Statistics Department University of Adelade, South Australia

Kerwin W. MORRIS

The Asymptotic Distribution of Certain Eigenvalues Occurring in Discriminant Analysis - non-normal Theory

Rozkład asymptotyczny pewnych wartosci własnych wysteppujacych w analizie dyskryminacji - niegaussowska teoria

Асямптотическне распределення некоторых собственных значення в анализе дискримннаиии - негауссовская теорня

1. Introduction. In a recent paper [5], some non-normal asymptotic results in MANOVA were derived using a theory of convergence in distribution of multiply-indexed arrays. With the notation of that paper, $M(k \times p)$ denotes the matrix of means of the $k p$-variate populations, Σ their common convariance matrix, and H the hypotesis that M has the form $X_{1} B_{1}$, where $X_{1}(k \times r)$ is given of and rank r. When H is not true, M can be written uniquely the form

$$
\begin{equation*}
M=X_{1} B_{1}+M_{2} \tag{1}
\end{equation*}
$$

where $X_{1} B_{1}=P_{1} M, M_{2}=\left(I-P_{1}\right) M \neq 0$, and $P_{1}=X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime}$ is the orthogonal projector (o.p.) matrix onto the r-dimensional subspace $\Omega_{1}=R\left(X_{1}\right) \subset R^{k}$. (2).

In the associated discriminant analysis, which is discussed in the case when $X_{1}=1$ by Kshirsagar [4] and generally by Bartlett [2], the number of useful dicriminant functions is equal to the rank of M_{2}. Bartlett's test of the hypothesis

$$
H_{q}: r\left(M_{2}\right)=q,
$$

where q is a given integer, $0<q<p=\min (p, k-r)$, is based on the $p-q$ smallest e.values of $S_{1} S^{-1}$, where S_{1} is the $S . S . P$. matrix used for testing H and S the withinclass estimate of Σ. Hsu [3] has obtained the dymptotic distribution of these e.values when H_{q} is true, in the case when the populations are normal and the sample sizes n_{1}, \ldots, n_{k} maintain the proportions as $n=\Sigma n_{i}$ increases. We show below that in the non-normal case the e.values
converge in distribution (in the generalized sense of [5]) to Hsu's limiting distribution, viz. the distribution of the smallest $p-q$ e.values of $W^{\prime} W$, where

$$
(p-q) \times(k-r-q) \quad \sim N(0, I(p-q)(k-r-q)),
$$

and discuss some approximate-testes of H_{q} when all the sample sizes are large.
Hsu [3] and Anderson [1] also discuss the asymptotic distribution of the q largest e.values of $S_{1} S^{-1}$ and the associated e.vectors. In the present context, however, these quantities do not seem to have much practical importance, since the corresponding population quantities depend on n_{1}, \ldots, n_{k}. The definition of discriminant functions that depend only on M and Σ, their estimation, and the associated asymptotic theory in the non-normal case are discussed in [6] and [7].
2. Initial transformations. We begin by making a series of linear transformations of the data.

First, we transform to $Z_{1}=Y A$, where A is a symmetric matrix such that $A^{2}=\Sigma^{-1}$. Then $\operatorname{Var}\left(Z_{1}\right)=I_{n p}$, and the matrix of means of the new variates is

$$
M A=X_{1} B_{1} A+M_{2} A
$$

We now assume that H_{q} is true, i.e. that the unknown matrix M_{2} has rank q. Then $r\left(M_{2} A\right)=q$, and there exists an orthogonal elementary operation matrix E such that the first q columns of $M_{2} A E$ are linearly independent, i.e. such that $M_{2} A E$ has the form

$$
\begin{equation*}
M_{2} A E=\left(M_{3}, M_{3} C\right) \tag{2}
\end{equation*}
$$

where M_{3} is $k \times q$ of rank q, C is $q \times q_{1}$ and $q_{1}=p-q$.
Transforming now to $Z_{2}=Z_{1} E$, when $\operatorname{Var}\left(Z_{2}\right)=I_{n p}$, and the corresponding matrix of means is

$$
M A E=X_{1} B_{1} A E+\left(M_{3}, M_{3} C\right)
$$

Next, we construct a $p \times p$ orthogonal matrix as follows. Since $I_{q_{1}}+C^{\prime} C>0$, there exists a $q_{1} \times q_{1}$ symmetric matrix B_{2} such that $B_{2}\left(I+C^{\prime} C\right) B_{2}=I$.

Writing now

$$
\begin{equation*}
C_{1}=\binom{C}{-I_{q_{1}}} \tag{4}
\end{equation*}
$$

and $H_{2}=C_{1} B_{2}$, then $H_{2}^{\prime} H_{2}=I_{Q_{1}}$, and there exists $H_{1}(p \times q)$ such that $H=\left(H_{1}, H_{2}\right)$ is orthogonal.

Finally, we transform to $Z=Z_{2} H$. Then $\operatorname{Var}(Z)=I_{n p}$, and the correspondine matrix of means is $M A E H=X_{1} B_{1} A E H+\left(M_{2} A E H_{1}, M_{2} A E H_{2}\right)$.

From (3) and (4),

$$
M_{2} A E H_{2}=M_{3}(I, C) C_{1} B_{2}=0
$$

whence, writing $M_{0}=M A E H, B_{0}=B_{1} A E H$, and

$$
\begin{equation*}
M_{1}=M_{2} A E H_{1} \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
M_{0}=X_{1} B_{0}+\left(M_{1}, 0\right) \tag{6}
\end{equation*}
$$

Summing up,

$$
\begin{equation*}
\text { the rows of } Z=Y A E H \text { are independent, } E(Z)=X M_{0} \text { and } \operatorname{Var}(Z)=I_{n p} \tag{7}
\end{equation*}
$$

Writing now

$$
T_{1}=Z^{\prime}\left(P-P_{0}\right) Z=A_{1}^{\prime} S_{1} A_{1}
$$

and

$$
T=\frac{1}{n-k} Z^{\prime}(I-P) Z=A_{1}^{\prime} S A_{1},
$$

where

$$
A_{1}=A E H,
$$

then

$$
T_{2} T^{-1}=A_{1}^{\prime}\left(S_{1} S^{-1}\right)\left(A_{1}^{\prime}\right)^{-1}
$$

whence $T_{1} T^{-1}$ and $S_{1} S^{-1}$ have the same e.values.
Furthemore, since $E H$ is orthogonal, then T_{1} and $S_{1} \Sigma^{-1}$ have the same e.values.
3. The e.values of $S_{1} \Sigma^{-1}$. We now recall from [5$], \S 4.3$, that

$$
P-P_{0}=X N^{-1 / 2}\left(I-P_{N}\right) N^{-1 / 2} X^{\prime}
$$

where $P_{N}=N^{1 / 2} X_{1}\left(X_{1}^{\prime} N X_{1}\right)^{-1} X_{1}^{\prime} N^{1 / 2}$ is the o.p. matrix onto the r-dimensional subspace $\Omega_{N}=R\left(N^{1 / 2} X_{1}\right) \subset R^{k}$, and also that $\left(I-P_{N}\right)$ was written in the form

$$
\left(I-P_{N}\right)=H_{N} H_{N}^{\prime},
$$

where H_{N} is $k \times(k-r)$ and $H_{N}^{\prime} H_{N}=I_{k}-r$.
Then

$$
T_{1}=Z^{\prime} X N^{-1 / 2}\left(I-P_{N}\right) N^{-1 / 2} X^{\prime} Z=\bar{Z}_{N}^{\prime} N^{1 / 2}\left(I-P_{N}\right) N^{1 / 2} \bar{Z}_{N}
$$

where $N \widetilde{Z}_{N}=X^{\prime} Z$.
Write now

$$
\begin{align*}
& W_{N}=N^{W_{2}}\left(\bar{Z}_{N}-M_{0}\right) \tag{9}\\
& U_{N}=H_{N}^{\prime} W_{N}
\end{align*}
$$

Then

$$
\begin{gathered}
T_{1}=\left(W_{N}+N^{1 / 2} M_{0}\right)^{\prime} H_{N} H_{N}^{\prime}\left(W_{N}+N^{1 / 2} M_{0}\right)= \\
=U_{N}^{\prime} U_{N}+\left(U_{N}^{\prime} H_{N}^{\prime} N^{1 / 2} M_{0}+M_{0}^{\prime} N^{1 / 2} H_{N} U_{N}\right)+M_{0}^{\prime} N^{1 / 2} H_{N} H_{N}^{\prime} N^{1 / 2} M_{0}
\end{gathered}
$$

Since by definition of $H_{N}, H_{N}^{\prime}\left(N^{\nu / 2} X_{1}\right)=0$, it follows from (6) that

$$
\begin{equation*}
H_{N}^{\prime} N^{1 / 2} M_{0}=(B, 0), \text { where } B=H_{N}^{\prime} N^{1 / 2} M_{1} \tag{10}
\end{equation*}
$$

Thus, if we now write

$$
\begin{equation*}
U_{N}=\left(U_{1}, U_{2}\right) \tag{11}
\end{equation*}
$$

where U_{1} is $(k-r) \times q$ and U_{2} is $(k-r) \times q_{1}$, then

$$
T_{1}=\left(\begin{array}{cc}
U_{1}^{\prime} U_{1}+\left(U_{1}^{\prime} B+B^{\prime} U_{1}\right)+B^{\prime} B & U_{1}^{\prime} U_{2}+B^{\prime} U_{2} \\
U_{2}^{\prime} U_{1}+U_{2}^{\prime} B & U_{2}^{\prime} U_{2}
\end{array}\right)
$$

We now show that $r(B)=q$ for every N,
Note first from (1) and (5) thet each column of M_{1} is contained in Ω_{1}^{1}. Further, since the columns of H_{N} are a basis of $\Omega \neq$, then the columns of $N^{12} H_{N}$ are a basis of Ω_{1}^{\perp}. It follows that M_{1} can be written in the form $M_{1}=N^{1 / 2} H_{N} C_{N}$, and since $N^{1 / 2} H_{N}$ has full column rank, $r\left(C_{N}\right)=r\left(M_{1}\right)=q$. Thus $B=H_{N}^{\prime} N H_{N} C_{N}$ also has rank q, since $H_{N}^{\prime} N H_{N}$ is non-singular.

It follows that for each N there exists a $q \times q$.symmetric matrix F such that

$$
\begin{equation*}
F B^{\prime} B F=I_{q} . \tag{12}
\end{equation*}
$$

Now consider the e.values of $S_{1} \Sigma^{-1}$. From (8), these are the solutions of $\left|T_{1}-\lambda I\right|=$ $=0$, and hence also the solutions of

$$
\left|\left(\begin{array}{cc}
F & 0 \\
0 & I_{q_{1}}
\end{array}\right)\left(T_{1}-\lambda\right)\left(\begin{array}{cc}
F & 0 \\
0 & I_{q_{1}}
\end{array}\right)\right|=0,
$$

which, after simplification, has the form

$$
\left.\begin{array}{cc}
V_{11}+I_{q}-\lambda F^{2} & V_{12} \\
V_{12}^{\prime} & U_{2}^{\prime} U_{2}-\lambda I_{q_{1}}
\end{array} \right\rvert\,=0
$$

where $V_{11}=F U_{1}^{\prime} U_{1} F+F\left(U_{1}^{\prime} B+B^{\prime} U_{1}\right) F$ and $V_{12}=F U_{1}^{\prime} U_{2}+F B^{\prime} U_{2}$.
Finally, premultiplying by

$$
\left|\begin{array}{cc}
I_{q} & 0 \\
-V_{12}^{\prime} & I_{q_{1}}
\end{array}\right|
$$

The e.values of T_{1} are the roots of $g_{N}(\lambda)=0$, where

$$
g_{N}(\lambda)=\left|\begin{array}{cc}
V_{11}+I_{q}-\lambda F^{2} & V_{12} \tag{13}\\
V_{12}^{\prime}\left(\lambda F^{2}-V_{11}\right) & U_{2}^{\prime}\left(I_{k-r}-B F^{2} B^{\prime}\right) U_{2}-V_{22}-\lambda I_{q_{1}}
\end{array}\right|
$$

and $V_{22}=U_{2}^{\prime}\left(U_{1} F^{2} U_{1}^{\prime}+U_{1} F^{2} B^{\prime}+B F^{2} U_{1}^{\prime}\right) U_{2}$.
4. The asymptotic distribution of the e.values of $S_{1} \Sigma^{-r}$. Let $\lambda_{1} \geqslant \lambda_{2} \ldots \geqslant \lambda_{p} \geqslant 0$ denote the e.values of $S_{1} \Sigma^{-1}$. Since $r\left(S_{1}\right) \leqslant \rho=\min (p, k-r)$ for every N, then $\lambda_{\rho+1}=$ $=\ldots=\lambda_{p}=0$ for every N. We determine here the asymptotic distribution of $\lambda_{q}+1, \ldots, \lambda_{p}$ when H_{Q} is true.
(i) We show first that $\lim _{N_{4}} F=0$. From $\S 3,\left(I-P_{N}\right) N^{1 / 2} M_{1}=N^{1 / 2} M_{1}-$ $-N^{1 / 2} X_{1}\left(X_{1}^{\prime} N X_{1}\right)^{-1} X_{1}^{\prime} N M_{1}=N^{1 / 2}\left(M_{1}-\bar{M}_{1}\right)$ where $\bar{M}_{1}=X_{1}\left(X_{1}^{\prime} N X_{1}\right)^{-1} X_{1}^{\prime} N M_{1}$. Thus, from (10), $B^{\prime} B=M_{1}^{\prime} N^{1 / 2}\left(I-P_{N}\right) N^{1 / 2} M_{1}=\left(M_{1}-\bar{M}_{1}\right)^{\prime} N\left(M_{1}-M_{1}\right)$. For given N, write now $n_{0}=\min \left(n_{1}, \ldots, n_{k}\right), F=\left(f_{1}, \ldots, f_{q}\right)$, and let π_{N} denote the smallest e.value of $B^{\prime} B$. Then

$$
\pi_{N}=\inf _{\underset{\sim}{x}} \frac{x^{\prime} B^{\prime} B x}{x^{\prime} \underset{\sim}{x}} \geqslant n_{0} \inf _{\underset{\sim}{x}} \frac{{\underset{x}{x}}^{\prime}\left(M_{1}-\bar{M}_{1}\right)^{2}\left(M_{1}-\bar{M}_{1}\right) \underset{\sim}{x}}{{\underset{\sim}{x}}^{\prime} x} .
$$

But since the columns of \bar{M}_{1} and M_{1} are respectively in Ω_{1} and Ω_{1}^{1}, then $\left(M_{1}-\right.$ $\left.\overline{-} \bar{M}_{1}\right)^{\prime}\left(M_{1}-\bar{M}_{1}\right)=M_{1}^{\prime} M_{1}+\bar{M}_{1}^{\prime} \bar{M}_{1}$, and hence

$$
\pi_{N} \geqslant n_{0} \inf _{\underset{\sim}{x}} \frac{x^{\prime} M_{1}^{\prime} M_{1} x}{{\underset{\sim}{x}}^{\prime} x}=n_{0} \nu,
$$

where ν is the smallest e.value of $M_{1}^{\prime} M_{1}$. Since $r\left(M_{1}\right)=q$, then $\nu>0$ and $\lim _{N+=} \pi_{N}=\infty$. Finally, from (12), for $i=1, \ldots, q, 1=f_{i}^{\prime} B^{\prime} B f_{i} \geqslant \pi_{N} f_{i} f_{i}$, whence $\lim _{N+\infty} F=0$.
(ii) Next, we determine the asymptotic distribution of $V_{N}=F B^{\prime} U_{2}$.

By inspection of the proof of theorem 4 in [5], it follows from (7) and (9) that $U_{N} \xrightarrow{D} N\left(0, I_{p}(k-r)\right)$, and hence, from (11)

$$
\begin{equation*}
U_{1} \xrightarrow{D} N\left(0, I_{Q(k-r)}\right) \text { and } U_{2} \xrightarrow{D} N\left(0, I_{q_{1}}(k-r)\right) \tag{14}
\end{equation*}
$$

Thus from theorem 1 in [5], the c.f. $\zeta_{N}\left(T_{1}\right)$ of U_{2} is given by

$$
\zeta_{N}\left(T_{1}\right)=E\left[\exp \left(i \operatorname{Tr}\left(T_{1}^{\prime} U_{2}\right)\right)\right]=\exp \left(1 / 2 \operatorname{Tr}\left(T_{1}^{\prime} T_{1}\right)\right)+f_{N}\left(T_{1}\right)
$$

where $\lim _{N \rightarrow \infty} f_{N}\left(T_{1}\right)=0$ uniformly in any bounded region

$$
\begin{equation*}
C \subset R^{q_{1}(k-r)} \tag{15}
\end{equation*}
$$

Consider now the c.f. $\phi_{N}\left(T_{2}\right)$ of V_{N}, viz.

$$
\begin{gathered}
\phi_{N}\left(T_{2}\right)=E\left[\exp \left(i \operatorname{Tr}\left(T_{2}^{\prime} V_{N}\right)\right)\right]=\zeta_{N}\left(B F T_{2}\right)= \\
=\exp \left(1 / 2 \operatorname{Tr}\left(T_{2}^{\prime} F B^{\prime} B F T_{2}\right)\right)+f_{N}\left(B F T_{2}\right)= \\
=\exp \left(1 / 2 \operatorname{Tr}\left(T_{2}^{\prime} T_{2}\right)\right)+f_{N}\left(B F T_{2}\right), \quad \text { using (12). }
\end{gathered}
$$

For fixed T_{2}, choose in (15) $C=\left\{T_{1} ; \operatorname{Tr}\left(T_{1}^{\prime} T_{1}\right) \leqslant \operatorname{Tr}\left(T_{2}^{\prime} T_{2}\right)\right\}$. Since $\operatorname{Tr}\left(\left(B F T_{2}^{\prime}\right)\left(B F T_{2}\right)\right)=\operatorname{Tr}\left(T_{2}^{\prime} T_{2}\right)$ for every N, it follows from (15) that, for fixed T_{2}, $\lim _{N \rightarrow \infty} \phi_{N}\left(T_{2}\right)=\exp \left(1 / 2 \operatorname{Tr}\left(T_{2}^{\prime} T_{2}\right)\right)$, and hence, from theorem 1 in [5], that $F B^{\prime} U_{2} \xrightarrow{D} V \sim N\left(0, I_{q_{1}} q\right)$. A similar argument shows that $F B^{\prime} U_{1} \xrightarrow{D} V_{0} \sim N\left(0, I_{q_{1}^{2}}\right)$.
(iii) Consider now

$$
U_{2}^{\prime}\left(I_{k-r}-B F^{2} B^{\prime}\right) U_{2}=U_{2}^{\prime}\left(I-Q_{N}\right) U_{2},
$$

where, from (12), $Q_{N}=B F^{2} B^{\prime}$ is a $(k-r) \times(k-r)$ o.p. matrix of rank q. A repetition of the proof of theorem 4 in [5] then shows that $U_{2}^{\prime}\left(I-B F^{2} B^{\prime}\right) \dot{U}_{2} \xrightarrow{D} W^{\prime} W$, where $(k-r-q) \times(p-q) \quad \sim N(0, I(p-q)(k-r-q))$.
(iv) Finally, consider the polynomial $g_{N}(\lambda)$, of degree p, in (13). Using (14), the results of (i) and (ii), and theorem 2 of [5] it follows that

$$
V_{12}=F\left(U_{1}^{\prime} U_{2}\right)+F B^{\prime} U_{2} \xrightarrow{D} 0+V=V
$$

Similarly $V_{11} \xrightarrow{D} 0, V_{22} \xrightarrow{D} 0$, whence $V_{12}^{\prime} F^{2} \xrightarrow{D} 0$ and $V_{12}^{\prime} V_{11} \xrightarrow{D} 0$, and, for fixed $\lambda \operatorname{sN}(\lambda) \xrightarrow{D} g(\lambda)$, where

$$
g(\lambda)=\left|\begin{array}{cc}
I_{q} & V \tag{16}\\
0 & w^{\prime} w-\lambda I_{q_{1}}
\end{array}\right|=\left|w^{\prime} w-\lambda I_{q_{1}}\right|
$$

Since $g(\lambda)$ has degree $p-q$, it follows that the q largest zeros $\lambda_{1}, \ldots, \lambda_{q}$ of $g_{N}(\lambda)$
converge in probability to $+\infty$, and $\lambda_{q}+1, \ldots, \lambda_{\rho}$ converge in distribution to the $\rho-q$ largest e.values $L_{1} \geqslant L_{2} \ldots \geqslant L_{p-q}$ of $W^{\prime} W$.
5. The asymptotic distribution of the e.values of $S_{1} S^{-1}$. As in $\S 4.4$ of [5], denote by $\ell_{1} \geqslant \ell_{2} \ldots \geqslant \ell_{\rho}$ the ρ largest e.values of $S_{1} S^{-1}$, and write

$$
l_{q}=\left(l_{q}+1, \ldots, l_{p}\right)^{\prime}
$$

Theorem. When H_{Q} is true,

$$
{\underset{\sim}{q}}^{D} \xrightarrow{D} L_{q}
$$

where ${\underset{\sim}{q}}_{q}=\left(L_{1}, \ldots, L_{\rho}-q\right)^{\prime}, L_{1} \geqslant L_{2} \ldots \geqslant L_{\rho-q}$ are the largest e.values of $W^{\prime} W$ and

$$
\underset{(k-r-q) \times(p-q)}{W} \sim N\left(0, I_{(p-q)(k-p-q)) .}\right.
$$

Proof. From (8), $T_{1} T^{-1}$ has the same e.values as $S_{1} S^{-1}$. Let A_{N} be a precisely defined $p \times p$ symmetric matrix such that $A_{N}^{2}=T^{-1}$ (i.e. when $|T| \neq 0, A_{N}=\phi(T)$ for some well-defined ϕ).

Then $A_{N} T_{1} A_{N}$ also has the same e.values as $S_{1} S^{-1}$. Write now

$$
\begin{aligned}
& A_{N}=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{12}^{\prime} & A_{22}
\end{array}\right), \text { where } A_{11} \text { is } q \times q_{0} \\
& B_{N}=\left(\begin{array}{ll}
I & -A_{11}^{-1} A_{12} \\
0 & I
\end{array}\right)
\end{aligned}
$$

and $F=A_{11}^{-1} F$.
The e.values of $S_{1} S^{-1}$ are then the roots of the equation.

$$
\left|\left(\begin{array}{ll}
F^{\prime} & 0 \\
0 & I
\end{array}\right) B_{N}^{\prime}\left(A_{N} T_{1} A_{N}-\lambda I\right) B_{N}\left(\begin{array}{ll}
F & 0 \\
0 & I
\end{array}\right)\right|=0
$$

which, after simplification has the form

$$
\left|\begin{array}{ll}
V_{11}+I_{q}-\lambda F^{\prime} F & V_{12}+\lambda W_{12} \\
V_{12}+\lambda W_{12}^{\prime} & U_{2}^{\prime} U_{2}-\lambda\left(I+A_{12}^{\prime} A_{11}^{-2} A_{12}\right)
\end{array}\right|=0
$$

where

$$
\begin{aligned}
& V_{11}=V_{11}+F^{\prime} A_{12} V_{12}^{\prime}+V_{12} A_{12}^{\prime} F+F^{\prime} A_{12} U_{2}^{\prime} U_{2} A_{12}^{\prime} F, \\
& V_{12}=\left(V_{12}+F_{12}^{\prime} A_{12} U_{2}^{\prime} U_{2}\right) C, \\
& C=A_{22}-A_{12}^{\prime} A_{11}^{\prime} A_{12},
\end{aligned}
$$

and

$$
W_{12}=-F^{\prime} A_{11}^{-1} A_{12} .
$$

Finally, premultiplying by

$$
\begin{array}{cc}
I & 0 \\
-V_{12}^{\prime} & I
\end{array}
$$

and simplifying, the e.values of $S_{1} S^{-1}$ are the solutions of

$$
h_{N}(\lambda)=\left|\begin{array}{ll}
V_{11}+I_{q}-\lambda F^{\prime} F & V_{12}+\lambda W_{12} \\
\lambda\left(V_{12}^{\prime} F F^{\prime}+W_{12}^{\prime}\right)-V_{12}^{\prime} V_{11} & {\left[C U_{2}^{\prime}\left(I-B F^{2} B^{\prime}\right) U_{2} C-V_{22}-\right.}
\end{array}\right|=0
$$

where $V_{22}=C\left[\left(F B^{\prime} U_{2}\right)^{\prime} V_{0}+V_{0}^{\prime}\left(F B^{\prime} U_{2}\right)\right] C$ and $V_{0}=F U_{1}^{\prime}+F^{\prime} A_{12} U_{2}^{\prime}$.
Now consider T. From (7)-(8) and theorem 5 of [5], $T \xrightarrow{\boldsymbol{D}} I_{p}$. It follows then from (17) and theorem 2 of [5] that $A_{N} \xrightarrow{D} I_{p}$. Using now the results of $\S 4$, and repeated use of theorem 2 of [5], it follows that

$$
\begin{gathered}
A_{11} \xrightarrow{D} I_{q}, A_{12} \xrightarrow{D} 0, A_{22} \xrightarrow{D} I_{q_{1}}, F \xrightarrow{D} 0, V_{11} \xrightarrow{D} 0, V_{12} \xrightarrow{D} V, W_{12} \xrightarrow{D} 0, \\
C \xrightarrow{D} I_{q_{1}}, V_{0} \xrightarrow{D} 0, V_{22} \xrightarrow{D} 0, \text { and, for fixed } \lambda, h_{N}(\lambda) \xrightarrow{D} g(\lambda) \text { of }(16)
\end{gathered}
$$

and the theorem follows as in §4 (iv).
6. Significance tests of $H_{\boldsymbol{q}}$. Since the limiting distribution obtained above is the same as that of theorem 6 in [5] with p and k replaced by $p-q$ and $k-q$, it follows from theorem 7 of [5] that one can write down various statistics for testing H_{q}, each of which converges in distribution to $\chi_{(p-q)(k-r-q)}^{2}$. Writing $g_{i}=1+\left(\ell_{i} / n-k\right)$ and $\ell_{i}^{\prime}=\ell_{i} / g_{i}$, so that $\ell_{1}^{\prime}, \ldots, Q_{p}^{\prime}$ are the ordered e.values of $S_{1} S_{0}^{-1}$, these statistics are

The last of these is essentially Bartlett's statistic, which replaces n by a correction factor (on the same order) that is appropriate when normality is assumed.

REFERENCES

[1] Anderson, T. W., The Asymptotic Distribution of Certain Characteristic Roots and Vectors, Proceedings of the Second Berkely Symposium on Mathematical Statistics and Probability, University of California Press, Berkely and Los Angeles, (1951),103-130.
[2] Bartlett, M. S., Multivarlate Analyzis, J. Roy. Statist. Soc., Supple., 9, (1947), 176-197.
[3] H su, P. L., On the Limiting Distribution of Roots of a Determinantal Equation, J. London Math. Soc., 16, (1941), 183-194.
[4] K shirsagar, A. M., Multivariate Analysis, Marcel Dekker Inc., New York, (1972).
$[5]$ Morris, K. W., Szynal, D., Convergence in Distribution of Multiply-indexed Arrays with Application in MANOVA, Annales Univ. Mariae Curie-Skłodowska Sect. A, vol. 34 (1980), 83-95.
[6] Morris, K. W, Some Asymptotic Results in Multiple Discriminant Analisis-non-normal Theory, Technical Paper No. 10, Department of Statistic, University of Adelaide South Australia, (1980).
[7] Morris, K. W., Multiple Discriminant Analysis with Multinomial Sampling-non-normal Asymptotic Results, Technical Paper No. 12, Department of Statistics, University of Adelaide (1981).

STRESZCZENIE

W przypadku rozkładu różnego od normalnego bada się zbieżnosé według rozkładu (w sensie wheloskładnikowym, okreflonym w [5] wartosci własnych w teḱscie Bartletta [2] dla liczby funkcji dyskryminacyjnych w multidyskryminacyjnej analizie. Ponadto rozważa się asymptotyczny rozkład statystyk testowych gdy wazystkie próby sq duie.

PE310ME

В случае распределения разного от нормального исследуется сходимость по распределеним (в мульпкиндексном смысле определенном в [5]) собственных значенйй из теста Бартлетта [2] длп дискриминантных функсий в мульт дискрнминантном аналиэе. Кроме того рассматррвяется асимптотическве расаределения тестовых статистик, когда вœ облемь быборки

