LUBLIN - POLONIA

VOL. XXXV, 5

Instytut Ekonomii Politycznej i Planowania
Zak ład Zastosowań Matematyki
Uniwersytet Marii Curie-Skłodowskiej
Instytut Matematyki
Uniwersytet Marii Curie-Skłodowskiej

Czesław BURNIAK, Janusz GODULA

On Functions Angularly Accessible in the Direction of the Imaginary Axis

O funkcjach katowo osiagalnych w kierunku osi urojonej

Об углово-достнжмых функшиях в направлении мнимой оси

Introduction. Suppose that \mathbf{C} denotes the complex plane, \mathbf{N} is the set of natural numbers and $a \in(0,1)$ is a fixed number. Now, let us assume the following notations:

$$
\begin{aligned}
& A^{-}\left(w_{0}, a\right)=\left\{w: \frac{\pi}{2}(3-a) \leqslant \arg \left(w-w_{0}\right) \leqslant \frac{\pi}{2}(3+a)\right\} \\
& A^{+}\left(w_{0}, a\right)=\left\{w: \frac{\pi}{2}(1-a) \leqslant \arg \left(w-w_{0}\right) \leqslant \frac{\pi}{2}(1+a)\right\}
\end{aligned}
$$

where $w_{0} \in C$. A simply connected domain $D \neq C$ is called a-angularly accessible in the direction of the imaginary axis, if for every fixed point $w_{0} \in C \backslash D$, either $A^{+}\left(w_{0}, a\right) \propto C \backslash D$, or $A^{-}\left(w_{0}, a\right) \subset \mathrm{C} \backslash D$. The family of all such domains different from the whole plane C is denoted by T_{a}, while by $T_{\alpha}(0)$ we denote the subfamily of T_{a} which consists of all domains containing the origin.

Let S_{0} be the class of functions f analytic and univalent in the $\operatorname{disc} E=E_{1}$, where $E_{r}=\{z:|z|<r\}$. The class of all functions $f \in S_{0}$ such that $f(E) \in T_{a}$ is denoted by I_{a}. T_{0} is the family of domains convex in the direction of the imaginary axis, while I_{0} is the well-known class of functions convex in the direction of the imaginary axis.

In this paper we give a necessary and sufficient condition for a function of S_{0} to belong to I_{a} (Theorem 2). In the case $a=0$ with an additional restriction such a theorem appears in a paper by M.S. Robertson [6], while without any restriction in a paper by W. Royster and M. Ziegler [7]. A different proof of results stated in the paper by W. Royster and M. Zicgler [7] is given in a paper by Cz. Burniak, Z. Lewandowski and J. Pituch [1].

Main results. We start with a density theorem for T_{a}. Our reasoning is a modification of that given in a paper by K. Ciozda [2] for the limit case $a=0$.

Theorem 1. Each domain $D, D \in T_{a}$ is a kernel in the sense of Carathéodory, of a decreasing sequence of domains obtained from the plane by removing a finite number of angles of the form $A^{+}(w, a)$ or $\bar{A}(w, a)$.

Proof. Let $n_{0} \in N$ be a number such that $F_{n}=(C \backslash D) \cap \bar{E}_{n} \neq \varnothing$, where $\bar{E}_{n}=$ $=\{z:|z|<n\}, n \in\left\{n_{0}, n_{0}+1, \ldots\right\}$ and $D \subset T_{a}$.

Since F_{n} is a compact set and $F_{n} \subset \bar{E}_{n}$, therefore there exists an $\epsilon-$ net, $\epsilon=\frac{1}{n}$, i.e. a set of such points $\left\{w_{1}, \ldots, w_{s}, v_{1}, \ldots, v_{r}\right\} \subset F_{n}$ that for each $w \in F_{n}$ there exists a number $l^{\prime} \in\{1,2, \ldots, s\}$ such that $\left|w-w_{\prime^{\prime}}\right|<\frac{1}{n}$ or a number $l^{\prime \prime} \in\{1,2, \ldots, r\}$ such that $\left|w-v_{l^{\prime \prime}}\right|<\frac{1}{n}$. After a suitable change of order of points $w_{j_{2}} v_{j}$ we may choose positive integers $k, l, k \leqslant s, l \leqslant r$, soastoobtain the inclusion

$$
\left\{w_{1}, \ldots, w_{s}, v_{1}, \ldots, v_{r}\right\} \subset \bigcup_{m=1}^{k} A^{+}\left(w_{m}, a\right) \cup \bigcup_{p=1}^{l} A^{-}\left(v_{p}, a\right) .
$$

Let $G_{n}=\bigcup_{m=1}^{k} A^{+}\left(w_{m}, a\right) \cup \bigcup_{p=1}^{l} A^{-}\left(v_{p}, a\right)$. It follows from the above construction that the distance of each point of the set F_{n} from the set G_{n} is less than $\frac{1}{n}$. In an analogous manner we form a set G_{n+1} such that $G_{n} \subset G_{n+1}$ and the distance of each point of the set F_{n+1} from the set G_{n+1} is less than $\frac{1}{n+1}$. In this way we define a decreasing sequence of domains $D_{n}=C \backslash G_{n}$. Since $D \subset D_{n}$ for $n \in\left\{n_{0}, n_{0}+1, \ldots\right\}, n_{0} \in N$, therefore $D \subset \bigcap_{n=n_{0}} D_{n}$.

So, $D=\operatorname{lnt} D \subset \operatorname{lnt} \bigcap_{n=n_{0}} D_{n}$. We will show that $D=\operatorname{Int} \bigcap_{n=n_{0}} D_{n}$. Suppose that $D \neq \operatorname{lnt} \bigcap_{n=n_{0}}^{\infty} D_{n}$. Then there exists point $w_{0} \in\left(\right.$ Int $\left.\bigcap_{n=n_{0}} D_{n}\right) \backslash D$ and a number $\delta>0$ such that $E\left(w_{0}, \delta\right) \subset$ Int $\bigcap_{n=n_{0}} D_{n}$, where $E\left(w_{0}, \delta\right)=\left\{w:\left|w-w_{0}\right|<\delta\right\}$. Thus $E\left(w_{0}, \delta\right) \subset \bigcap_{n=n_{0}}^{n} D_{n}$, i.e. dist $\left(w_{0}, C \backslash D_{n}\right) \equiv \operatorname{dist}\left(w_{0}, G_{n}\right) \geqslant \delta, n \in\left\{n_{0}, n_{0}+1, \ldots\right\}$. But $w_{0} \in C \backslash D$, and consequently, for sufficiently large $n, w_{0} \in F_{n}$ and dist $\left(w_{0}, G_{n}\right)<\frac{1}{n}$. We may choose the number n in such a way that $\frac{1}{n}<\delta$ which leads to a contradiction because dist $\left(w_{0}, G_{n}\right) \geqslant \delta$ for $n \in\left\{n_{0}, n_{0}+1, \ldots\right.$. So $D=\operatorname{Int} \bigcap_{n=n_{0}}^{n} D_{n}$. Since

Int $\bigcap_{n=n_{0}}^{\infty} D_{n}$ is a kerncl of sequence $\left(D_{n}\right)$; our theorem follows.
Theorem 2. Let f be a function non-constant and analytic in E. Then $f \in I_{\alpha}$ if and only if there exist numbers $\mu, \nu, 0 \leqslant \mu \leqslant 2 \pi, 0 \leqslant \nu \leqslant \pi$, such that

$$
\begin{equation*}
\left|\arg \left\{-i e^{i \mu}\left(1-2 z e^{-i \mu} \cos \nu+z^{2} e^{-2 i \mu}\right) f^{\prime}(z)\right\}\right|<(1-a) \frac{\pi}{2}, z \in E \text {, } \tag{1}
\end{equation*}
$$

where $\arg (-i)=-\frac{\pi}{2}$.
Proof. 1. Let $f \in I_{\alpha}$. We assume $f(0)=0$ i.e. $f(E) \in T_{a}(0)$. From Theorem 1 it follows that there is a sequence of domains containing the origin each of which is obtained from the plane by delcting a finite number of angles with measure $a \pi, a \in(0,1)$ whose bisectors are parallel to the imaginary axis. This sequence converges to the kernel $D=f(E)$. Let us first suppose that $D=f(E)$ is a domain which is obtained from the complex plane C by eliminating a finite numbers of angles of the form $A^{+}(w, a)$ or $A^{-}(w, a)$. We will approximate the domain D with an increasing sequence of polygons whose sides form with the real axis angles of absolute measure less than $(1-a) \frac{\pi}{2}$. Suppose first that the boundary of D is the sum of segments of half-lines which form sides of angles:
$A^{+}\left(w_{1}, a\right)=A_{1}^{+}, \ldots, A^{+}\left(w_{k}, a\right)=A_{k}^{+}$or $A^{-}\left(\nu_{1}, a\right)=A_{1}^{-}, \ldots, A^{-}\left(\nu_{l}, a\right)=A_{l}^{-}$, where
$\operatorname{Re} w_{1}<\ldots<\operatorname{Re} w_{k}, \operatorname{Re} \nu_{1}<\ldots<\operatorname{Re} \nu_{l}, k, l, \in N$. There exists a number $M_{1}>0$ such that all the vertices of the polygon ∂D are contained in the strip $|\operatorname{Im} w|<M_{1}$. Let $w_{0}^{\prime}, w_{k}^{\prime}$ be common points of the line $\operatorname{Im} w=M_{1}$, and the left side of the angle A_{1}^{+}and the right side of the angle A_{k}^{+}, respectively. The right side of the angle is a side in the right half-plane determined by the bisector of the angle. Analogously, let $\nu_{0}^{\prime}, \nu_{l}^{\prime}$ be common points of the line $\operatorname{Im} w=-M_{1}$ and the left side of the angle A_{1}^{-}and the right side of the angle $A_{l}^{\vec{l}}$, respectively. Next, let $w_{j}^{\prime}, j=1,2, \ldots, k-1$ be common points of the right side of the angle A_{j}^{+}and the left side of the angle A_{j+1}^{+}, Let $v_{i}^{\prime}, i=1,2, \ldots, 1-1$ be common points of the right side of the angle A_{i}^{-}and the left side of the angle A_{i+1}^{-}. Moreover, let P_{1} be the common point of the straight line $\operatorname{Im} w=-M_{1}$ and a straight line containing the point w_{0}^{\prime} and subtending with the positive direction of the real axis an angle of measure (1-a) $\frac{\pi}{2}$; let P_{2} be the coinmon point of the line $\operatorname{Im} w=-M_{1}$ and a straight line containing the point w_{k}^{\prime} which subtends an angle of measure $(1+a) \frac{\pi}{2}$ with the positive direction of the real axis. If $\mathrm{C} \backslash D$ does not contain angles $A^{+}(w, a)$ then we denote by P_{1}, P_{2} common points of $\operatorname{Im} w=M_{1}$ and the straight line containing the point ν_{0}^{\prime} which forms with the positive direction of the real axis an angle of measure $(1+a) \frac{\pi}{2}$ and the
straight line containing the point ν_{l}^{\prime} which forms with the positive direction of the real axis an angle of measure $(1-a) \frac{\pi}{2}$, respectively. Let us form a polygonal line Γ_{1} with vertices:
(i) $w_{1}=\nu_{1}, \nu_{1}^{\prime}, \nu_{2}, \nu_{2}^{\prime}, \ldots, v_{l}^{\prime}-1, \nu_{l}=w_{k}, w_{k}^{\prime}-1, \ldots, w_{1}^{\prime}, w_{1}$, when D is bounded
(ii) $P_{1}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, \ldots, w_{1}, w_{0}^{\prime}, P_{1}$, when D is unbounded from the left
(iii) $v_{1}, v_{1}^{\prime}, \ldots, v_{l}, v_{l}^{\prime}, P_{2}, w_{k}^{\prime}, w_{k}, \ldots, v_{1}$, when D is unbounded from the right
(iv) $P_{1}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, \ldots, v_{l}, v_{l}^{\prime}, P_{2}, w_{k}^{\prime}, w_{k}, \ldots, w_{1}, w_{0}^{\prime}, P_{1}$, when D is unbounded from both sides
(v) $P_{1}, P_{2}, w_{k}^{\prime}, w_{k}, \ldots, w_{1}, w_{0}^{\prime}, P_{1}$, when none of the angles $A^{-}(w, a)$ is contained in $C \backslash D$
(vi) $P_{1}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, \ldots, v_{l}, v_{l}^{\prime}, P_{2}, P_{1}$, when none of the angle $A^{+}(w, a)$ is contained in $C \backslash D$.
It follows from the above construction that $M_{1}>0$ may be chosen in such a way that the polygonal line Γ_{1} is the boundary of a Jordan domain $D_{1}, D_{1} \in T_{a}(0)$. We form a sequence $\left(D_{n}\right), D_{n} \in T_{a}(0)$, of domains constructed in the previously described manner while replacing M_{1} by a sequence $\left(M_{n}\right), M_{n} \rightarrow+\infty$ for $n \rightarrow+\infty$ which is an increasing sequence of domains such that $\bigcup_{n=1}^{-} D_{n}=D=f(E)$. Hence D is a kernel of $\left(D_{n}\right)$ in the sense of Carathéodory.

Let $\left(f_{n}\right)$ be a sequence of functions $f_{n} \in S_{0}$ such that $\arg f_{n}^{\prime}(0)=\arg f^{\prime}(0), f_{n}(E)=D_{n}$. It follows from the theorem of Carathéodory that $f_{n} \rightarrow f$ locally uniformly in E. There are real numbers $\psi_{n}, \theta_{n}, \psi_{n} \in\langle 0,2 \pi\rangle, \theta_{n} \in\langle 0,2 \pi)_{,} \psi_{n}-\theta_{n}>0$ such that $f_{n}\left(e^{i \theta_{n}}\right) \in \Gamma_{n}$ and $\operatorname{Re} f_{n}\left(e^{i \theta} n\right)$ is the greatest, and $f_{n}\left(e^{i \psi_{n}}\right) \in \Gamma_{n}$ and $\operatorname{Re} f_{n}\left(e^{i \psi} n\right)$ is the least among the numbers in question. Assume that $\theta_{n}=\mu_{n}-\nu_{n}, \psi_{n}=\mu_{n}+\nu_{n}$, where $\nu_{n} \in(0, \pi)$, $\mu_{n} \in(0,2 \pi)$. At any point of $\Gamma_{n}=\partial f_{n}(E)$ (except for the vertices) we consider the normal vector. From the construction it follows that this vector forms with the positive direction of the real axis an angle of measure $a \frac{\pi}{2}$, or $\pi-a \frac{\pi}{2}$, or $\frac{\pi}{2}$ in the case 'upper part of Γ_{n} ', and $\pi+\frac{a \pi}{2}$, or $2 \pi-a \frac{\pi}{2}$, or $\frac{3}{2} \pi$ in the case 'lower part of Γ_{n}. Points $f_{n}\left(e^{i \theta_{n}}\right)$ and $\int_{n}\left(e^{i \psi n}\right)$ uniquely determine the parts of Γ_{n}. Denote $f_{n}\left(e^{i \omega} / j\right)=w_{j}, j=1, \ldots, k$; $f_{n}\left(e^{i \omega j}\right)=\omega_{j}^{\prime}, j=0,1, \ldots, k ; f_{n}\left(e^{i \gamma m}\right)=\nu_{m}, m=1, \ldots, l ; f_{n}\left(e^{i \gamma m}\right)=v_{m}^{\prime}, m=0,1, \ldots, l$ where $\psi_{n} \leqslant \gamma_{0}^{\prime}<\gamma_{1}<\gamma_{i}^{\prime}<\ldots<\gamma_{1}<\gamma_{i} \leqslant \theta_{n} \leqslant \omega_{k}^{\prime}<\omega_{k}<\ldots<\omega_{i}<\omega_{1}<\omega_{0}^{\prime} \leqslant \psi_{n}+2 \pi$.

At the points of ∂E where f_{n} adinits analytic continuation (see G. M. Golusin [3]) we
may consider the normal vector $\zeta f_{n}^{\prime}(\zeta)$. Moreover, at ζ_{0} (which corresponds to a vertex of Γ_{n}) the harmonic function $\arg \left(\zeta-\zeta_{0}\right)$ has a jump. Hence

$$
\arg \left[-i e^{i \phi} f_{n}^{\prime}\left(e^{i \phi}\right)\right]=\left\{\begin{array}{r}
\frac{\pi}{2}(1-a) \text { for } \phi \in \bigcup_{j=1}^{k}\left(\omega_{j}, \omega_{j}\right) \cup\left(\omega_{0}^{\prime}, \psi_{n}+2 \pi\right) \tag{2}\\
-\frac{\pi}{2}(1-a) \text { for } \phi \in \bigcup_{j=1}^{k}\left(\omega_{j}, \omega_{j}-1\right) \cup\left(\theta_{n}, \omega_{k}^{\prime}\right) \\
0 \text { for } \phi \in\left(\theta_{n}, \psi_{n}+2 \pi\right) \text { when } k=0
\end{array}\right.
$$

for 'upper part of Γ_{n} ' and

$$
\arg \left[i e^{i \phi} f_{n}^{\prime}\left(e^{i \phi}\right)\right]=\left\{\begin{array}{r}
\frac{\pi}{2}(1-a) \text { for } \phi \in \bigcup_{i=1}^{l}\left(\gamma_{i-1}^{\prime}, \gamma_{i}\right) \\
0 \text { for } \phi \in\left(\psi_{n}, \gamma_{0}^{\prime}\right) \cup\left(\gamma_{i}, \theta_{n}\right) \\
\left.-\frac{\pi}{2}(1-a) \text { for } \phi \in \bigcup_{i=1}^{l}\left(\gamma_{i}, \gamma_{i}\right)\right) \\
0 \text { for } \phi \in\left(\psi_{n}, \theta_{n}\right) \text { when } l=0
\end{array}\right.
$$

for 'lower part of Γ_{n} '.
Let us consider the function

$$
\begin{equation*}
h(z ; \mu, \nu)=\frac{i e^{-i \mu_{z}}}{\left[1-z e^{-i(\mu-\nu)}\right]\left[1-z e^{-i(\mu+\nabla)}\right]}, z \in \bar{E} \tag{3}
\end{equation*}
$$

The boundary of the domain $h(E ; \mu, \nu)$ is the sum of two half-lines contained in the imaginary axis which omit the origin. We easily examine that

$$
\begin{aligned}
& \operatorname{Im} h\left(e^{i \phi} ; \mu, \nu\right)>0 \text { for } \phi \in(\mu-\nu, \mu+\nu) \\
& \operatorname{Im} h\left(e^{i \phi} ; \mu, \nu\right)<0 \text { for } \phi \in(\mu+\nu, \mu-\nu+2 \pi)
\end{aligned}
$$

where $\mu \in(0,2 \pi), \nu \in(0, \pi)$. Thus

$$
\arg \left[h\left(e^{i \phi} ; \mu, \nu\right)\right]=\left\{\begin{array}{c}
\frac{\pi}{2}=\arg i \text { for } \phi \in(\mu-\nu, \mu+\nu) \tag{4}\\
-\frac{\pi}{2}=\arg (\neg i) \text { for } \phi \in(\mu+\nu, \mu-\nu+2 \pi) .
\end{array}\right.
$$

From (2) and (4) it follows

$$
\arg \frac{e^{i \phi} f_{n}^{\prime}\left(e^{i \phi}\right)}{h\left(e^{i \phi} ; \mu_{n}, \nu_{n}\right)}=\left\{\begin{array}{l}
\frac{\pi}{2}(l-a) \text { for } \\
\phi \in \bigcup_{j=1}^{k}\left(\omega_{j}^{\prime}, \omega_{j}\right) \cup \bigcup_{i=1}^{l}\left(\gamma_{i-1}^{\prime}, \gamma_{i}\right) \cup\left(\omega_{o}^{\prime}, \psi_{n}+2 \pi\right) \\
0 \text { for } \phi \in\left(\psi_{n}, \gamma_{0}^{\prime}\right) \cup\left(\gamma_{i}, \theta_{n}\right) \\
0 \text { for } \phi \in\left(\psi_{n}, \theta_{n}\right) \text { when } l=0 \\
0 \text { for } \phi \in\left(\theta_{n}, \psi_{n}+2 \pi\right) \text { when } k=0 \\
-\frac{\pi}{2}(1-a) \text { for } \\
\phi \in \bigcup_{j=1}^{k}\left(\omega_{j}, \omega_{j-1}^{\prime}\right) \cup \bigcup_{i=1}^{l}\left(\gamma_{i}, \gamma_{i}^{\prime}\right) \cup\left(\theta_{n}, \omega_{k}^{\prime}\right) .
\end{array}\right.
$$

Considering (3) we have:

$$
\begin{equation*}
\left|\arg \left\{-i e^{i \mu_{n}}\left(1-2 e^{i \phi} e^{-i \mu_{n}} \cos \nu_{n}+e^{2 i \phi} e^{-2 i \mu_{n}}\right) f_{n}^{\prime}\left(e^{i \phi}\right)\right\} \quad\right| \leqslant(1-a) \frac{\pi}{2} \tag{5}
\end{equation*}
$$

for $\phi \in\left(\psi_{n}, \psi_{n}+2 \pi\right) \backslash \quad\left\{\omega_{1}, \ldots, \omega_{k}, \omega_{0}^{\prime}, \ldots, \omega_{k}^{\prime}, \gamma_{1}, \ldots, \gamma_{l}, \gamma_{0}^{\prime}, \ldots, \gamma^{i}, \theta_{n}, \psi_{n}\right\}$. By Theorem 5 of the paper [5], p. 188, we have

$$
\begin{equation*}
\left|\arg \left\{-i e^{i \mu_{n}}\left(1-2 z e^{-i \mu_{n}} \cos \nu_{n}+z^{2} e^{-2 i \mu_{n}}\right) f_{n}^{\prime}(z)\right\}\right| \leqslant(1-a) \frac{\pi}{2}, z \in E . \tag{6}
\end{equation*}
$$

Since $f_{n} \rightarrow f$ locally uniformly in E and the sequences $\left(\mu_{n}\right),\left(\nu_{n}\right)$ are bounded, there exists a subsequence (n_{k}) such that $\mu_{n_{k}} \rightarrow \mu, \nu_{n_{k}} \rightarrow \nu,(k \rightarrow+\infty)$. From (6) with $n=n_{k}$ for $k \rightarrow+\infty$, we obtain

$$
\begin{equation*}
\left|\arg \left\{-i e^{i \mu}\left(1-2 z e^{-i \mu} \cos \nu+z^{2} e^{-2 i \mu}\right) f^{\prime}(z)\right\}\right| \leqslant(1-a) \frac{\pi}{2^{\prime}}, z \in E . \tag{7}
\end{equation*}
$$

We know that any domain of $T_{a}(0)$ can be approximated in the sense of Carathéodory by canonical domains (Theorem 1). Passing to the limit again we conclude that for $f \in S_{0}$, $f(0)=0$ such that $f(E) \in T_{a}(0)$ there exist numbers $\mu \in\langle 0,2 \pi\rangle, \nu \in\langle 0, \pi\rangle$ which satisfy (7) and the first part of Theorem 2 follows.
2. Conversely, let $f(z), f(0)=0$ be an analytic and non-constant function in E for which (7) holds.
a) If the sign of equality appears for some point $z \in E$, then by the maximum principle for harmonic functions we obtain

$$
-i e^{i \mu}\left(1-2 z e^{-i \mu} \cos \nu+z^{2} e^{-2 i \mu}\right) f^{\prime}(z)=c e^{i(1-a) \frac{\pi}{2}}
$$

Thus

$$
\begin{equation*}
f(z)=e^{ \pm i(1-\alpha) \frac{\pi}{2}} \frac{c}{2 \sin \nu} \ln \left[e^{-2 i \nu} \frac{z-e^{-i(\mu+\nu)}}{z-e^{i(\mu-\nu)}}\right], f(0)=0 \tag{8}
\end{equation*}
$$

For $\nu=0, \nu=\pi$ we must take the limit function of the form

$$
f(z)=i e^{ \pm i(1-a) \frac{\pi}{2}} \frac{c z e^{-i \mu}}{1-z e^{-i \mu}}
$$

Therefore $f(E)$ for $\nu \in(0, \pi)$, is a strip whose edges form with the imaginary axis an angle of measure $a \frac{\pi}{2}$. For $\nu=0$ or $\nu=\pi, f(E)$ is a half-plane whose boundary forms angle of measure $a \frac{\pi}{2}$ with the imaginary axis; i.e. $f(E) \in T_{a}(0)$ and the mapping is univalent.
b) Let us now assume that equality in (1) does not take place at any point in E. Thus

$$
\begin{equation*}
1 \arg \left\{-i e^{i \mu}\left(1-2 z e^{-i \mu} \cos \nu+z^{2} e^{-2 i \mu}\right) f^{\prime}(z)\right\} \left\lvert\,<(1-a) \frac{\pi}{2}\right. \tag{9}
\end{equation*}
$$

It follows from the definition $h(\cdot ; \mu, \nu)$ that the function H given by

$$
H(z)=\int_{0}^{z} \frac{h(\zeta)}{\zeta} d \zeta=\frac{1}{2 \sin \nu} \ln \left[e^{-2 i \nu}-\frac{z-e^{i(\mu+\nu)}}{z-e^{i(\mu-\nu)}}\right]
$$

maps the $\operatorname{disc} E$ on the strip $\left\{w^{\prime}: A<\operatorname{Im} w<B\right\}$, where $-\infty \leqslant A<B<+\infty$. For every fixed $t \in(A, B)$ let us consider a straight line $L_{f}: w \equiv w(s)=s+t i, s \in(-\infty,+\infty)$. $H^{-1}\left(L_{t}\right)$ is a Jordan arc : $z_{t}=z_{t}(s)=H^{-1}(s+t i)$ contained in E with end-points at $e^{i(\mu-\nu)}$ and $e^{i(\mu+\nu)}$, respectively. Hence $H\left(z_{t}(s)\right)=s+t i$ and

$$
\begin{equation*}
H^{\prime}\left(z_{t}(s)\right)=\frac{1}{\frac{d}{d s} z_{t}(s)} \tag{10}
\end{equation*}
$$

The condition (9) is equivalent to

$$
\begin{equation*}
\left|\arg \frac{f^{\prime}(z)}{H^{\prime}(z)}\right|<(1-a) \frac{\pi}{2}, z \in E . \tag{11}
\end{equation*}
$$

From (10) and (11) we obtain

$$
\begin{equation*}
\left|\arg \frac{d}{d s} f\left(z_{\imath}(s)\right)\right|<(1-a) \frac{\pi}{2}, s \in(-\infty,+\infty) \tag{12}
\end{equation*}
$$

Hence a tangent vector to the curve $z_{t}(s)$ forms with the positive direction of the real axis an angle larger than $-(1-a) \frac{\pi}{2}$ and simultaneously smaller than $+(1-a) \frac{\pi}{2}$. From convexity of H and from (11) it follows that f is a close-to-convex function, hence univalent (see W. Kaplan [4]): Therefore, if t varies from A to B, then the curves $z=z_{t}(s)$ have end-points $e^{i(\mu+\nu)}, e^{i(\mu-\nu)}$ in common only and they sweep out the disc E. Hence $f\left(D\left(t_{1}, t_{2}\right)\right) \in T_{a}$, where $t_{1} \neq t_{2}, t_{1}, t_{2} \in(A, B) ; D\left(t_{1}, t_{2}\right), D\left(t_{1}, t_{2}\right) \subset E$, denotes a domain bounded by the arcs $z=z_{t_{1}}(s), z=z_{f_{2}}(s), s \in(-\infty,+\infty)$. Hence $f(E) \in T_{a}$, i.e. $f \in I_{a}$.

In the second part of our proof we have exploited some ideas from the paper by Cz. Burniak, Z. Lewandowski and J. Pituch [1]. The proof is completed.

Theorem 3. If $f \in I_{a}, 0 \leqslant a \leqslant 1$, and $f(z)=z+a_{2} z^{2}+\ldots, a_{2} \neq 0$, there exist numbers $\mu, \nu ; a \frac{\pi}{2} \leqslant \mu \leqslant(2-a) \frac{\pi}{2}, 0 \leqslant \nu \leqslant \pi$ such that

$$
\begin{equation*}
\left|a_{2}-e^{-i \mu} \cos \nu\right|<(1-a)\left|\cos \frac{2 \mu-\pi}{2(1-a)}\right| \tag{13}
\end{equation*}
$$

Proof. By Theorem 2 there exist numbers $\mu, \nu ; a \frac{\pi}{2} \leqslant \mu \leqslant(2-a) \frac{\pi}{2}, 0 \leqslant \nu \leqslant \pi$ such that

$$
\left|\arg \left\{-i e^{i \mu}\left(1-2 z e^{-i \mu} \cos \nu+z^{2} e^{-z i \mu}\right) f^{\prime}(z)\right\}\right|<(1-a) \frac{\pi}{2}, z \in E .
$$

Put $F(z)=-i e^{i \mu}\left(1-2 z e^{-i \mu} \cos \nu+z^{2} e^{-z i \mu}\right) f^{\prime}(z)$. Thus the condition (1) has the form

$$
\left|\arg [F(z)]^{\frac{1}{1-a}}\right|<\frac{\pi}{2}
$$

which implies $\operatorname{Re}[F(z)]^{1^{1-a}}>0$. Therefore, there is a function $p(\operatorname{Re} p(z)>0, p(0)=1)$, such that

$$
F(z)=\left[\cos \frac{2 \mu-\pi}{2(1-a)} p(z)+i \sin \frac{2 \mu-\pi}{2(1-a)}\right]^{1-a}
$$

and consequently

$$
\begin{equation*}
f^{\prime}(z)=\frac{\left[\cos \frac{2 \mu-\pi}{2(1-a)} p(z)+i \sin \frac{2 \mu-\pi}{2(1-a)}\right]^{1-a}}{-i e^{i \mu}\left(1-2 z e^{-i \mu} \cos \nu+z^{2} e^{-2 i \mu}\right)} \tag{14}
\end{equation*}
$$

which gives

$$
p^{\prime}(0)=\frac{2\left(a_{2}-e^{-i \mu} \cos \nu\right)}{(1-a) \cos \frac{2 \mu-\pi}{2(1-a)} \exp \left[\frac{-i a(2 \mu-\pi)}{2(1-a)}\right]} .
$$

Since $\left|p^{\prime}(0)\right|<2$, we get $\left|a_{2}-e^{-i \mu} \cos \nu\right| \leqslant(1-a) \left\lvert\, \cos \frac{2 \mu-\pi}{2(1-a)}\right.$ |. This proves our
statement.

REFERENCES

[1] Burniak, Ca, Lewandowski,Z., Pituch, J., Sur l'application de la méthode homotopique et d'un critére d'univalence dans la classe des fonctions convex vers l'axe imaginaire, Demonstr. Math. $3 \quad 2,1983$.
[2] Ciozda, K., On a class of functions that are convex in the direction of the negative real axis, its subclasses and fundamental properties, (in Polish), Doctoral dissertation. Univ. Mariae CurieSkłodowska, Lublin 1978.
[3] Goluzin, G. M., Geometric theory of functions of a complex variable, (Russian), Moscow 1966.
[4] Kaplan, W., Close-to-convex schlicht functions, Mich. Math. 1 (1952), 169-185.
[5] Lavrent'ev,M., Shabat, B., Methods of the theory of functions of a complex variable, (Russian), Moscow-Leningrad 1951.
[6] Robertson, M., Analytic functions starlike in one direction, Amer. J. Math. 58 (1930), 465-472.
[7] Royster, W., Ziegler, M., Univalent functions convex in one direction, Publ. Math. 23 (1976), No 3-4, 339-345.

STRESZCZENIE

W pracy tej rozwaza się klasę funkcji kątowo osiagalnych w kierunku osi urojonej. Podane sq warunki konieczne i dostateczne na to, by funkcja naleiala do tej klasy.

PE31OME

 Даны необходммые и достаточные услогм для принадлеханости функции к этому классу.

