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Quasisymmetric Functions and Quasihomographies

Abstract. J. Zajgc introduced in [8] quasihomographies Ar(K) as automorphisms of a
circle I' changing the cross-ratio of points on I' in a uniformly bounded manner according to the
formulas (2.1) and (2.4). In this paper a comparison between AT(K) and the class Q(M) of
M -quasisymmetric automorphisms of the unit circle T is presented.

Quasisymmetric functions. Quasisymmetric functions appear in the prob-
lem of the boundary correspondence under quasiconformal (abbr.: qc.) mappings of
Jordan domains in the extended plane €. Let G C € be a Jordan domain and
let f be a qc. self-mapping of G . As shown by Ahlfors [1], f has a homeomorphic
extension on the closure G of G . In other words, a qc. automorphism of a Jordan
domain G C C generates an automorphism of the boundary curve 3G . Here and in
what follows an automorphism of an orientable manifold S means a homeomorphic
sense-preserving self-mapping of S . We denote the class of automorphisms of S by
Aut(S) . The problem of characterizing the elements of Aut(0G) generated by a
mapping w € Aut(G) was solved three years later by Beurling and Ahlfors [2].

Because of Brouwer's fixed point theorem every f € Aut(G), G C ¢ being a
Jordan domain, has a fixed point zy . For zy € 3G and a conformal mapping ¥ of
G onto the upper half-plane U such that ¥(zg) = co the composition ¥o fo¥~! ¢
Aut(T) has oo as a fixed point. Then the generated automorphism of R = 9U is a

continuous strictly increasing function ¢ which satisfies p(—00) = —00, p(+00) =
+o0o . We have

Theorem A [2]. A continuous strictly increasing function ¢ on the real
azis R cotncides with the boundary values of a gc. automorphism w of the upper
half-plane U with a fized point oo if and only if there ezists p > 1 such that

K {(z +1)— p(z)
1.1 P NS IR AT
i o(z) -z —1) ="
holds for any z, t€ R, t> 0.

More precisely, if p and ¢ in (1.1) are given then the construction presented
in [2] yields a K-qc. mapping w € Aut(U), w(z) = ¢(z) on R, with K = K(p) <
8p(1 + p)? (which is not the best possible estimate); see e. g. (7).
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Conversely, if w(z) is a K-qc. automorphism of U such that w(co) = co and
w(z) = ¢(z) on R then (1.1) holds with p = A(R’) , where

(1.2) MK) = [ (=K/2)? - 1

and p(r) denotes the module of the unit disk D slit along [0,r] . The estimate
p=AK) in (1.1) is sharp.

Following Kelingos [3] any ¢ € Aut(R) satisfying (1.1) is called a p-quasisym-
metric (abbr.: gs.) function on R and the relevant class of functions is denoted by
H(p) . The classes H(p) are not compact (in the sense of Arzela theorem) but their
subclasses Ho(p) = {p € H(p) : ¢(0) = ¢(1) — 1 =0} are compact. Any ¢ € H(p)
has the form ¢(z) = [¢(1) — @(0)l¢o(z) + #(0) , o € Ho(p)

Evidently, the assumption on a conformal mapping ¥ : G — U to have a fixed
point zg € AG , is inessential. For any K-qc. f € Aut(G) there exist conformal
mappings ¥;, ¥2 of G onto U such that ¥, 0 fo¥; € Aut(U) is K-qc. in U and
has oo as a fixed point.

Suppose now f € Aut(G) is K-qc. in G and has a fixed point z € G .
If ¥ is a conformal mapping of G onto the unit disk D such that ¥(zp) = 0 then
h=%¥ofo¥~! € Aut(D) is K-qk. inD and h(0) = 0. In this situation a counterpart
of Theorem A can be stated as

Theorem B [4]. An automorphism g of the unit circle T coincides with the
boundary values of a quasiconformal automorphism of the unit disk D if and only sf
there ezists a constant M > 1 such that the condstion

lg(ai)]
T2 g(az) =M

holds for any pair of disjoint adjacent open subarcs a;, az of T with equal length
laa] = |ag] .

Let Q(M) denote the class of all g € Aut(T) which satisfy (1.3). If. g € Q(M)
and g(e'®) = exp[ip(6)] then (1.3) implies p(8) € H(M) after ¢ has been extended
on R by the condition (8 + 27) = 2x + ¢(#) . The Beurling-Ahlfors construction
and a subsequent exponentiation result in a K-qc. automorphism h of D such that
h(0) =0, h(t) = g(t) on Tand K = K(M) < 8M(1 + M)? . For details cf. [4].

Conversely, let S(K) denote the class of all K-qc. automorphisms of D and define
S(K)={h€eS(K):|h(0)]<r}, 0<r<1.Suppose h€ So(K) . Then h may be
considered as an automorphism of a doubly connected domain D\ {0} which may
be lifted under a locally conformal mapping z +— —ilogz on the universal covering
surface U of D\ {0} as a K-qc. automorphism h of U. We have h|R € H(M) ,
where Tx(r) — z is 2n-periodic and M = A(K) by Theorem A. The exponentiation
implies (1.3) with ¢ = h|T ; cf. [4].

We now prove that the assumption h € So(K) can be weakened.

Lemma . Suppose he S, (K), 0<r<1.If

(1.4) Ke=Q+r)(1-r)"
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then (1.3) holds with g = h|T and M = \KK,).
Proof. If h € S,(K) then h(0) = zp and |z| < r.For w = w(z) =
i(1+2)(1 —z)~! define
W(z) = (1 = |20)7"[(1 = z0)w + 20(1 — Zo) W] .
It is easily verified that the function
(1.5) 2z L(z,29) = [W(z) = t][W(2) + 1]"

is a qc. automorphism of D which satisfies L(z9,20) =0 and L(t,z9) =t for any
t € T . The complex dilatation of L, i.e.

oL . Zo(l—'z—o) w’(z) 2 1-3%, /1—502\2

;) Y X w'(z)  "1-—zp \1- 2%/

satisfies |OL/OL| = |z0| and hence L is K,-qc., where K, is given by (1.4). The
mapping F = L(-,20) o h has the same boundary values on T as h . Moreover,
F € So(KK,) and hence, by Theorem B, F|T = h|T € Q(M) with M = A(KK,)
which ends the proof.

The mappings g € Q(M) will be called M-qs. automorphisms of T. It seems
that the p-gs. functions on R represent in a natural way the boundary correspondence
for qc. automorphisms of G with a fixed point on 3G , while the M-qs. automor-
phisms of T are quite natural in case a fixed point is an interior point. Note that no
boundary point is distinguished in the latter case.

2. Quasihomographies. Let Q = U(z,,z2,23,24) be a quadrilateral consist-
ing of the upper half-plane U with the vertices zx on R indexed in the increasing
order. Its module M(Q) is a characteristic conformal invariant. The vertices z; can
be mapped under a suitable conformal automorphism of U onto —r, —1, 1, r . Since
their "modified cross-ratio”

Iy — 2 Iy — T2

P @

s

(2.1) [z1z22324] := {

T3—n T -n
remains unchanged, it must be equal 2,/r(1+r)~! . If K(r) = fo’r/z(l—r2 sin?t)~1/2 dt
then 7 (
_K(v1i-r%) pu(r)
MQ) = 200t & 3 o
where u(r) denotes the module of the ring domain D\ [0,r] .
On the other hand

u(r) =2p(2V/r(1 +7)71) = 2u([z1222324))

cf. [7; p.60]. Hence the relation between these two characteristic conformal invariants
follows:

IR ]

(2.2) MQ) =

u([z1z22324])
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d.eg. [7; p.8l].

As observed by J.Zajac (8], this equality provides a control on the behaviour of
the modified cross-ratio under qc. automorphisms of U. Due to the invariance of
both sides in (2.2) under homographies an analogous equality holds if U is replaced
by an arbitrary disk. If f is a K'-qc. automorphism of U then (2.2) obviously implies

(2.3) K7 u([z1z21324)) < p([f(21)f(22)f(23) f(24)])) < Kp([z1227324]) .

By means of the distortion function ¢ (t) = p~'(u(t)/K), K > 0, we obtain from
(2.3)

(2.4) @i ([z1222324]) < [f(21)f(22)f(23)f(24)] < @i ([21722324]) -

This suggests the following

Definition . ([8], [10]). Given an oriented circle T in the extended plane C , an
automorphism f of I is called a quasihomography of order K (notation: f € Ar(K))
if (2.4) holds for any quadruple of points zx € I' whose order is compatible with the
orientation of I .

The identity ¢k, 0 @r, = ¢k, n, implies the following nice properties of quasi-
homographies which have no counterparts for H(p) and Q(M) :

(1) If f; € Ar(Kj), 1 =1,2,then fy0 f; € Ar(K1K2);
(i) if f€ Ar(K) then also f~! € Ar(K).

If R = RU{oo} and the usual order on R is replaced by the cyclic order on R
invariant under Moebius automorphisms of U then the class Ag(K) shows to be an
obvious generalization of H(p) .

Let ¥,,¥, be Moebius automorphisms of U and let f € Ag(K) . Then (2.3)
remains true if we replace f by ¥, 0f andthen z; by Wy(ti). Thus f € Ag(K)
implies ¥, 0 foW¥; € Ag(K), i.e. the class Ag(K) is closed w.r.t. the outer and
inner composition with Moebius automorphisms of U.

There is an obvious connection between the classes Ag(K) and H(p) . If f €
Ag(K) then, by taking suitable ¥,,¥; we obtain ¢ = ¥, 0 fo ¥; € Ag(K)
which satisfies ¢(00) = oo . Substituting in (2.3) f = ¢ and z4 = oo we obtain
(1.1) with p = A(K) , cf. [8]. Conversely, any ¢ € H(p) has a K(p)-qc. extension
w(z) € Aut(U) , where we can take K(p) = 8p(1 + p)? . Then by (2.2) and (2.3) we
easily verify that ¢ € Ag(K(p)) . Consequently, Ag(R) and M(p) are, in some
sense, equivalent.

If T is an arbitrary oriented circle in the extended plane then there exists a
homography ¥ such that ' = ¥(R) and the orientation is preserved under ¥. If
f € Ag(K) then obviously F = Yofo¥~! € Ar(K) and this defines an isomorphism
of Ag(K) and Ar(K).

3. The classes S(K), Ar(K), and Q(M) . In this section the subclasses
Ar(K) and Q(M) of Aut(T) are considered. Since any h € S(K) has a homeomor-
phic extension on D , we may also consider the class S(K)|T C Aut(T) consisting
of all h|T where h € S(K) . A subclass M of Aut(T) is called closed if for any
sequence h, € M convergent at any t € T the limit function h € M . A subclass
M of Aut(T) is compact if it is closed and equicontinuous on T .



94 J.G. Krzyz

In [9] and [10] the author was dealing with the relation between the subclasses
Ar(K) and Q(M) of Aut(T) .

He claims [10; p.404] that the condition (1.3) does not characterize the boundary
values of an arbitrary K-qc.automorphism of D . However, this is not true. By
our Lemma, for an arbitrary G € S(K) such that G(0) = zo we have G|T €
Q(M) , where M = A(KK,), r = |z| and K, is defined by (1.4). The author’s
claim was based on the following Example [9; p.422]. Let (h,) be the sequence of
Moebius automorphisms defined by the equalities: hn(1) =1, h,(2) = exp[rin/(n +
1)], ha(-1) = =1 . If a;, a2 are subarcs of T with end-points 1, i and i,-1,
resp., then h, € Ar(1) and |hn(a1)]/|hn(a2)] = n . The sequence (h,) is pointwise
convergent on T to the function h(t), where h(t) =0 fort € T\ {-1,1}, h(1) =
1, h(—1) = —1,so that h ¢ Ax(1) . What does this example actually prove is that
the classes At(K) and S(K') are not closed for any K > 1 which is their common
serious drawback. Since any class Q(M) is compact due to Arzela theorem (cf.[5]),
the problems of maximizing the l.h.s. of (1.3) in Ar(K), or S(R), are ill-posed.

In order to find a relation betwenn the classes S(K) and Q(M) we have to confine
ourselves to a suitable subclass §(I\) of S(K). Note that the condition: "there exists
a sequence h, € S(K) such that lim|h,(0)| = 1", implies S(K) to be non-closed.
In fact, if there exists a convergent subsequence (hpn,) , its limit function h ¢ S(RK),
so it maps D on a set consisting of one, or two points, cf. [7; p.74]. Hence a natural
assumption on S(K) to be closed is that there exists r € [0,1) such that |h(0)| < r
for any h € S(K) . Then our Lemma yields the desired relation: If h € S,(K) then
h|T € Q(M) with M =AXKK,).

Given f € Q(M) we obtain as in [4] a K'—qc. extension F of f onto D such that
F(0) =0 and k = K(M) < 8M(1 + M)? . Using the equality (2.2) and the well-
known behaviour of M(Q) under K'-qc. mappings we obtain at once f € Ar(K(M)),
ie. QM) C Ar(K(M)) .

Given f € Ar(p) there exists M = M(f,p) such that f € Q(M) , as proved
in [9] without reference to qc. extension of f. We now sketch a simple alternative
proof.

As we have already seen, there is the following relation between the classes S(K)
and Q(M):

@) If F e S(K), F(0) = zp, |20 <r <1 and K, =(1+r)/(1 —r), then
F|T e Q(M) , where M = A KK,).

(i1) Denote by S*(K) the family of all G € S(K) such that G(tx) = tx =
exp(2nik/3), k = 0,1,2 . We have evaluated in [6] a number r(K) < 1 such
that |G(0)| < r(K) for any G € S*(K) .

Suppose f € Ar(p) is given and denote by ¥ the Moebius transformation such
that ¥(t¢) = f(tx), k=0,1,2. Let F be a K(p)-qc. extension of F on the unit disk.
Then obviously G = ¥~! o F € §*(K(p)) . Due to (ii) we have |G(0)| < r(K(p)) -
The disk |z| < r(K(p)) is mapped under ¥ on a disk contained in |w| < r(f,p) <1.
We have by (ii) |F(0)| = |(¥ o G)(0)| < r(f,p) and hence by (i) F|T = f € Q(M) ,

where

M = A[K(p)(1 + r(£,p))(2 = r(f,p))"'] .
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