ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN-POLONIA

VOL. XLVII, 9

SECTIO A

1993

Jan G. KRZYŻ (Lublin)

Quasisymmetric Functions and Quasihomographies

Abstract. J. Zając introduced in [8] quasihomographies $\mathcal{A}_{\Gamma}(K)$ as automorphisms of a circle Γ changing the cross-ratio of points on Γ in a uniformly bounded manner according to the formulas (2.1) and (2.4). In this paper a comparison between $\mathcal{A}_{\mathbb{T}}(K)$ and the class Q(M) of M-quasisymmetric automorphisms of the unit circle \mathbb{T} is presented.

Quasisymmetric functions. Quasisymmetric functions appear in the problem of the boundary correspondence under quasiconformal (abbr.: qc.) mappings of Jordan domains in the extended plane $\widehat{\mathbb{C}}$. Let $G \subset \widehat{\mathbb{C}}$ be a Jordan domain and let f be a qc. self-mapping of G. As shown by Ahlfors [1], f has a homeomorphic extension on the closure \overline{G} of G. In other words, a qc. automorphism of a Jordan domain $G \subset \widehat{\mathbb{C}}$ generates an automorphism of the boundary curve ∂G . Here and in what follows an automorphism of an orientable manifold S means a homeomorphic sense-preserving self-mapping of S. We denote the class of automorphisms of S by Aut(S). The problem of characterizing the elements of Aut (∂G) generated by a mapping $w \in Aut(G)$ was solved three years later by Beurling and Ahlfors [2].

Because of Brouwer's fixed point theorem every $f \in \operatorname{Aut}(\overline{G}), \ G \subset \widehat{\mathbb{C}}$ being a Jordan domain, has a fixed point z_0 . For $z_0 \in \partial G$ and a conformal mapping Ψ of G onto the upper half-plane U such that $\Psi(z_0) = \infty$ the composition $\Psi \circ f \circ \Psi^{-1} \in \operatorname{Aut}(\overline{U})$ has ∞ as a fixed point. Then the generated automorphism of $\mathbb{R} = \partial U$ is a continuous strictly increasing function φ which satisfies $\varphi(-\infty) = -\infty$, $\varphi(+\infty) = +\infty$. We have

Theorem A [2]. A continuous strictly increasing function φ on the real axis \mathbb{R} coincides with the boundary values of a qc. automorphism w of the upper half-plane U with a fixed point ∞ if and only if there exists $\rho \geq 1$ such that

(1.1)
$$\rho^{-1} \leq \frac{\varphi(x+t) - \varphi(x)}{\varphi(x) - \varphi(x-t)} \leq \rho$$

holds for any $x, t \in \mathbb{R}, t > 0$.

More precisely, if ρ and φ in (1.1) are given then the construction presented in [2] yields a K-qc. mapping $w \in \operatorname{Aut}(U)$, $w(x) = \varphi(x)$ on \mathbb{R} , with $K = K(\rho) \leq 8\rho(1+\rho)^2$ (which is not the best possible estimate); see e. g. [7]. Conversely, if w(z) is a K-qc. automorphism of U such that $w(\infty) = \infty$ and $w(x) = \varphi(x)$ on \mathbb{R} then (1.1) holds with $\rho = \lambda(K)$, where

(1.2)
$$\lambda(K) = [\mu^{-1}(\pi K/2)]^{-2} - 1$$

and $\mu(r)$ denotes the module of the unit disk \mathbb{D} slit along [0, r]. The estimate $\rho = \lambda(K)$ in (1.1) is sharp.

Following Kelingos [3] any $\varphi \in \operatorname{Aut}(\mathbb{R})$ satisfying (1.1) is called a ρ -quasisymmetric (abbr.: qs.) function on \mathbb{R} and the relevant class of functions is denoted by $\mathcal{H}(\rho)$. The classes $\mathcal{H}(\rho)$ are not compact (in the sense of Arzelà theorem) but their subclasses $\mathcal{H}_0(\rho) = \{\varphi \in \mathcal{H}(\rho) : \varphi(0) = \varphi(1) - 1 = 0\}$ are compact. Any $\varphi \in \mathcal{H}(\rho)$ has the form $\varphi(x) = [\varphi(1) - \varphi(0)]\varphi_0(x) + \varphi(0)$, $\varphi_0 \in \mathcal{H}_0(\rho)$.

Evidently, the assumption on a conformal mapping $\Psi: G \mapsto U$ to have a fixed point $z_0 \in \partial G$, is inessential. For any K-qc. $f \in \operatorname{Aut}(\overline{G})$ there exist conformal mappings Ψ_1, Ψ_2 of G onto U such that $\Psi_1 \circ f \circ \Psi_2 \in \operatorname{Aut}(\overline{U})$ is K-qc. in U and has ∞ as a fixed point.

Suppose now $f \in \operatorname{Aut}(\overline{G})$ is K-qc. in G and has a fixed point $z_0 \in G$. If Ψ is a conformal mapping of G onto the unit disk \mathbb{D} such that $\Psi(z_0) = 0$ then $h = \Psi \circ f \circ \Psi^{-1} \in \operatorname{Aut}(\overline{\mathbb{D}})$ is K-qk. in \mathbb{D} and h(0) = 0. In this situation a counterpart of Theorem A can be stated as

Theorem B [4]. An automorphism g of the unit circle \mathbb{T} coincides with the boundary values of a quasiconformal automorphism of the unit disk \mathbb{D} if and only if there exists a constant $M \ge 1$ such that the condition

(1.3)
$$\frac{|g(\alpha_1)|}{|g(\alpha_2)|} \le M$$

holds for any pair of disjoint adjacent open subarcs α_1 , α_2 of \mathbb{T} with equal length $|\alpha_1| = |\alpha_2|$.

Let Q(M) denote the class of all $g \in \operatorname{Aut}(\mathbb{T})$ which satisfy (1.3). If $g \in Q(M)$ and $g(e^{i\theta}) = \exp[i\varphi(\theta)]$ then (1.3) implies $\varphi(\theta) \in \mathcal{H}(M)$ after φ has been extended on \mathbb{R} by the condition $\varphi(\theta + 2\pi) = 2\pi + \varphi(\theta)$. The Beurling-Ahlfors construction and a subsequent exponentiation result in a K-qc. automorphism h of \mathbb{D} such that h(0) = 0, h(t) = g(t) on \mathbb{T} and $K = K(M) \leq 8M(1+M)^2$. For details cf. [4].

Conversely, let S(K) denote the class of all K-qc. automorphisms of \mathbb{D} and define $S_r(K) = \{h \in S(K) : |h(0)| \leq r\}, 0 \leq r < 1$. Suppose $h \in S_0(K)$. Then h may be considered as an automorphism of a doubly connected domain $\mathbb{D} \setminus \{0\}$ which may be lifted under a locally conformal mapping $z \mapsto -i \log z$ on the universal covering surface U of $\mathbb{D} \setminus \{0\}$ as a K-qc. automorphism \tilde{h} of U. We have $\tilde{h}|\mathbb{R} \in \mathcal{H}(M)$, where $\tilde{h}(x) - x$ is 2π -periodic and $M = \lambda(K)$ by Theorem A. The exponentiation implies (1.3) with $g = h|\mathbb{T}$; cf. [4].

We now prove that the assumption $h \in S_0(K)$ can be weakened.

Lemma. Suppose $h \in S_r(K), 0 \leq r < 1$. If

(1.4)
$$K_r = (1+r)(1-r)^{-1}$$

J.G. Krzyz

then (1.3) holds with $g = h | \mathbf{T}$ and $M = \lambda(KK_r)$.

Proof. If $h \in S_r(K)$ then $h(0) = z_0$ and $|z_0| \leq r$. For $w = w(z) = i(1+z)(1-z)^{-1}$ define

$$W(z) = (1 - |z_0|^2)^{-1} [(1 - z_0)w + z_0(1 - \overline{z}_0)\overline{w}]$$

and p(r) density

It is easily verified that the function

(1.5)
$$z \mapsto L(z, z_0) = [W(z) - i][W(z) + i]^{-1}$$

is a qc. automorphism of \mathbb{D} which satisfies $L(z_0, z_0) = 0$ and $L(t, z_0) = t$ for any $t \in \mathbb{T}$. The complex dilatation of L, i.e.

$$\frac{\overline{\partial}L}{\partial L} = \frac{z_0(1-\overline{z}_0)}{1-z_0} \frac{\overline{w'(z)}}{w'(z)} = z_0 \frac{1-\overline{z}_0}{1-z_0} \left(\frac{1-\overline{z}_0 z}{1-z_0 \overline{z}}\right)^2$$

satisfies $|\partial L/\partial L| = |z_0|$ and hence L is K_r -qc., where K_r is given by (1.4). The mapping $F = L(\cdot, z_0) \circ h$ has the same boundary values on T as h. Moreover, $F \in S_0(KK_r)$ and hence, by Theorem B, $F|\mathbb{T} = h|\mathbb{T} \in Q(M)$ with $M = \lambda(KK_r)$ which ends the proof.

The mappings $g \in Q(M)$ will be called M-qs. automorphisms of T. It seems that the ρ -qs. functions on \mathbb{R} represent in a natural way the boundary correspondence for qc. automorphisms of G with a fixed point on ∂G , while the M-qs. automorphisms of T are quite natural in case a fixed point is an interior point. Note that no boundary point is distinguished in the latter case.

2. Quasihomographies. Let $Q = U(x_1, x_2, x_3, x_4)$ be a quadrilateral consisting of the upper half-plane U with the vertices x_k on \mathbb{R} indexed in the increasing order. Its module M(Q) is a characteristic conformal invariant. The vertices x_k can be mapped under a suitable conformal automorphism of U onto -r, -1, 1, r. Since their "modified cross-ratio"

(2.1)
$$[x_1x_2x_3x_4] := \left\{ \frac{x_3 - x_2}{x_3 - x_1} : \frac{x_4 - x_2}{x_4 - x_1} \right\}^{1/2} \in (0, 1)$$

remains unchanged, it must be equal $2\sqrt{r}(1+r)^{-1}$. If $\mathcal{K}(r) = \int_0^{\pi/2} (1-r^2 \sin^2 t)^{-1/2} dt$ then

$$M(Q) = \frac{\mathcal{K}(\sqrt{1-r^2})}{2\mathcal{K}(r)} = \frac{\mu(r)}{\pi}$$

where $\mu(r)$ denotes the module of the ring domain $\mathbb{D} \setminus [0, r]$.

On the other hand

$$\mu(r) \equiv 2\mu(2\sqrt{r(1+r)^{-1}}) = 2\mu([x_1x_2x_3x_4])$$

cf. [7; p.60]. Hence the relation between these two characteristic conformal invariants follows:

(2.2)
$$M(Q) = \frac{2}{\pi} \mu([x_1 x_2 x_3 x_4]) , \qquad (4.1)$$

92

cf.e.g. [7; p.81].

As observed by J.Zając [8], this equality provides a control on the behaviour of the modified cross-ratio under qc. automorphisms of U. Due to the invariance of both sides in (2.2) under homographies an analogous equality holds if U is replaced by an arbitrary disk. If f is a K-qc. automorphism of U then (2.2) obviously implies

$$(2.3) K^{-1}\mu([x_1x_2x_3x_4]) \le \mu([f(x_1)f(x_2)f(x_3)f(x_4)]) \le K\mu([x_1x_2x_3x_4])$$

By means of the distortion function $\varphi_K(t) = \mu^{-1}(\mu(t)/K)$, K > 0, we obtain from (2.3)

(2.4)
$$\varphi_{1/K}([x_1x_2x_3x_4]) \le [f(x_1)f(x_2)f(x_3)f(x_4)] \le \varphi_K([x_1x_2x_3x_4])$$

This suggests the following

Definition. ([8], [10]). Given an oriented circle Γ in the extended plane \mathbb{C} , an automorphism f of Γ is called a quasihomography of order K (notation: $f \in \mathcal{A}_{\Gamma}(K)$) if (2.4) holds for any quadruple of points $x_k \in \Gamma$ whose order is compatible with the orientation of Γ .

The identity $\varphi_{K_1} \circ \varphi_{K_2} = \varphi_{K_1 K_2}$ implies the following nice properties of quasihomographies which have no counterparts for $\mathcal{H}(\rho)$ and Q(M):

(i) If $f_j \in \mathcal{A}_{\Gamma}(K_j)$, j = 1, 2, then $f_1 \circ f_2 \in \mathcal{A}_{\Gamma}(K_1K_2)$;

(ii) if $f \in \mathcal{A}_{\Gamma}(K)$ then also $f^{-1} \in \mathcal{A}_{\Gamma}(K)$.

If $\mathbb{R} = \mathbb{R} \cup \{\infty\}$ and the usual order on \mathbb{R} is replaced by the cyclic order on \mathbb{R} invariant under Moebius automorphisms of \overline{U} then the class $\mathcal{A}_{\mathbb{R}}(K)$ shows to be an obvious generalization of $\mathcal{H}(\rho)$.

Let Ψ_1, Ψ_2 be Moebius automorphisms of \overline{U} and let $f \in \mathcal{A}_{\overline{\mathbb{R}}}(K)$. Then (2.3) remains true if we replace f by $\Psi_1 \circ f$ and then x_k by $\Psi_2(t_k)$. Thus $f \in \mathcal{A}_{\overline{\mathbb{R}}}(K)$ implies $\Psi_1 \circ f \circ \Psi_2 \in \mathcal{A}_{\overline{\mathbb{R}}}(K)$, i.e. the class $\mathcal{A}_{\overline{\mathbb{R}}}(K)$ is closed w.r.t. the outer and inner composition with Moebius automorphisms of \overline{U} .

There is an obvious connection between the classes $\mathcal{A}_{\overline{\mathbb{R}}}(K)$ and $\mathcal{H}(\rho)$. If $f \in \mathcal{A}_{\overline{\mathbb{R}}}(K)$ then, by taking suitable Ψ_1, Ψ_2 we obtain $\varphi = \Psi_1 \circ f \circ \Psi_2 \in \mathcal{A}_{\overline{\mathbb{R}}}(K)$ which satisfies $\varphi(\infty) = \infty$. Substituting in (2.3) $f = \varphi$ and $x_4 = \infty$ we obtain (1.1) with $\rho = \lambda(K)$, cf. [8]. Conversely, any $\varphi \in \mathcal{H}(\rho)$ has a $K(\rho)$ -qc. extension $w(z) \in \operatorname{Aut}(\overline{U})$, where we can take $K(\rho) = 8\rho(1+\rho)^2$. Then by (2.2) and (2.3) we easily verify that $\varphi \in \mathcal{A}_{\overline{\mathbb{R}}}(K(\rho))$. Consequently, $\mathcal{A}_{\overline{\mathbb{R}}}(K)$ and $\mathcal{H}(\rho)$ are, in some sense, equivalent.

If Γ is an arbitrary oriented circle in the extended plane then there exists a homography Ψ such that $\Gamma = \Psi(\overline{\mathbb{R}})$ and the orientation is preserved under Ψ . If $f \in \mathcal{A}_{\overline{\mathbb{R}}}(K)$ then obviously $F = \Psi \circ f \circ \Psi^{-1} \in \mathcal{A}_{\Gamma}(K)$ and this defines an isomorphism of $\mathcal{A}_{\overline{\mathbb{R}}}(K)$ and $\mathcal{A}_{\Gamma}(K)$.

3. The classes S(K), $\mathcal{A}_{\mathbb{T}}(K)$, and Q(M). In this section the subclasses $\mathcal{A}_{\mathbb{T}}(K)$ and Q(M) of Aut(\mathbb{T}) are considered. Since any $h \in S(K)$ has a homeomorphic extension on $\overline{\mathbb{D}}$, we may also consider the class $S(K)|\mathbb{T} \subset \operatorname{Aut}(\mathbb{T})$ consisting of all $h|\mathbb{T}$ where $h \in S(K)$. A subclass \mathcal{M} of Aut(\mathbb{T}) is called closed if for any sequence $h_n \in \mathcal{M}$ convergent at any $t \in \mathbb{T}$ the limit function $h \in \mathcal{M}$. A subclass \mathcal{M} of Aut(\mathbb{T}) is compact if it is closed and equicontinuous on \mathbb{T} .

In [9] and [10] the author was dealing with the relation between the subclasses $\mathcal{A}_{\mathbb{T}}(K)$ and Q(M) of $\operatorname{Aut}(\mathbb{T})$.

He claims [10; p.404] that the condition (1.3) does not characterize the boundary values of an arbitrary K-qc.automorphism of \mathbb{D} . However, this is not true. By our Lemma, for an arbitrary $G \in S(K)$ such that $G(0) = z_0$ we have $G|\mathbb{T} \in Q(M)$, where $M = \lambda(KK_r)$, $r = |z_0|$ and K_r is defined by (1.4). The author's claim was based on the following Example [9; p.422]. Let (h_n) be the sequence of Moebius automorphisms defined by the equalities: $h_n(1) = 1$, $h_n(i) = \exp[\pi i n/(n + 1)]$, $h_n(-1) = -1$. If α_1, α_2 are subarcs of \mathbb{T} with end-points 1, i and i, -1, resp., then $h_n \in \mathcal{A}_{\mathbb{T}}(1)$ and $|h_n(\alpha_1)|/|h_n(\alpha_2)| = n$. The sequence (h_n) is pointwise convergent on \mathbb{T} to the function h(t), where h(t) = 0 for $t \in \mathbb{T} \setminus \{-1,1\}$, h(1) = 1, h(-1) = -1, so that $h \notin \mathcal{A}_{\mathbb{T}}(1)$. What does this example actually prove is that the classes $\mathcal{A}_{\mathbb{T}}(K)$ and S(K) are not closed for any $K \geq 1$ which is their common serious drawback. Since any class Q(M) is compact due to Arzela theorem (cf.[5]), the problems of maximizing the l.h.s. of (1.3) in $\mathcal{A}_{\mathbb{T}}(K)$, or S(K), are ill-posed.

In order to find a relation betwenn the classes S(K) and Q(M) we have to confine ourselves to a suitable subclass $\widetilde{S}(K)$ of S(K). Note that the condition: "there exists a sequence $h_n \in \widetilde{S}(K)$ such that $\lim |h_n(0)| = 1$ ", implies $\widetilde{S}(K)$ to be non-closed. In fact, if there exists a convergent subsequence (h_{n_k}) , its limit function $h \notin S(K)$, so it maps D on a set consisting of one, or two points, cf. [7; p.74]. Hence a natural assumption on $\widetilde{S}(K)$ to be closed is that there exists $r \in [0, 1)$ such that $|h(0)| \leq r$ for any $h \in \widetilde{S}(K)$. Then our Lemma yields the desired relation: If $h \in S_r(K)$ then $h|\mathbb{T} \in Q(M)$ with $M = \lambda(KK_r)$.

Given $f \in Q(M)$ we obtain as in [4] a K-qc. extension F of f onto D such that F(0) = 0 and $k = K(M) \leq 8M(1+M)^2$. Using the equality (2.2) and the well-known behaviour of M(Q) under K-qc. mappings we obtain at once $f \in \mathcal{A}_{\mathbb{T}}(K(M))$, i.e. $Q(M) \subset \mathcal{A}_{\mathbb{T}}(K(M))$.

Given $f \in \mathcal{A}_{\mathbb{T}}(\rho)$ there exists $M = M(f, \rho)$ such that $f \in Q(M)$, as proved in [9] without reference to qc. extension of f. We now sketch a simple alternative proof.

As we have already seen, there is the following relation between the classes S(K)and Q(M):

- (i) If $F \in S(K)$, $F(0) = z_0$, $|z_0| \le r < 1$ and $K_r = (1+r)/(1-r)$, then $F|\mathbb{T} \in Q(M)$, where $M = \lambda(KK_r)$.
- (ii) Denote by $S^*(K)$ the family of all $G \in S(K)$ such that $G(t_k) = t_k = \exp(2\pi i k/3), \ k = 0, 1, 2$. We have evaluated in [6] a number r(K) < 1 such that $|G(0)| \leq r(K)$ for any $G \in S^*(K)$.

Suppose $f \in \mathcal{A}_{\mathbb{T}}(\rho)$ is given and denote by Ψ the Moebius transformation such that $\Psi(t_k) = f(t_k), \ k = 0, 1, 2$. Let F be a $K(\rho)$ -qc. extension of F on the unit disk. Then obviously $G = \Psi^{-1} \circ F \in S^{\bullet}(K(\rho))$. Due to (ii) we have $|G(0)| \leq r(K(\rho))$. The disk $|z| \leq r(K(\rho))$ is mapped under Ψ on a disk contained in $|w| \leq r(f, \rho) < 1$. We have by (ii) $|F(0)| = |(\Psi \circ G)(0)| \leq r(f, \rho)$ and hence by (i) $F|\mathbb{T} = f \in Q(M)$, where

$$M = \lambda [K(\rho)(1 + r(f, \rho))(1 - r(f, \rho))^{-1}].$$

REFERENCES

- [1] Ahlfors, L.V., On quasiconformal mappings, J. Analyse Math. 3 (1954), 1-58.
 - Beurling, A. and L.V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142.
 - Kelingos, J.A., Boundary correspondence under quasiconformal mappings, Michigan Math. J. 13 (1966), 235-249.
 - [4] Krzyż, J.G., Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), 19-24.
 - [5] Krzyż, J.G., Harmonic analysis and boundary correspondence under quasiconformal mappings, ibid. 14 (1989), 225-242.
 - [6] Krzyż, J.G., Universal Teichmüller space and Fourier series, (preprint).
- [7] Lehto, O. and K.I. Virtanen, Quasiconformal mappings in the plane, Springer Verlag, Berlin-Heidelberg-New York 1973.
- [8] Zając, J., A new definition of quasisymmetric functions, Mat. Vesnik 40 (1988), 361-365.
 - [9] Zając, J., Quasisymmetric functions and quasihomographies of the unit circle, Ann. Univ. Mariae Curie-Skłodowska Sect. A 44 (1990), 83-95
- [10] Zając, J., The distortion function Φ_K and quasihomographies. Current topic in analytic function theory, World Scientific Publ. Co. River Edge NJ, 1992.

Instytut Matematyki UMCS (received December 15, 1993) Plac M. Curie Skłodowskiej 1 20-031 Lublin, Poland e-mail: Krzyz @ golem.umcs.lublin.pl