LUBLIN-POLONIA

Jan G. KRZẎ (Lublin)

Quasisymmetric Functions and Quasihomographies

Abstract

J. Zajagc introduced in [8] quasihomographies $\mathcal{A}_{\Gamma}(K)$ as automorphisms of a circle Γ changing the cross-ratio of points on Γ in a uniformly bounded manner according to the formulas (2.1) and (2.4). In this paper a comparison between $\mathcal{A}_{\mathrm{T}}\left(K^{\prime}\right)$ and the class $Q(M)$ of M-quasisymmetric automorphisms of the unit circle \mathbb{T} is presented.

Quasisymmetric functions. Quasisymmetric functions appear in the problem of the boundary correspondence under quasiconformal (abbr.: qc.) mappings of Jordan domains in the extended plane $\widehat{\mathbb{C}}$. Let $G \subset \widehat{\mathbb{C}}$ be a Jordan domain and let f be a qc. self-mapping of G. As shown by Ahlfors [1], f has a homeomorphic extension on the closure \bar{G} of G. In other words, a qc. automorphism of a Jordan domain $G \subset \widehat{\mathbb{C}}$ generates an automorphism of the boundary curve ∂G. Here and in what follows an automorphism of an orientable manifold S means a homeomorphic sense-preserving self-mapping of S. We denote the class of automorphisms of S by $\operatorname{Aut}(S)$. The problem of characterizing the elements of $\operatorname{Aut}(\partial G)$ generated by a mapping $w \in \operatorname{Aut}(G)$ was solved three years later by Beurling and Ahlfors [2].

Because of Brouwer's fixed point theorem every $f \in \operatorname{Aut}(\bar{G}), G \subset \widehat{\mathbb{C}}$ being a Jordan domain, has a fixed point z_{0}. For $z_{0} \in \partial G$ and a conformal mapping Ψ of G onto the upper half-plane U such that $\Psi\left(z_{0}\right)=\infty$ the composition $\Psi \circ f \circ \Psi^{-1} \in$ Aut (\bar{U}) has ∞ as a fixed point. Then the generated automorphism of $\mathbb{R}=\partial U$ is a continuous strictly increasing function φ which satisfies $\varphi(-\infty)=-\infty, \varphi(+\infty)=$ $+\infty$. We have

Theorem A [2]. A continuous strictly increasing function φ on the real axis \mathbb{R} coincides with the boundary values of a gc. automorphism w of the upper half-plane U with a fixed point ∞ if and only if there exists $\rho \geq 1$ such that

$$
\begin{equation*}
\rho^{-1} \leq \frac{\varphi(x+t)-\varphi(x)}{\varphi(x)-\varphi(x-t)} \leq \rho \tag{1.1}
\end{equation*}
$$

holds for any $x, t \in \mathbb{R}, t>0$.

More precisely, if ρ and φ in (1.1) are given then the construction presented in [2] yields a K-qc. mapping $w \in \operatorname{Aut}(U), w(x)=\varphi(x)$ on \mathbb{R}, with $K^{\prime}=K^{\prime}(\rho) \leq$ $8 \rho(1+\rho)^{2}$ (which is not the best possible estimate); see e. g. [7].

Conversely, if $w(z)$ is a K-qc. automorphism of U such that $w(\infty)=\infty$ and $w(x)=\varphi(x)$ on \mathbb{R} then (1.1) holds with $\rho=\lambda\left(K^{*}\right)$, where

$$
\begin{equation*}
\lambda(K)=\left[\mu^{-1}(\pi K / 2)\right]^{-2}-1 \tag{1.2}
\end{equation*}
$$

and $\mu(r)$ denotes the module of the unit disk \mathbb{D} slit along $[0, r]$. The estimate $\rho=\lambda(K)$ in (1.1) is sharp.

Following Kelingos [3] any $\varphi \in \operatorname{Aut}(\mathbb{R})$ satisfying (1.1) is called a ρ-quasisymmetric (abbr.: qs.) function on \mathbb{R} and the relevant class of functions is denoted by $\mathcal{H}(\rho)$. The classes $\mathcal{H}(\rho)$ are not compact (in the sense of Arzelà theorem) but their subclasses $\mathcal{H}_{0}(\rho)=\{\varphi \in \mathcal{H}(\rho): \varphi(0)=\varphi(1)-1=0\}$ are compact. Any $\varphi \in \mathcal{H}(\rho)$ has the form $\varphi(x)=[\varphi(1)-\varphi(0)] \varphi_{0}(x)+\varphi(0), \varphi_{0} \in \mathcal{H}_{0}(\rho)$.

Evidently, the assumption on a conformal mapping $\Psi: G \mapsto U$ to have a fixed point $z_{0} \in \partial G$, is inessential. For any K-qc. $f \in \operatorname{Aut}(\bar{G})$ there exist conformal mappings Ψ_{1}, Ψ_{2} of G onto U such that $\Psi_{1} \circ f \circ \Psi_{2} \in \operatorname{Aut}(\bar{U})$ is K-qc. in U and has ∞ as a fixed point.

Suppose now $f \in \operatorname{Aut}(\bar{G})$ is K-qc. in G and has a fixed point $z_{0} \in G$. If Ψ is a conformal mapping of G onto the unit disk \mathbb{D} such that $\Psi\left(z_{0}\right)=0$ then $h=\Psi \circ f \circ \Psi^{-1} \in \operatorname{Aut}(\overline{\mathbb{D}})$ is K-qk. in \mathbb{D} and $h(0)=0$. In this situation a counterpart of Theorem A can be stated as

Theorem B [4]. An automorphism g of the unit circle \mathbb{T} coincides with the boundary values of a quasiconformal automorphism of the unit disk \mathbb{D} if and only if there exists a constant $M \geq 1$ such that the condition

$$
\begin{equation*}
\frac{\left|g\left(\alpha_{1}\right)\right|}{\left|g\left(\alpha_{2}\right)\right|} \leq M \tag{1.3}
\end{equation*}
$$

holds for any pair of disjoint adjacent open subarcs α_{1}, α_{2} of \mathbb{T} with equal length $\left|\alpha_{1}\right|=\left|\alpha_{2}\right|$.

Let $Q(M)$ denote the class of all $g \in \operatorname{Aut}(\mathbb{T})$ which satisfy (1.3). If. $g \in Q(M)$ and $g\left(e^{i \theta}\right)=\exp [i \varphi(\theta)]$ then (1.3) implies $\varphi(\theta) \in \mathcal{H}(M)$ after φ has been extended on \mathbb{R} by the condition $\varphi(\theta+2 \pi)=2 \pi+\varphi(\theta)$. The Beurling-Ahlfors construction and a subsequent exponentiation result in a K-qc. automorphism h of \mathbb{D} such that $h(0)=0, h(t)=g(t)$ on T and $K=K(M) \leq 8 M(1+M)^{2}$. For details cf. [4].

Conversely, let $S(K)$ denote the class of all K-qc. automorphisms of D and define $S_{r}\left(K^{\prime}\right)=\{h \in S(K):|h(0)| \leq r\}, 0 \leq r<1$. Suppose $h \in S_{0}\left(K^{\prime}\right)$. Then h may be considered as an automorphism of a doubly connected domain $\mathbb{D} \backslash\{0\}$ which may be lifted under a locally conformal mapping $z \mapsto-i \log z$ on the universal covering surface U of $\mathbb{D} \backslash\{0\}$ as a K-qc. automorphism \tilde{h} of U. We have $\widetilde{h} \mid \mathbb{R} \in \mathcal{H}(M)$, where $\tilde{h}(x)-x$ is 2π-periodic and $M=\lambda(K)$ by Theorem A. The exponentiation implies (1.3) with $g=h \mid T$; cf. [4].

We now prove that the assumption $h \in S_{0}\left(K^{\circ}\right)$ can be weakened.
Lemma. Suppose $h \in S_{r}\left(K^{*}\right), 0 \leq r<1$. If

$$
\begin{equation*}
K_{r}=(1+r)(1-r)^{-1} \tag{1.4}
\end{equation*}
$$

then (1.3) holds with $g=h \mid T$ and $M=\lambda\left(K K_{r}\right)$.
Proof. If $h \in S_{r}\left(K^{\prime}\right)$ then $h(0)=z_{0}$ and $\left|z_{0}\right| \leq r$. For $w=w(z)=$ $i(1+z)(1-z)^{-1}$ define

$$
W(z)=\left(1-\left|z_{0}\right|^{2}\right)^{-1}\left[\left(1-z_{0}\right) w+z_{0}\left(1-\bar{z}_{0}\right) \bar{w}\right] .
$$

It is easily verified that the function

$$
\begin{equation*}
z \mapsto L\left(z, z_{0}\right)=[W(z)-i][W(z)+i]^{-1} \tag{1.5}
\end{equation*}
$$

is a qc. automorphism of \mathbb{D} which satisfies $L\left(z_{0}, z_{0}\right)=0$ and $L\left(t, z_{0}\right)=t$ for any $t \in \mathbf{T}$. The complex dilatation of L, i.e.

$$
\frac{\bar{\partial} L}{\partial L}=\frac{z_{0}\left(1-\bar{z}_{0}\right)}{1-z_{0}} \frac{\overline{w^{\prime}(z)}}{w^{\prime}(z)}=z_{0} \frac{1-\bar{z}_{0}}{1-z_{0}}\left(\frac{1-\bar{z}_{0} z}{1-z_{0} \bar{z}}\right)^{2}
$$

satisfies $|\bar{\partial} L / \partial L|=\left|z_{0}\right|$ and hence L is K_{r}-qc., where K_{r} is given by (1.4). The mapping $F=L\left(\cdot, z_{0}\right) \circ h$ has the same boundary values on T as h. Moreover, $F \in S_{0}\left(K K_{r}\right)$ and hence, by Theorem $B, F|\mathbb{T}=h| \mathbb{T} \in Q(M)$ with $M=\lambda\left(K K_{r}\right)$ which ends the proof.

The mappings $g \in Q(M)$ will be called M-qs. automorphisms of T. It seems that the ρ-qs. functions on \mathbb{R} represent in a natural way the boundary correspondence for qc. automorphisms of G with a fixed point on ∂G, while the M-qs. automorphisms of T are quite natural in case a fixed point is an interior point. Note that no boundary point is distinguished in the latter case.
2. Quasihomographies. Let $Q=U\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be a quadrilateral consisting of the upper half-plane U with the vertices x_{k} on \mathbb{R} indexed in the increasing order. Its module $M(Q)$ is a characteristic conformal invariant. The vertices x_{k} can be mapped under a suitable conformal automorphism of U onto $-r,-1,1, r$. Since their "modified cross-ratio"

$$
\begin{equation*}
\left[x_{1} x_{2} x_{3} x_{4}\right]:=\left\{\frac{x_{3}-x_{2}}{x_{3}-x_{1}}: \frac{x_{4}-x_{2}}{x_{4}-x_{1}}\right\}^{1 / 2} \in(0,1) \tag{2.1}
\end{equation*}
$$

remains unchanged, it must be equal $2 \sqrt{r}(1+r)^{-1}$. If $\mathcal{K}(r)=\int_{0}^{\pi / 2}\left(1-r^{2} \sin ^{2} t\right)^{-1 / 2} d t$ then

$$
M(Q)=\frac{\mathcal{K}\left(\sqrt{1-r^{2}}\right)}{2 \mathcal{K}(r)}=\frac{\mu(r)}{\pi}
$$

where $\mu(r)$ denotes the module of the ring domain $\mathrm{D} \backslash[0, r]$.
On the other hand

$$
\mu(r) \equiv 2 \mu\left(2 \sqrt{r}(1+r)^{-1}\right)=2 \mu\left(\left[x_{1} x_{2} x_{3} x_{4}\right]\right)
$$

cf. [7; p.60]. Hence the relation between these two characteristic conformal invariants follows:

$$
\begin{equation*}
M(Q)=\frac{2}{\pi} \mu\left(\left[x_{1} x_{2} x_{3} x_{4}\right]\right) \tag{2.2}
\end{equation*}
$$

cf.e.g. [7; p.81].
As observed by J.Zajạc [8], this equality provides a control on the behaviour of the modified cross-ratio under qc. automorphisms of U. Due to the invariance of both sides in (2.2) under homographies an analogous equality holds if U is replaced by an arbitrary disk. If f is a K^{\prime}-qc. automorphism of U then (2.2) obviously implies

$$
\begin{equation*}
K^{-1} \mu\left(\left[x_{1} x_{2} x_{3} x_{4}\right]\right) \leq \mu\left(\left[f\left(x_{1}\right) f\left(x_{2}\right) f\left(x_{3}\right) f\left(x_{4}\right)\right]\right) \leq K \mu\left(\left[x_{1} x_{2} x_{3} x_{4}\right]\right) . \tag{2.3}
\end{equation*}
$$

By means of the distortion function $\varphi_{K}(t)=\mu^{-1}\left(\mu(t) / K^{-}\right), K>0$, we obtain from

$$
\begin{equation*}
\varphi_{1 / K}\left(\left[x_{1} x_{2} x_{3} x_{4}\right]\right) \leq\left[f\left(x_{1}\right) f\left(x_{2}\right) f\left(x_{3}\right) f\left(x_{4}\right)\right] \leq \varphi_{K}\left(\left[x_{1} x_{2} x_{3} x_{4}\right]\right) . \tag{2.3}
\end{equation*}
$$

This suggests the following
Deflnition. ([8], [10]). Given an oriented circle Γ in the extended plane $\widehat{\mathbb{C}}$, an automorphism f of Γ is called a quasihomography of order K (notation: $f \in \mathcal{A}_{\Gamma}\left(K^{\prime}\right)$) if (2.4) holds for any quadruple of points $x_{k} \in \Gamma$ whose order is compatible with the orientation of Γ.

The identity $\varphi_{K_{1}} \circ \varphi_{K_{2}}=\varphi_{K_{1} \kappa_{2}}$ implies the following nice properties of quasihomographies which have no counterparts for $\mathcal{H}(\rho)$ and $Q(M)$:
(i) If $f_{j} \in \mathcal{A}_{\Gamma}\left(K_{j}\right), j=1,2$, then $f_{1} \circ f_{2} \in \mathcal{A}_{\Gamma}\left(K_{1} K_{2}\right)$;
(ii) if $f \in \mathcal{A}_{\Gamma}\left(K^{\prime}\right)$ then also $f^{-1} \in \mathcal{A}_{\Gamma}\left(K^{\prime}\right)$.

If $\overline{\mathbf{R}}=\mathbb{R} \cup\{\infty\}$ and the usual order on \mathbb{R} is replaced by the cyclic order on $\overline{\mathbb{R}}$ invariant under Moebius automorphisms of \bar{U} then the class $\mathcal{A}_{\overline{\mathbb{R}}}\left(K^{\prime}\right)$ shows to be an obvious generalization of $\mathcal{H}(\rho)$.

Let Ψ_{1}, Ψ_{2} be Moebius automorphisms of \bar{U} and let $f \in \mathcal{A}_{\overline{\mathbb{R}}}(K)$. Then (2.3) remains true if we replace f by $\Psi_{1} \circ f$ and then x_{k} by $\Psi_{2}\left(t_{k}\right)$. Thus $f \in \mathcal{A}_{\overrightarrow{\mathbb{R}}}(K)$ implies $\Psi_{1} \circ f \circ \Psi_{2} \in \mathcal{A}_{\overline{\mathbb{R}}}\left(K^{\prime}\right)$, i.e. the class $\mathcal{A}_{\overline{\mathbb{R}}}(K)$ is closed w.r.t. the outer and inner composition with Moebius automorphisms of \bar{U}.

There is an obvious connection between the classes $\mathcal{A}_{\vec{R}}\left(K^{\prime}\right)$ and $\mathcal{H}(\rho)$. If $f \in$ $\mathcal{A}_{\overline{\mathrm{R}}}\left(K^{\prime}\right)$ then, by taking suitable Ψ_{1}, Ψ_{2} we obtain $\varphi=\Psi_{1} \circ f \circ \Psi_{2} \in \mathcal{A}_{\overline{\mathbb{R}}}\left(K^{\prime}\right)$ which satisfies $\varphi(\infty)=\infty$. Substituting in (2.3) $f=\varphi$ and $x_{4}=\infty$ we obtain (1.1) with $\rho=\lambda(K)$, cf. [8]. Conversely, any $\varphi \in \mathcal{H}(\rho)$ has a $K(\rho)$-qc. extension $w(z) \in \operatorname{Aut}(\bar{U})$, where we can take $K(\rho)=8 \rho(1+\rho)^{2}$. Then by (2.2) and (2.3) we easily verify that $\varphi \in \mathcal{A}_{\bar{R}}\left(K^{\prime}(\rho)\right)$. Consequently, $\mathcal{A}_{\bar{R}}\left(K^{\prime}\right)$ and $\mathcal{H}(\rho)$ are, in some sense, equivalent.

If Γ is an arbitrary oriented circle in the extended plane then there exists a homography Ψ such that $\Gamma=\Psi(\overline{\mathbb{R}})$ and the orientation is preserved under Ψ. If $f \in \mathcal{A}_{\vec{R}}\left(K^{\prime}\right)$ then obviously $F=\Psi \circ f \circ \Psi^{-1} \in \mathcal{A}_{\Gamma}\left(K^{\prime}\right)$ and this defines an isomorphism of $\mathcal{A}_{\bar{R}}\left(K^{\prime}\right)$ and $\mathcal{A}_{\Gamma}\left(K^{\prime}\right)$.
3. The classes $S(K), \mathcal{A}_{\mathrm{T}}\left(K^{\circ}\right)$, and $Q(M)$. In this section the subclasses $\mathcal{A}_{\mathrm{T}}\left(K^{\prime}\right)$ and $Q(M)$ of Aut (\mathbb{T}) are considered. Since any $h \in S\left(K^{\prime}\right)$ has a homeomorphic extension on $\overline{\mathbf{D}}$, we may also consider the class $S(K) \mid T \subset$ Aut(T) consisting of all $h \mid \mathbb{T}$ where $h \in S\left(K^{\prime}\right)$. A subclass \mathcal{M} of $\operatorname{Aut}(\mathbb{T})$ is called closed if for any sequence $h_{n} \in \mathcal{M}$ convergent at any $t \in \mathbb{T}$ the limit function $h \in \mathcal{M}$. A subclass \mathcal{M} of $\operatorname{Aut}(T)$ is compact if it is closed and equicontinuous on T.

In [9] and [10] the author was dealing with the relation between the subclasses $\mathcal{A}_{\mathrm{T}}(K)$ and $Q(M)$ of $\operatorname{Aut}(\mathbb{T})$.

He claims [10; p.404] that the condition (1.3) does not characterize the boundary values of an arbitrary K-qc.automorphism of \mathbb{D}. However, this is not true. By our Lemma, for an arbitrary $G \in S(K)$ such that $G(0)=z_{0}$ we have $G \mid \mathbb{T} \in$ $Q(M)$, where $M=\lambda\left(K K_{r}\right), r=\left|z_{0}\right|$ and K_{r} is defined by (1.4). The author's claim was based on the following Example [9; p.422]. Let $\left(h_{n}\right)$ be the sequence of Moebius automorphisms defined by the equalities: $h_{n}(1)=1, h_{n}(i)=\exp [\pi i n /(n+$ 1)], $h_{n}(-1)=-1$. If α_{1}, α_{2} are subarcs of \mathbb{T} with end-points $1, i$ and $i,-1$, resp., then $h_{n} \in \mathcal{A}_{\mathbb{T}}(1)$ and $\left|h_{n}\left(\alpha_{1}\right)\right| /\left|h_{n}\left(\alpha_{2}\right)\right|=n$. The sequence $\left(h_{n}\right)$ is pointwise convergent on \mathbf{T} to the function $h(t)$, where $h(t)=0$ for $t \in \mathbb{T} \backslash\{-1,1\}, h(1)=$ $1, h(-1)=-1$, so that $h \notin \mathcal{A}_{\mathbf{T}}(1)$. What does this example actually prove is that the classes $\mathcal{A}_{\mathbb{T}}(K)$ and $S(K)$ are not closed for any $K \geq 1$ which is their common serious drawback. Since any class $Q(M)$ is compact due to Arzelà theorem (cf.[5]), the problems of maximizing the l.h.s. of (1.3) in $\mathcal{A}_{\mathrm{T}}\left(K^{\prime}\right)$, or $S\left(K^{\prime}\right)$, are ill-posed.

In order to find a relation betwenn the classes $S(K)$ and $Q(M)$ we have to confine ourselves to a suitable subclass $\widetilde{S}(K)$ of $S(K)$. Note that the condition: "there exists a sequence $h_{n} \in \tilde{S}(K)$ such that $\lim \left|h_{n}(0)\right|=1$ ", implies $\widetilde{S}(K)$ to be non-closed. In fact, if there exists a convergent subsequence ($h_{n_{k}}$), its limit function $h \notin S\left(K^{\prime}\right)$, so it maps \mathbf{D} on a set consisting of one, or two points, cf. [7; p.74]. Hence a natural assumption on $\tilde{S}(K)$ to be closed is that there exists $r \in[0,1)$ such that $|h(0)| \leq r$ for any $h \in \tilde{S}(K)$. Then our Lemma yields the desired relation: If $h \in S_{r}\left(K^{\prime}\right)$ then $h \mid \mathrm{T} \in Q(M)$ with $M=\lambda\left(K K_{r}^{\prime}\right)$.

Given $f \in Q(M)$ we obtain as in [4] a K-qc. extension F of f onto \mathbb{D} such that $F(0)=0$ and $k=K(M) \leq 8 M(1+M)^{2}$. Using the equality (2.2) and the wellknown behaviour of $M(Q)$ under K-qc. mappings we obtain at once $f \in \mathcal{A}_{\mathbb{T}}\left(K^{\prime}(M)\right)$, i.e. $Q(M) \subset \mathcal{A}_{\mathbf{T}}(K(M))$.

Given $f \in \mathcal{A}_{\mathbb{T}}(\rho)$ there exists $M=M(f, \rho)$ such that $f \in Q(M)$, as proved in [9] without reference to qc. extension of f. We now sketch a simple alternative proof.

As we have already seen, there is the following relation between the classes $S\left(K^{\prime}\right)$ and $Q(M)$:
(i) If $F \in S(K), F(0)=z_{0},\left|z_{0}\right| \leq r<1$ and $K_{r}=(1+r) /(1-r)$, then $F \mid \mathbf{T} \in Q(M)$, where $M=\lambda\left(K K_{r}\right)$.
(ii) Denote by $S^{*}(K)$ the family of all $G \in S(K)$ such that $G\left(t_{k}\right)=t_{k}=$ $\exp (2 \pi i k / 3), k=0,1,2$. We have evaluated in [6] a number $r(K)<1$ such that $|G(0)| \leq r(K)$ for any $G \in S^{*}(K)$.
Suppose $f \in \mathcal{A}_{\mathrm{T}}(\rho)$ is given and denote by Ψ the Moebius transformation such that $\Psi\left(t_{k}\right)=f\left(t_{k}\right), k=0,1,2$. Let F be a $K^{\prime}(\rho)$-qc. extension of F on the unit disk. Then obviously $G=\Psi^{-1} \circ F \in S^{\bullet}\left(K^{\prime}(\rho)\right)$. Due to (ii) we have $|G(0)| \leq r\left(K^{\prime}(\rho)\right)$. The disk $|z| \leq r(K(\rho))$ is mapped under Ψ on a disk contained in $|w| \leq r(f, \rho)<1$. We have by (ii) $|F(0)|=|(\Psi \circ G)(0)| \leq r(f, \rho)$ and hence by (i) $F \mid T=f \in Q(M)$, where

$$
M=\lambda\left[K^{\prime}(\rho)(1+r(f, \rho))(1-r(f, \rho))^{-1}\right] .
$$

REFERENCES

[1] Ahlfors, L.V., On quasiconformal mappings, J. Analyse Math. 3 (1954), 1-58.
[2] Beurling, A. and L.V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142.
[3] Kelingos, J.A., Boundary correspondence under quasiconformal mappings, Michigan Math. J. 13 (1966), 235-249.
[4] Krzyí, J.G., Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. AI Math. 12 (1987), 19-24.
[5] Krzyí, J.G., Harmonic analysis and boundary correspondence under quasiconformal mappings , ibid. 14 (1989), 225-242.
[6] Krzyí, J.G., Universal Teichmüller space and Fourier series, (preprint).
[7] Lehto, O. and K.I. Virtanen, Quasiconformal mappings in the plane, Springer Verlag, Berlin-Heidelberg-New York 1973.
[8] Zajac, J., A new definition of quasisymmetric functions, Mat. Vesnik 40 (1988), 361-365.
[9] Zajac, J., Quasisymmetric functions and quasihomographes of the unit circle, Ann. Univ. Mariae Curie-Sklodowska Sect. A 44 (1990), 83-95
[10] Zajeqc, J., The distortion function Φ_{K} and quasihomographies. Current topic in analytic function theory, World Scientific Publ. Co. River Edge NJ, 1992

Instytut Matematyki UMCS
(received December 15, 1993)
Plac M. Curie Skłodowskiej 1
20-031 Lublin, Poland
e-mail: Krzyz@golem.umcs.lublin.pl

