ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN-POLONIA

VOL. XXXV, 5

SECTIO A

1981

Instytut Ekonomii Politycznej i Planowania Zakład Zastosowań Matematyki Uniwersytet Marii Curie-Skłodowskiej Instytut Matematyki Uniwersytet Marii Curie-Skłodowskiej

Czesław BURNIAK, Janusz GODULA

On Functions Angularly Accessible in the Direction of the Imaginary Axis

O funkcjach kątowo osiągalnych w kierunku osi urojonej

Об углово-достижимых функциях в направлении мнимой оси

Introduction. Suppose that C denotes the complex plane, N is the set of natural numbers and $a \in (0, 1)$ is a fixed number. Now, let us assume the following notations:

$$A^{-}(w_{0}, a) = \left\{ w : \frac{\pi}{2}(3-a) \leq \arg(w-w_{0}) \leq \frac{\pi}{2}(3+a) \right\}$$

$$A^{+}(w_{0}, a) = \left\{ w : \frac{\pi}{2}(1-a) \leq \arg(w-w_{0}) \leq \frac{\pi}{2}(1+a) \right\}$$

where $w_0 \in C$. A simply connected domain $D \neq C$ is called a angularly accessible in the direction of the imaginary axis, if for every fixed point $w_0 \in C \setminus D$, either $A^+(w_0, a) \in C \setminus D$, or $A^-(w_0, a) \in C \setminus D$. The family of all such domains different from the whole plane C is denoted by T_a , while by T_a (0) we denote the subfamily of T_a which consists of all domains containing the origin.

Let S_0 be the class of functions f analytic and univalent in the disc $E = E_1$, where $E_r = \{z: |z| < r\}$. The class of all functions $f \in S_0$ such that $f(E) \in T_a$ is denoted by I_a . T_0 is the family of domains convex in the direction of the imaginary axis, while I_0 is the well-known class of functions convex in the direction of the imaginary axis.

In this paper we give a necessary and sufficient condition for a function of S_0 to belong to I_a (Theorem 2). In the case a = 0 with an additional restriction such a theorem appears in a paper by M. S. Robertson [6], while without any restriction in a paper by W. Royster and M. Ziegler [7]. A different proof of results stated in the paper by W. Royster and M. Ziegler [7] is given in a paper by Cz. Burniak, Z. Lewandowski and J. Pituch [1].

Main results. We start with a density theorem for T_a . Our reasoning is a modification of that given in a paper by K. Ciozda [2] for the limit case a = 0.

Theorem 1. Each domain $D, D \in T_a$ is a kernel in the sense of Caratheodory, of a decreasing sequence of domains obtained from the plane by removing a finite number of angles of the form $A^+(w, a)$ or $\overline{A}^-(w, a)$.

Proof. Let $n_0 \in \mathbb{N}$ be a number such that $F_n = (\mathbb{C}\setminus D) \cap \overline{E}_n \neq \emptyset$, where $\overline{E}_n = \{z: |z| \leq n\}$, $n \in \{n_0, n_0 + 1, ...\}$ and $D \subset T_a$. Since F_n is a compact set and $F_n \subset \overline{E}_n$, therefore there exists an ϵ - net, $\epsilon = \frac{1}{n}$, i.e. a set of such points $\{w_1, ..., w_s, v_1, ..., v_r\} \subset F_n$ that for each $w \in F_n$ there exists a number $l' \in \{1, 2, ..., s\}$ such that $|w - w_{l'}| < \frac{1}{n}$ or a number $l'' \in \{1, 2, ..., r\}$ such that $|w - v_{l''}| < \frac{1}{n}$. After a suitable change of order of points w_l, v_l we may choose positive integers $k, l, k \leq s, l \leq r$, so astoobtain the inclusion

$$\{w_1, ..., w_s, v_1, ..., v_r\} \subset \bigcup_{m=1}^k A^+(w_m, a) \cup \bigcup_{p=1}^l A^-(v_p, a)$$

Let $G_n = \bigcup_{m=1}^{k} A^*(w_m, a) \cup \bigcup_{p=1}^{l} A^*(v_p, a)$. It follows from the above construction that the distance of each point of the set F_n from the set G_n is less than $\frac{1}{n}$. In an analogous manner we form a set G_{n+1} such that $G_n \subset G_{n+1}$ and the distance of each point of the set F_{n+1} from the set G_{n+1} is less than $\frac{1}{n+1}$. In this way we define a decreasing sequence of domains $D_n = C \setminus G_n$. Since $D \subset D_n$ for $n \in \{n_0, n_0 + 1, ...\}$, $n_0 \in N$, therefore $D \subset \bigcap_{n=n+1}^{\infty} D_n$.

So, $D = \operatorname{Int} D \subset \operatorname{Int} \bigcap_{n=n_0}^{\infty} D_n$. We will show that $D = \operatorname{Int} \bigcap_{n=n_0}^{\infty} D_n$. Suppose that $D \neq \operatorname{Int} \bigcap_{n=n_0}^{\infty} D_n$. Then there exists point $w_0 \in (\operatorname{Int} \bigcap_{n=n_0}^{\infty} D_n) \setminus D$ and a number $\delta > 0$ such that $E(w_0, \delta) \subset \operatorname{Int} \bigcap_{n=n_0}^{\infty} D_n$, where $E(w_0, \delta) = \{w: | w - w_0 | < \delta\}$. Thus $E(w_0, \delta) \subset \bigcap_{n=n_0}^{\infty} D_n$, i.e. dist $(w_0, C \setminus D_n) \equiv \operatorname{dist} (w_0, G_n) \ge \delta$, $n \in \{n_0, n_0 + 1, \ldots\}$. But $w_0 \in C \setminus D$, and consequently, for sufficiently large $n, w_0 \in F_n$ and dist $(w_0, G_n) < \frac{1}{n}$. We may choose the number n in such a way that $\frac{1}{n} < \delta$ which leads to a contradiction because dist $(w_0, G_n) \ge \delta$ for $n \in \{n_0, n_0 + 1, \ldots\}$. So $D = \operatorname{Int} \bigcap_{n=n_0}^{\infty} D_n$. Since Int $\bigcap_{n=n_0}^{\infty} D_n$ is a kernel of sequence (D_n) ; our theorem follows.

Theorem 2. Let f be a function non-constant and analytic in E. Then $f \in I_a$ if and only if there exist numbers μ , ν , $0 \le \mu \le 2\pi$, $0 \le \nu \le \pi$, such that

$$|\arg \left\{-ie^{i\mu} \left(1-2ze^{-i\mu}\cos\nu+z^2e^{-2i\mu}\right)f'(z)\right\}| \le (1-a)\frac{\pi}{2}, z \in E, \quad (1)$$

where $\arg(-i) = -\frac{\pi}{2}$.

Proof. 1. Let $f \in I_a$. We assume f(0) = 0 i.e. $f(E) \in T_a(0)$. From Theorem 1 it follows that there is a sequence of domains containing the origin each of which is obtained from the plane by delcting a finite number of angles with measure $a\pi$, $a \in (0, 1)$ whose bisectors are parallel to the imaginary axis. This sequence converges to the kernel D = f(E). Let us first suppose that D = f(E) is a domain which is obtained from the complex plane C by eliminating a finite numbers of angles of the form A^* (w, a) or A^- (w, a). We will approximate the domain D with an increasing sequence of polygons whose sides form

with the real axis angles of absolute measure less than $(1 - a) \frac{\pi}{2}$. Suppose first that the

boundary of D is the sum of segments of half-lines which form sides of angles:

$$A^{+}(w_{1}, a) = A_{1,\dots}^{+}, A^{+}(w_{k}, a) = A_{k}^{+} \text{ or } A^{-}(v_{1}, a) = A_{1,\dots}^{-}, A^{-}(v_{l}, a) = A_{l}^{-}, \text{ where } A_{l}^{-}(v_{l}, a) = A_{l}^{-}$$

Re $w_1 < ... < \text{Re } w_k$, $\text{Re } v_1 < ... < \text{Re } v_l$, $k, l \in N$. There exists a number $M_1 > 0$ such that all the vertices of the polygon ∂D are contained in the strip $|\text{Im } w| < M_1$. Let w'_0 , w'_k be common points of the line $\text{Im } w = M_1$, and the left side of the angle A_1^+ and the right side of the angle A_k^+ , respectively. The right side of the angle is a side in the right half-plane determined by the bisector of the angle. Analogously, let v'_0 , v'_1 be common points of the line $\text{Im } w = -M_1$ and the left side of the angle A_1^- and the right side of the angle A'_l , respectively. Next, let $w'_i, j = 1, 2, ..., k - 1$ be common points of the right side of the angle A'_j and the left side of the angle A'_{j+1} . Let v'_l , i = 1, 2, ..., l - 1 be common points of the right side of the angle A'_i and the left side of the angle A'_{i+1} . Moreover, let P_1 be the common point of the straight line $\text{Im } w = -M_1$ and a straight line containing the point w'_0 and subtending with the positive direction of the real axis an angle of measure

(1-a) $\frac{\pi}{2}$; let P_2 be the common point of the line Im $w = -M_1$ and a straight line containing the point w'_k which subtends an angle of measure (1+a) $\frac{\pi}{2}$ with the positive

direction of the real axis. If $C \setminus D$ does not contain angles A^+ (w, a) then we denote by P_1 , P_2 common points of Im $w = M_1$ and the straight line containing the point v'_0 which

forms with the positive direction of the real axis an angle of measure $(1 + a) \frac{\pi}{2}$ and the

straight line containing the point ν_l' which forms with the positive direction of the real axis an angle of measure $(1 - a) \frac{\pi}{2}$, respectively. Let us form a polygonal line Γ_1 with vertices:

(i) $w_1 = v_1, v'_1, v_2, v'_2, ..., v'_{l-1}, v_l = w_k, w'_{k-1}, ..., w'_1, w_1$, when D is bounded

- (ii) $P_1, v_0, v_1, v_1, \dots, w_1, w_0, P_1$, when D is unbounded from the left
- (iii) $v_1, v_1, \dots, v_l, v_l, P_2, w_k, w_{k,\dots}, v_1$, when D is unbounded from the right
- (iv) $P_1, v_0, v_1, v_1, ..., v_l, v_l', P_2, w_k', w_{k,...}, w_1, w_0', P_1$, when D is unbounded from both sides
- (v) $P_1, P_2, w'_k, w_k, ..., w_1, w'_0, P_1$, when none of the angles A^- (w, a) is contained in $C \setminus D$
 - (vi) $P_1, v'_0, v_1, v'_1, ..., v_l, v'_l, P_2, P_1$, when none of the angle A^+ (w, a) is contained in $C \setminus D$.

It follows from the above construction that $M_1 > 0$ may be chosen in such a way that the polygonal line Γ_1 is the boundary of a Jordan domain D_1 , $D_1 \in T_a$ (0). We form a sequence (D_n) , $D_n \in T_a$ (0), of domains constructed in the previously described manner while replacing M_1 by a sequence (M_n) , $M_n \to +\infty$ for $n \to +\infty$ which is an increasing

sequence of domains such that $\bigcup_{n=1}^{\infty} D_n = D = f(E)$. Hence D is a kernel of (D_n) in the sense of Caratheodory.

Let (f_n) be a sequence of functions $f_n \in S_0$ such that $\arg f'_n(0) = \arg f'(0)$, $f_n(E) = D_n$. It follows from the theorem of Caratheodory that $f_n \to f$ locally uniformly in E. There are real numbers $\psi_n, \theta_n, \psi_n \in (0, 2\pi), \theta_n \in (0, 2\pi), \psi_n - \theta_n > 0$ such that $f_n(e^{i\theta}n) \in \Gamma_n$ and Re $f_n(e^{i\theta}n)$ is the greatest, and $f_n(e^{i\psi}n) \in \Gamma_n$ and Re $f_n(e^{i\theta}n)$ is the least among the numbers in question. Assume that $\theta_n = \mu_n - \nu_n$, $\psi_n = \mu_n + \nu_n$, where $\nu_n \in (0, .\pi)$, $\mu_n \in (0, 2\pi)$. At any point of $\Gamma_n = \partial f_n(E)$ (except for the vertices) we consider the normal vector. From the construction it follows that this vector forms with the positive

direction of the real axis an angle of measure $a\frac{\pi}{2}$, or $\pi - a\frac{\pi}{2}$, or $\frac{\pi}{2}$ in the case 'upper part of Γ_n ', and $\pi + \frac{a\pi}{2}$, or $2\pi - a\frac{\pi}{2}$, or $\frac{3}{2}\pi$ in the case 'lower part of Γ_n '. Points $f_n(e^{i\theta_n})$ and $f_n(e^{i\psi_n})$ uniquely determine the parts of Γ_n . Denote $f_n(e^{i\omega_j}) = w_j$, j = 1, ..., k; $f_n(e^{i\omega_j}) = w_j'$, j = 0, 1, ..., k; $f_n(e^{i\gamma_m}) = v_m$, m = 1, ..., l; $f_n(e^{i\gamma_m}) = v_m'$, m = 0, 1, ..., lwhere $\psi_n \leq \gamma_0 < \gamma_1 < \gamma_1 < ... < \gamma_l < \gamma_l < \varphi_l \leq \omega_k < \omega_k < ... < \omega_1 < \omega_1 < \omega_0 \leq \psi_n + 2\pi$.

At the points of ∂E where f_n admits analytic continuation (see G. M. Golusin [3]) we

may consider the normal vector $\zeta f'_n(\zeta)$. Moreover, at ζ_0 (which corresponds to a vertex of Γ_n) the harmonic function $\arg(\zeta - \zeta_0)$ has a jump. Hence

$$\arg\left[-ie^{i\phi}f_{n}'(e^{i\phi})\right] = \begin{cases} \frac{\pi}{2} (1-a) \text{ for } \phi \in \bigcup_{j=1}^{k} (\omega_{j}, \omega_{j}) \cup (\omega_{0}', \psi_{n}+2\pi) \\ -\frac{\pi}{2} (1-a) \text{ for } \phi \in \bigcup_{j=1}^{k} (\omega_{j}, \omega_{j-1}) \cup (\theta_{n}, \omega_{k}') \\ 0 \text{ for } \phi \in (\theta_{n}, \psi_{n}+2\pi) \text{ when } k = 0 \end{cases}$$

$$(2)$$

for 'upper part of Γ_n ' and

$$\arg \left[ie^{i\phi} f_n'(e^{i\phi}) \right] = \begin{cases} \frac{\pi}{2} (1-a) \text{ for } \phi \in \bigcup_{i=1}^l (\gamma_{i-1}, \gamma_i) \\ 0 \text{ for } \phi \in (\psi_n, \gamma_0') \cup (\gamma_i, \theta_n) \\ -\frac{\pi}{2} (1-a) \text{ for } \phi \in \bigcup_{i=1}^l (\gamma_i, \gamma_i) \\ 0 \text{ for } \phi \in (\psi_n, \theta_n) \text{ when } l = 0 \end{cases}$$

for 'lower part of Γ_n '.

Let us consider the function

$$h(z;\mu,\nu) = \frac{ie^{-i\mu}z}{\left[1 - ze^{-i(\mu-\nu)}\right]\left[1 - ze^{-i(\mu+\nu)}\right]}, \quad z \in \overline{E}.$$
 (3)

The boundary of the domain $h(E; \mu, \nu)$ is the sum of two half-lines contained in the imaginary axis which omit the origin. We easily examine that

Im $h(e^{i\phi}; \mu, \nu) > 0$ for $\phi \in (\mu - \nu, \mu + \nu)$

Im
$$h(e^{i\phi}; \mu, \nu) < 0$$
 for $\phi \in (\mu + \nu, \mu - \nu + 2\pi)$

where $\mu \in (0, 2\pi), \nu \in (0, \pi)$. Thus

$$\arg [h(e^{i\phi}; \mu, \nu)] = \begin{cases} \frac{\pi}{2} = \arg i & \text{for } \phi \in (\mu - \nu, \mu + \nu) \\ -\frac{\pi}{2} = \arg (-i) \text{ for } \phi \in (\mu + \nu, \mu - \nu + 2\pi). \end{cases}$$
(4)

From (2) and (4) it follows

$$\frac{e^{i\phi}f'_{n}(e^{i\phi})}{h(e^{i\phi};\mu_{n},\nu_{n})} = \begin{cases}
\frac{\pi}{2}(1-a) \text{ for} \\
\phi \in \bigcup_{j=1}^{k} (\omega_{j},\omega_{j}) \cup \bigcup_{i=1}^{l} (\gamma_{i}-1,\gamma_{i}) \cup (\omega_{0},\psi_{n}+2\pi) \\
0 \text{ for } \phi \in (\psi_{n},\gamma_{0}) \cup (\gamma_{i}^{*},\theta_{n}) \\
0 \text{ for } \phi \in (\psi_{n},\theta_{n}) \text{ when } l = 0 \\
0 \text{ for } \phi \in (\theta_{n},\psi_{n}+2\pi) \text{ when } k = 0 \\
-\frac{\pi}{2}(1-a) \text{ for} \\
\phi \in \bigcup_{j=1}^{k} (\omega_{j},\omega_{j-1}) \cup \bigcup_{i=1}^{l} (\gamma_{i},\gamma_{i}') \cup (\theta_{n},\omega_{k}').
\end{cases}$$

Considering (3) we have:

arg-

$$|\arg \left\{-ie^{i\mu_n} \left(1-2e^{i\phi}e^{-i\mu_n}\cos\nu_n+e^{2i\phi}e^{-2i\mu_n}\right)f'_n(e^{i\phi})\right\}| \le (1-a)\frac{\pi}{2}$$
(5)

for $\phi \in \langle \psi_n, \psi_n + 2\pi \rangle \setminus \{\omega_1, ..., \omega_k, \omega_0, ..., \omega_k, \gamma_1, ..., \gamma_l, \gamma_0, ..., \gamma_l', \theta_n, \psi_n \}$. By Theorem 5 of the paper [5], p. 188, we have

$$|\arg \left\{-ie^{i\mu n} \left(1-2ze^{-i\mu n} \cos \nu_n+z^2 e^{-2i\mu n}\right) f'_n(z)\right\}| \le (1-a) \frac{\pi}{2}, z \in E.$$
(6)

Since $f_n \rightarrow f$ locally uniformly in E and the sequences (μ_n) , (ν_n) are bounded, there exists a subsequence (n_k) such that $\mu_{n_k} \rightarrow \mu$, $\nu_{n_k} \rightarrow \nu$, $(k \rightarrow +\infty)$. From (6) with $n = n_k$ for $k \rightarrow +\infty$, we obtain

$$|\arg\left\{-ie^{i\mu}\left(1-2ze^{-i\mu}\cos\nu+z^{2}e^{-2i\mu}\right)f'(z)\right\}| \le (1-a)\frac{\pi}{2}, \ z \in E.$$
(7)

We know that any domain of $T_a(0)$ can be approximated in the sense of Caratheodory by canonical domains (Theorem 1). Passing to the limit again we conclude that for $f \in S_0$, f(0) = 0 such that $f(E) \in T_a(0)$ there exist numbers $\mu \in \langle 0, 2\pi \rangle$, $\nu \in \langle 0, \pi \rangle$ which satisfy (7) and the first part of Theorem 2 follows.

2. Conversely, let f(z), f(0) = 0 be an analytic and non-constant function in E for which (7) holds.

a) If the sign of equality appears for some point $z \in E$, then by the maximum principle for harmonic functions we obtain

$$-ie^{i\mu}\left(1-2ze^{-i\mu}\cos\nu+z^2e^{-2i\mu}\right)f'(z)=ce^{-i(1-a)\frac{\pi}{2}}$$

Thus

$$f(z) = e^{\pm i (1-a)\frac{\pi}{2}} \frac{c}{2\sin\nu} \ln \left[e^{-2i\nu} \frac{z - e^{-i(\mu+\nu)}}{z - e^{i(\mu-\nu)}} \right], f(0) = 0.$$
(8)

For $\nu = 0$, $\nu = \pi$ we must take the limit function of the form

$$f(z) = ie^{\pm i(1-a)} \frac{\pi}{2} \frac{cze^{-i\mu}}{1-ze^{-i\mu}}$$

Therefore f(E) for $\nu \in (0, \pi)$, is a strip whose edges form with the imaginary axis an angle of measure $a \frac{\pi}{2}$. For $\nu = 0$ or $\nu = \pi$, f(E) is a half-plane whose boundary forms an angle of measure $a \frac{\pi}{2}$ with the imaginary axis; i.e. $f(E) \in T_a(0)$ and the mapping is univalent.

b) Let us now assume that equality in (1) does not take place at any point in E. Thus

$$| \arg \left\{ -ie^{i\mu} \left(1 - 2ze^{-i\mu} \cos \nu + z^2 e^{-2i\mu} \right) f'(z) \right\} | < (1-a) \frac{\pi}{2}.$$
(9)

It follows from the definition $h(\cdot; \mu, \nu)$ that the function H given by

$$H(z) = \int_{0}^{z} \frac{h(\zeta)}{\zeta} d\zeta = \frac{1}{2 \sin \nu} \ln \left[e^{-2 i\nu} \frac{z - e^{i(\mu + \nu)}}{z - e^{i(\mu - \nu)}} \right]$$

maps the disc E on the strip $\{w: A < \text{Im } w < B\}$, where $-\infty \le A < B \le +\infty$. For every fixed $t \in (A, B)$ let us consider a straight line $L_t: w \equiv w(s) = s + ti$, $s \in (-\infty, +\infty)$. $H^{-1}(L_t)$ is a Jordan arc: $z_t = z_t(s) = H^{-1}(s + ti)$ contained in E with end-points at $e^{t(\mu - \nu)}$ and $e^{t(\mu + \nu)}$, respectively. Hence $H(z_t(s)) = s + ti$ and

$$H'(z_t(s)) = \frac{1}{\frac{d}{ds} z_t(s)}$$
(10)

The condition (9) is equivalent to

$$|\arg \frac{f'(z)}{H'(z)}| < (1-a)\frac{\pi}{2}, z \in E.$$
 (11)

From (10) and (11) we obtain

$$|\arg \frac{d}{ds} f(z_{g}(s))| < (1-a) \frac{\pi}{2}, s \in (-\infty, +\infty).$$
 (12)

Hence a tangent vector to the curve $z_t(s)$ forms with the positive direction of the real axis

an angle larger than $-(1-a)\frac{\pi}{2}$ and simultaneously smaller than $+(1-a)\frac{\pi}{2}$. From

convexity of H and from (11) it follows that f is a close-to-convex function, hence univalent (see W. Kaplan [4]). Therefore, if t varies from A to B, then the curves $z = z_t(s)$ have end-points $e^{i(\mu + \nu)}$, $e^{i(\mu - \nu)}$ in common only and they sweep out the disc E. Hence $f(D(t_1, t_2)) \in T_a$, where $t_1 \neq t_2$, t_1 , $t_2 \in (A, B)$; $D(t_1, t_2)$, $D(t_1, t_2) \subset E$, denotes a domain bounded by the arcs $z = z_{t_1}(s)$, $z = z_{t_2}(s)$, $s \in (-\infty, +\infty)$. Hence $f(E) \in T_a$, i.e. $f \in I_a$.

In the second part of our proof we have exploited some ideas from the paper by Cz. Burniak, Z. Lewandowski and J. Pituch [1]. The proof is completed.

Theorem 3. If $f \in I_a$, $0 \le a \le 1$, and $f(z) = z + a_2 z^2 + ..., a_2 \ne 0$, there exist numbers

$$\mu, \nu; a \frac{\pi}{2} \le \mu \le (2-a) \frac{\pi}{2}, 0 \le \nu \le \pi \text{ such that}$$

$$|a_2 - e^{-i\mu} \cos \nu| \le (1-a) |\cos \frac{2\mu - \pi}{2(1-a)}|. \qquad (13)$$

Proof. By Theorem 2 there exist numbers $\mu, \nu; a = \frac{\pi}{2} \le \mu \le (2-a) = \frac{\pi}{2}, 0 \le \nu \le \pi$ such that

$$\arg\left\{-ie^{i\mu}\left(1-2ze^{-i\mu}\cos\nu+z^2e^{-2i\mu}\right)f'(z)\right\} \leq (1-a)\frac{\pi}{2}, \ z\in E.$$

Put $F(z) = -ie^{i\mu} (1 - 2ze^{-i\mu} \cos \nu + z^2 e^{-2i\mu}) f'(z)$. Thus the condition (1) has the form

$$|\arg[F(z)]^{\frac{1}{1-\alpha}}| < \frac{\pi}{2}$$

which implies $\operatorname{Re}[F(z)]^{1-\alpha} \ge 0$. Therefore, there is a function $p(\operatorname{Re} p(z) \ge 0, p(0) = 1)$, such that

$$F(z) = \left[\cos\frac{2\mu - \pi}{2(1-a)} p(z) + i\sin\frac{2\mu - \pi}{2(1-a)}\right]^{1-a}$$

and consequently

$$f'(z) = \frac{\left[\cos\frac{2\mu - \pi}{2(1-a)} p(z) + i\sin\frac{2\mu - \pi}{2(1-a)}\right]^{1-a}}{-ie^{i\mu}(1-2ze^{-i\mu}\cos\nu + z^2e^{-2i\mu})}$$
(14)

which gives

3

$$p'(0) = \frac{2(a_2 - e^{-l\mu}\cos\nu)}{(1-a)\cos\frac{2\mu - \pi}{2(1-a)}\exp\left[\frac{-ia(2\mu - \pi)}{2(1-a)}\right]}$$

Since $|p'(0)| \le 2$, we get $|a_2 - e^{-i\mu} \cos \nu| \le (1-a) |\cos \frac{2\mu - \pi}{2(1-a)}|$. This proves our statement.

REFERENCES

- Burniak, Cz., Lewandowski, Z., Pituch, J., Sur l'application de la méthode homotopique et d'un critére d'univalence dans la classe des functions convex vers l'axe imaginaire, Demonstr. Math. 2, 1983.
- [2] Ciozda, K., On a class of functions that are convex in the direction of the negative real axis, its subclasses and fundamental properties, (in Polish), Doctoral dissertation. Univ. Mariae Curie--Skłodowska, Lublin 1978.
- [3] Goluzin, G. M., Geometric theory of functions of a complex variable, (Russian), Moscow 1966.
- [4] Kaplan, W., Close-to-convex schlicht functions, Mich. Math. 1 (1952), 169-185.
- [5] Lavrent'ev, M., Shabat, B., Methods of the theory of functions of a complex variable, (Russian), Moscow-Leningrad 1951.
- [6] Robertson, M., Analytic functions starlike in one direction, Amer. J. Math. 58 (1936), 465-472.
- [7] Royster, W., Ziegler, M., Univalent functions convex in one direction, Publ. Math. 23 (1976), No 3-4, 339-345.

STRESZCZENIE

W pracy tej rozważa się klasę funkcji kątowo osiagalnych w kierunku osi urojonej. Podane są warunki konieczne i dostateczne na to, by funkcja należała do tej klasy.

PESIOME

В этой работе рассуждается класс углово-достижных функций в направлении мнимой оси. Даны необходимые и достаточные условий для принадлежности функции к этому классу.