywy - e =Ky Vi +ew
wherefw —D> 0. Writ/ing ZN = diag (31 " ak), we have
(VAN Gy - Ty) = Bua* DV KRN +ew
where €.y % 0 since AAN —B»A’. Finally
Xk =G - WY (VAw) G~ Tw) = Vi¥n +Vivkn @ - 8% "By KUy +
+ 26l (A% BN KV tewew — Y'Y ~ X,
since Vy 2y ~N 0.1k -1, A" ! An ‘—e*l.:w —2*2 and the elements of K are

bounded in mo’auldby 1.
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STRESZCZENIE

W pracy bada si¢ graniczne wtasnosci ( w sensie okrcSlonym w [1]) estymatoréw najwigkszej wia-
rygodnosci parametréw w uogdlnionych liniowych modelach typu binomialnego (opisanych w [2])
oraz graniczne wtasnosci testu zgodnosdi.

PE3IOME

B pa6oTe MccheMyloTcs NpefenbHble CBORCTBA (B cMblicie onpencnclittom B [1]) oueHex makcu-
MaLHOIO nNpaBaonono6us napameTpoB B 0606iLeHHbIX NHHeAHLIX MOaenax GHHOMSUTHOIO THMA, a
TaKke Npefenbible CBOACTBA KPHTE PHA COITIACHA.



