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Quasisymmetric Functions and Quasihomographies

Abstract. J. Zając introduced in [8] quasihomographies Ar(A) as automorphisms of a 
circle r changing the cross-ratio of points on T in a uniformly bounded manner according to the 
formulas (2.1) and (2.4). In this paper a comparison between At(A ) and the class Q(M) of 
Af-quasisymmetric automorphisms of the unit circle T is presented.

Quasisymmetric functions. Quasisymmetric functions appear in the prob­
lem of the boundary correspondence under quasiconformal (abbr.: qc.) mappings of 
Jordan domains in the extended plane C . Let G C C be a Jordan domain and 
let f be a qc. self-mapping of G . As shown by Ahlfors [1], f has a homeomorphic 
extension on the closure G of G . In other words, a qc. automorphism of a Jordan 
domain G C C generates an automorphism of the boundary curve dG . Here and in 
what follows an automorphism of an orientable manifold S means a homeomorphic 
sense-preserving self-mapping of S . We denote the class of automorphisms of S by 
Aut(S) . The problem of characterizing the elements of Aut(dG) generated by a 
mapping w € Aut(G) was solved three years later by Beurling and Ahlfors [2].

Because of Brouwer’s fixed point theorem every f 6 Aut(G), G C C being a 
Jordan domain, has a fixed point zq . For zo € dG and a conformal mapping 4» of 
G onto the upper half-plane U such that 'P(zo) = oo the composition «P o f o £ 
Aut(U) has oo as a fixed point. Then the generated automorphism of R = dU is a 
continuous strictly increasing function ip which satisfies y>(—oo) = —oo , <¿>(+00) = 
+00 . We have

Theorem A [2]. A continuous strictly increasing function ip on the real 
axis R coincides with the boundary values of a qc. automorphism w of the upper 
half-plane U with a fixed point 00 if and only if there exists p > 1 such that

(1-1)
< + t) - y>(j) <
- ç>(x) - ,p(x -t)~

holds for any x, t € R, t > 0 .

More precisely, if p and ip in (1.1) are given then the construction presented 
in [2] yields a K-qc. mapping w E Aut(U), w(x) = tp(x) on R , with K = K(p) < 
8p(l -|- p)2 (which is not the best possible estimate); see e. g. [7].
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Conversely, if w(z) is a K-qc. automorphism of U such that w(oo) = oo and 
w(x) — 9?(x) on R then (1.1) holds with p = X(K) , where 

(1-2) A(A') = - 1

and p(r) denotes the module of the unit disk D slit along [0, r] . The estimate 
p = A(AT) in (1.1) is sharp.

Following Kelingos [3] any p € Aut(R) satisfying (1.1) is called a p-quasisym- 
metric (abbr.: qs.) function on R and the relevant class of functions is denoted by 
7f(p) . The classes W(p) are not compact (in the sense of Arzela theorem) but their 
subclasses 'Ho(p) = {p £ 7f(p) : y^O) = v(l) — 1=0} are compact. Any p 6 'H(p) 
has the form p(x) = [<p(l) - ip(O)]<po(z) + ¥>(0) , po € 'Ho(p) ■

Evidently, the assumption on a conformal mapping 4' : G •-> U to have a fixed 
point zo € dG , is inessential. For any K-qc. f £ Aut(G) there exist conformal 
mappings $i, <i,2 of G onto U such that iio/o$2 6 Aut([Z) is K-qc. in U and 
has oo as a fixed point.

Suppose now f £ Aut(G) is K-qc. in G and has a fixed point zo 6 G . 
If 4* is a conformal mapping of G onto the unit disk D such that 4<(zo) = 0 then 
h = 4'o/o4'~1 £ Aut(D) is K-qk. inD and h(0) — 0 . In this situation a counterpart 
of Theorem A can be stated as

Theorem B [4]. An automorphism g of the unit circle T coincides with the 
boundary values of a quasiconf ormal automorphism of the unit disk D if and only if 
there exists a constant M > I such that the condition

(1-3) l<?(Qi)l
lff(«2)|

< M

holds for any pair of disjoint adjacent open subarcs ai, a2 of T with equal length 
|qi| = |a2| •

Let Q(M) denote the class of all g £ Aut(T) which satisfy (1.3). If. g € Q(M) 
and </(e,#) = exp[i<p(0)] then (1.3) implies p(0) € W(Af) after p has been extended 
on R by the condition p(0 + 2%) — + p(9) . The Beurling-Ahlfors construction
and a subsequent exponentiation result in a K-qc. automorphism h of D such that 
h(0) = 0, h(t) = g(t) on T and K = A'(Af) < 8M(1 + M)2 . For details cf. [4].

Conversely, let S(A') denote the class of all K-qc. automorphisms of D and define 
Sr(K) = {h € S(A') : |/i(0)| < r}, 0 < r < 1 . Suppose h £ So(A') . Then h may be 
considered as an automorphism of a doubly connected domain O \ {0} which may 
be lifted under a locally conformal mapping z t-t —i log z on the universal covering 
surface U of D \ {0} as a K-qc. automorphism h of U. We have A|R £ Tf(M) , 
where A(ar) — x is 27r-periodic and M = A(A') by Theorem A. The exponentiation 
implies (1.3) with g = h|T ; cf. [4].

We now prove that the assumption h £ So (A') can be weakened.

Lemma . Suppose h £ Sr(A'), 0 < r < 1 . If 

(1-4) A'r = (l + r)(l-r)"1
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then (1.37 holds with g = /i|T and M = \(KKr).

Proof. If h € Sr(K) then h(0) = zq and |zo| < r ■ For w = w(z) = 
t(l 4- z)(l — z)-1 define

W(z) = (1 - |z0|2)-1 [(1 - z0)w + ¿o(l -2o)w] •

It is easily verified that the function

(1.5) z ~ L(z, z0) = [IT(z) - t][IV(z) + i]-1

is a qc. automorphism of D which satisfies L(zo,zo) = 0 and L(f,zo) = t for any 
t € T . The complex dilatation of L, i.e.

dL _ z0(l - zo) w'(z) _ 1 - z0 Z1 - zqz V
dL 1 — zo to'(z) ° 1 — zo \ 1 — /

satisfies \dL/dL\ = |zo| and hence L is A'r-qc., where Kr is given by (1.4). The 
mapping F = L(-,zq) o h has the same boundary values on T as h . Moreover, 
F e S0(AAr) and hence, by Theorem B, F|T = h|T € Q(Af) with M = A(AA'r) 
which ends the proof.

The mappings g £ Q(Af) will be called Af-qs. automorphisms of T. It seems 
that the p-qs. functions on R represent in a natural way the boundary correspondence 
for qc. automorphisms of G with a fixed point on dG , while the Af-qs. automor­
phisms of T are quite natural in case a fixed point is an interior point. Note that no 
boundary point is distinguished in the latter case.

2. Quasihomographies. Let Q — U(xi,X2,3:3,14) be a quadrilateral consist­
ing of the upper half-plane U with the vertices Xk on R indexed in the increasing 
order. Its module Af(Q) is a characteristic conformal invariant. The vertices x* can 
be mapped under a suitable conformal automorphism of £7 onto —r, —1, 1, r . Since 
their ’’modified cross-ratio”

(2.1) (x1x2XjX4j := {—----— ■ ** _ ) €(0,1)

remains unchanged, it must be equal 2^c(l+’')_1 If £(r) — ^^(l—r2 sin2 f)-1Z2 dt 
then

- r2) _ p(r 
2£(r) 7r

where p(r) denotes the module of the ring domain D \ [0, r] .
On the other hand

p(r) = 2p(2v/r(l + r)_1) = 2p([xn2x3x4])

cf. [7; p.60]. Hence the relation between these two characteristic conformal invariants 
follows:

(2-2) Af(Q) = - p([xii2x3x4]) ,7T
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cf.e.g. [7; p.81].
As observed by J.Zając [8], this equality provides a control on the behaviour of 

the modified cross-ratio under qc. automorphisms of V. Due to the invariance of 
both sides in (2.2) under homographies an analogous equality holds if U is replaced 
by an arbitrary disk. If f is a A'-qc. automorphism of U then (2.2) obviously implies 

(2.3) A_1/j([xiX2X3X4]) < m([/(xi)/(x2)/(x3)/(x4)]) < A>([x¡x2^3^4]) •

By means of the distortion function <pa(<) = p-1(/i(f)/A'), A' > 0 , we obtain from 
(2.3)

(2-4) <p1/K([xiX2x3X4]) < [/(xi)/(x2)/(x3)/(x4)] < .

This suggests the following

Definition . ([8], [10]). Given an oriented circle T in the extended plane C , an 
automorphism f of T is called a quasihomography of order A' (notation: f G -Ar(A) ) 
if (2.4) holds for any quadruple of points x* G T whose order is compatible with the 
orientation of T .

The identity ¥>k, o<Pa2 = V>KtKt implies the following nice properties of quasi­
homographies which have no counterparts for W(p) and Q(M) :
(i) If fj G Xr(Aj), j = 1,2 , then }x 0 f2 € 4r(AiA2) ;

(ii) if / G >tr(A') then also /-1 G -dr(A') .
IfR = RU{oo) and the usual order on R is replaced by the cyclic order on R 

invariant under Moebius automorphisms of U then the class -d^(A') shows to be an 
obvious generalization of A(p) .

Let 4'i,i,2 he Moebius automorphisms of U and let f G ^4jj(A) . Then (2.3) 
remains true if we replace f by 4<i of and then x* by ^(tjt) . Thus f G ^4^(A) 
implies ii o f o ’I'2 G -dj^(A') , i.e. the class Xjg(A') is closed w.r.t. the outer and 
inner composition with Moebius automorphisms of U.

There is an obvious connection between the classes -dg-( A') and 7f(p) . If f G 
■4jg(A') then, by taking suitable 4’i,’I’2 we obtain p = iio/oi2 G -d^A') 
which satisfies 95(00) = 00 . Substituting in (2.3) / = <p and x4 — 00 we obtain 
(1.1) with p = A(A') , cf. [8]. Conversely, any p G 7f(p) has a A'(p)-qc. extension 
w(z) G Aut(I7) , where we can take A'(p) = 8p(l + p)2 . Then by (2.2) and (2.3) we 
easily verify that <p G >l^(A(p)) . Consequently, ^4^(A') and 7Y(p) are, in some 
sense, equivalent.

If T is an arbitrary oriented circle in the extended plane then there exists a 
homography >P such that T = 'I'(R) and the orientation is preserved under lP. If 
f E -d^(A) then obviously F = 'I'o/o'P-1 G -dr (A') and this defines an isomorphism 
of ¿¿A) and -dr(A) .

3. The classes S(A'), -dr(A'), and Q(M) . In this section the subclasses 
.dT(A’) and Q(M) of Aut(T) are considered. Since any h G S(K) has a homeomor- 
phic extension on D , we may also consider the class S(A')|T C Aut(T) consisting 
of all h|T where h G S’(A') . A subclass M of Aut(T) is called closed if for any 
sequence h„ G M convergent at any t G T the limit function h G M . A subclass 
M of Aut(T) is compact if it is closed and equicontinuous on T .
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In [9] and [10] the author was dealing with the relation between the subclasses 
At(K) and Q(M) of Aut(T) .

He claims [10; p.404] that the condition (1.3) does not characterize the boundary 
values of an arbitrary K-qc.automorphism of D . However, this is not true. By 
our Lemma, for an arbitrary G € S(K) such that G(0) = Zq we have G|T € 
Q(M) , where M = \(KKr), r = |zo| and Kr is defined by (1.4). The author’s 
claim was based on the following Example [9; p.422]. Let (h„) be the sequence of 
Moebius automorphisms defined by the equalities: /i„(l) = 1, An(z) = exp[irin/(n + 
1)1, ^„(—1) = —1 ■ If oi, »2 are subarcs of T with end-points 1, i and ¿,—1 , 
resp., then h„ 6 ^4t(1) and |h„(ai)|/|hn(a2)| = ^ • The sequence (hn) is pointwise 
convergent on T to the function h(<), where h(t) = 0 for t € T \ {—1,1}, h(l) = 
1, /i(—1) = — 1 , so that h -4t(1) • What does this example actually prove is that 
the classes Xt(A) and S(A') are not closed for any K > 1 which is their common 
serious drawback. Since any class Q(Af) is compact due to Arzela theorem (cf.[5)), 
the problems of maximizing the l.h.s. of (1.3) in .At(A') , or S(A'), are ill-posed.

In order to find a relation betwenn the classes S(K) and Q(M) we have to confine 
ourselves to a suitable subclass S(K) of S(A'). Note that the condition: ’’there exists 
a sequence h„ € S(K) such that lim |h„(0)| = 1 ”, implies S(A) to be non-closed. 
In fact, if there exists a convergent subsequence (h„t) , its limit function h S(A') , 
so it maps D on a set consisting of one, or two points, cf. [7; p.74]. Hence a natural 
assumption on S(A) to be closed is that there exists r € [0,1) such that |h(0)| < r 
for any h € S(K) . Then our Lemma yields the desired relation: If h € 5r(A') then 
A|T £ Q(Af) with M = A(A'A'r) .

Given f € Q(M) we obtain as in [4] a A'-qc. extension F oi f onto D such that 
F(0) = 0 and k = K(M) < 8A/(1 + Af)2 . Using the equality (2.2) and the well- 
known behaviour of M(Q) under A-qc. mappings we obtain at once f £ At(K(M)) , 
i.e. Q(M) C A(A(M)) .

Given f (: At(p) there exists M = M(f,p) such that f £ Q(M) , as proved 
in [9] without reference to qc. extension of f. We now sketch a simple alternative 
proof.

As we have already seen, there is the following relation between the classes S(K) 
and Q(Af):

(i) If F £ S(A), F(0) = z0, >o| < r < 1 and Kr = (1 + r)/(l - r) , then
F|T £ Q(M) , where M = A(AAr) .

(ii) Denote by S*(A”) the family of all G £ S(A) such that G(t*) = =
exp(27rifc/3), k = 0,1,2 . We have evaluated in [6] a number r(A') < 1 such 
that |G(0)| < r(A') for any G € S‘(A) .

Suppose / £ -4t(/>) is given and denote by the Moebius transformation such 
that i'(tfc) = /(tjt), fe = 0,1,2 . Let F be a A'(p)-qc. extension of F on the unit disk. 
Then obviously G = ®-1 o F £ S*(A'(p)) . Due to (ii) we have |G(0)| < r(A'(p)) ■ 
The disk |z| < r(A(p)) is mapped under i ona disk contained in |w| < r(/, p) < 1 . 
We have by (ii) |F(0)| = |(’®' oG)(0)| < r(f,p} and hence by (i) F|T = / € Q(Af) , 
where

M = A[A(p)(l + r(/,p))(l-r(/,p))-1].
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