LUBLIN-POLONIA

Lukasz KRUK and Wiesław ZIEBA (Lublin)

On Almost Sure Convergence of Asymptotic Martingales

Abstract

The aim of this paper is to give a characterization of almost sure convergence for sequences of random variables, which do not necessarily have first moments. An example of such characterization was given in [5], where a notion of a D_{v}-amart was introduced. In this work we show that every D_{v}-amart converges a.s. A proof of this fact can be also found in [5], although it was not mentioned by the author. In the second part of this paper we give proofs of conditional lemmas of Borel-Cantelli. Then we use them to prove a conditional version of the Kolmogorov's strong law of large numbers, in which assumption that expectations exist was reduced.

Let (Ω, A, P) be a probability space, $\left\{F_{n}, n \geq 1\right\}$ an increasing (i.e. $F_{n} \subset F_{n+1}$) sequence of sub- σ-fields of a σ-field A. We denote by T a set of all bounded stopping times $(P(\tau<M)=1$, where M depends on $\tau)$. A sequence $\left\{X_{n}, n \geq 1\right\}$ is adapted to $\left\{F_{n}, n \geq 1\right\}$ if X_{n} is F_{n}-measurable for every $n \geq 1$. amarts can be found in [6], [7]. In the definition of an amart we assume that

$$
\begin{equation*}
E\left|X_{n}\right|<\infty, \tag{1}
\end{equation*}
$$

where $E(\cdot)$ denotes the expectation.
In [5] a definition of a D_{v}-amart was given, with omitted assumption (1) and unchanged properties of an amart.

In [11] a notion of a conditional amart was introduced. Properties of conditional amarts were examined in [10] and [11]. In the definition of a conditional amart the assumption (1) was replaced by a weaker one.

Let $\tau \in T$, i.e. $[\tau=n] \in F_{n}$ for $n \geq 1$ and $P[\tau \leq M]=1$ for some M (depending on τ).

The definition of a conditional expectation with respect to a σ-field $F \subset A$ of a nonnegative random variable can be found in [9]. Let $X^{+}=\max (X, 0)$ and $X^{-}=\max (-X, 0)$, then $X=X^{+}-X^{-}$. If $\min \left(E^{F} X^{+}, E^{F} X^{-}\right)<\infty$ a.s., then $E^{F} X=E^{F} X^{+}-E^{F} X^{-}$. A fact that $\max \left(E^{F} X^{+}, E^{F} X^{-}\right)<\infty$ a.s. is equivalent to $E^{F}|X|<\infty$ a.s. If one of these conditions holds, we write $X \in L_{F}^{1}$. Similarly, we write $X \in L_{F}^{2}$ if $E^{F} X^{2}<\infty$ a.s.

Definition 1 [11]. An adapted sequence $\left\{X_{n}, n \geq 1\right\}$ of random variables is called a conditional amart (with respect to a sub- σ-field F), if

1. $X_{n} \in L_{F}^{1}, n \geq 1$,
2. A net $L\left(E^{F} X_{r}, X\right), \tau \in T$, converges to zero for some random variable X, where L denotes the Levy-Prokhorov metric.
If $F=\{\emptyset, \Omega\}$, we obtain the definition of an amart.
In general, the assumption 1 . is weaker than $X_{n} \in L^{1}\left(E\left|X_{n}\right|<\infty\right), n \geq 1$.
Let I denote a class of continuous decreasing functions v defined on $(0, \infty)$ and satisfying the following conditions:
a) $\lim _{\lambda \rightarrow \infty} v(\lambda)=0, \lim _{\lambda \rightarrow 0} v(\lambda)=+\infty$,
b) There exists $\alpha \in(0,1)$ such that $\sup _{\lambda>0} \frac{v(\alpha \lambda)}{v(\lambda)}=C_{\alpha}<\infty$. [2]

Let

$$
\begin{equation*}
\|X\|_{v}=\inf \left\{\gamma: \sup _{\lambda>0} P[|X|>\lambda \gamma] / v(\lambda)<\gamma\right\} \tag{2}
\end{equation*}
$$

and let D_{v} denote a set of random variables such that $X \in D_{v}$ iff $\lim _{\lambda \rightarrow \infty} \frac{P| | X|>\lambda|}{v(\lambda)}=0$. If $X \in D_{v}$, then $\|X\|_{v}<\infty$ and a metric space $\left(D_{v}, \rho\right)$ is complete and separable, where $\rho(X, Y)=\|X-Y\|_{v}$. Proofs of these facts can be found in [4].

In [5] a notion of a D_{v}-amart was introduced.
Definition 2. An adapted sequence $\left\{X_{n}, n \geq 1\right\}$ of r.v.s is called a D_{v}-amart iff
3. $X_{n} \in D_{v}, n \geq 1$, for some function $v \in I$,
4. for every $\epsilon>0$ there exists $\tau_{0} \in T$ such that $\left\|X_{T}-X_{\sigma}\right\|<\epsilon$ for $\tau, \sigma \in T, \tau, \sigma \geq \tau_{0}$ a.s.

Let $r(X, Y)=\inf \{\epsilon>0: P[|X-Y|>\epsilon]<\epsilon\}$ denote the Ky-Fan metric.
Theorem 1. There exists a constant V_{0} such that $r(X, Y) \leq V_{0}\|X-Y\|_{v}$.
Proof. From the definition of $\|X\|_{v}$ we have

$$
\forall \epsilon>0 \sup _{\lambda>0} \frac{P\left[|X-Y|>\lambda\left(\|X-Y\|_{v}+\epsilon\right)\right]}{v(\dot{\lambda})} \leq\|X-Y\|_{v}+\epsilon .
$$

Thus for an arbitrary $\lambda>0$ and $\epsilon>0$

$$
P\left[|X-Y|>\max (\lambda, v(\lambda))\left(\|X-Y\|_{v}+\epsilon\right)\right] \leq \max (\lambda, v(\lambda))\left(\|X-\dot{Y}\|_{v}+\epsilon\right)
$$

Let $V_{0}=\min _{\lambda>0}(\max (\lambda, v(\lambda)))$, then

$$
P\left[|X-Y|>V_{0}\|X-Y\|_{v}\right] \leq V_{0}\|X-Y\|_{v},
$$

80

$$
r(X, Y) \leq V_{0}\|X-Y\|_{v}
$$

and the proof is complete.

Corollaries.

1. If $\left\{X_{n}, n \geq 1\right\}$ is a sequence of random variables such that $\left\|X_{n}-X\right\|_{v} \rightarrow$ $0, n \rightarrow \infty$, for some r.v. X, then this sequence converges in probability to X, i.e. $X_{n} \xrightarrow{P} X, n \rightarrow \infty$.
2. If a sequence $\left\{X_{n}, n \geq 1\right\}$ is a D_{ν}-amart, then it satisfies a condition

$$
\begin{equation*}
\forall \epsilon>0 \exists \tau_{0} \in T \forall \tau, \sigma \geq \tau_{0} \text { a.s. } r\left(X_{\tau}, X_{\sigma}\right)<\epsilon . \tag{3}
\end{equation*}
$$

We shall show that (3) implies almost sure convergence of $\left\{X_{n}, n \geq 1\right\}$.

Theorem 2. If $\left\{X_{n}, n \geq 1\right\}$ is a sequence satisfying (3), then for every sequence $\left\{\tau_{n}, n \geq 1\right\}$ such that $\tau_{n} \in T, n \geq 1$, and $\tau_{n} \xrightarrow{P} \infty, n \rightarrow \infty, X_{\tau_{n}} \xrightarrow{P} X, n \rightarrow \infty$, for some r.v. X.

Proof. If a sequence satisfies (3), then it satisfies also the Cauchy's condition. Completeness of the space (Φ, r) (where Φ denotes a set of random variables) implies the existence of a r.v. X such that $r\left(X_{n}, X\right) \rightarrow 0, n \rightarrow \infty$.

Let $\left\{\tau_{n}, n \geq 1\right\}$ be an arbitrary sequence satisfying the following conditions: $\tau_{n} \in T, n \geq 1$, and $\tau_{n} \xrightarrow{P} \infty$. Then

$$
\forall k \in N \exists n_{k} \forall n>n_{k} P\left[\tau_{n}<k\right\}<\frac{1}{2^{k}}
$$

We may assume that the sequence $\left\{n_{k}, k \geq 1\right\}$ is increasing. Denote $A_{k}=\left\{n: n_{k-1}<\right.$ $\left.n \leq n_{k}\right\}$, where $n_{0}=0$. We have $N=\cup_{k=1}^{\infty} A_{k}$. Define a sequence $\left\{\tau_{n}^{\prime}, n \geq 1\right\}$ in the following way: if $n \in A_{k}$, then $\tau_{n}^{\prime}=\tau_{n}$ if $\tau_{n} \geq k$ and $\tau_{n}^{\prime}=k$ if $\tau_{n}<k$. It is easy to see that $P\left[\tau_{n}^{\prime} \neq \tau_{n}\right]<\frac{1}{2^{n}}$ for $n \in A_{k}$, thus $P\left[\tau_{n}^{\prime} \neq \tau_{n}\right] \rightarrow 0, n \rightarrow \infty$.

It is easy to see that $X_{\tau_{n}} \xrightarrow{P} X, n \rightarrow \infty$, iff $X_{\tau_{n}^{\prime}} \xrightarrow{P} X, n \rightarrow \infty$, because

$$
r\left(X_{r_{n}}, X\right) \leq r\left(X_{r_{n}}, X_{r_{n}^{\prime}}\right)+r\left(X_{\tau_{n}^{\prime}}, X\right) \leq P\left[\tau_{n}^{\prime} \neq \tau_{n}\right]+r\left(X_{r_{n}^{\prime}}, X\right)
$$

and similarly

$$
r\left(X_{\tau_{n}^{\prime}}, X\right) \leq P\left[\tau_{n}^{\prime} \neq \tau_{n}\right]+r\left(X_{\tau_{n}}, X\right)
$$

The condition (3) implies $X_{r_{n}^{\prime}} \xrightarrow{P} X, n \rightarrow \infty$. This completes the proof.
Theorem 3. Let $\left\{X_{n}, n \geq 1\right\}$ satisfy (3). Then this sequence converges almost surely to some random variable X.

Proof. The space (Φ, r) is complete and therefore there exists a random variable X such that $r\left(X_{n}, X\right) \rightarrow 0, n \rightarrow \infty$. Let $X^{*}=\limsup X_{n}$ and $X_{*}=\liminf X_{n}$. Then (see [1]) there exist sequences of bounded stopping tirnes $\left\{\tau_{n}, n \geq 1\right\}$ and $\left\{\sigma_{n}, n \geq 1\right\}$ such that $\tau_{n} \geq n, \sigma_{n} \geq n, \lim X_{\tau_{n}}=X^{*}$ a.s. and $\lim X_{\sigma_{n}}=X$. a.s. Obviously

$$
r\left(X^{*}, X_{*}\right) \leq r\left(X^{*}, X_{r_{n}}\right)+r\left(X_{r_{n}}, X_{\sigma_{n}}\right)+r\left(X_{\sigma_{n}}, X_{*}\right) \rightarrow 0, n \rightarrow \infty
$$

by (3), so $r\left(X^{*}, X_{*}\right)=0$ and the proof is complete.
Corollary . Every D_{v}-amart converges a.s.
Indeed, every D_{v}-amart satisfies the condition (3), so it converges a.s.

A proof of this fact follows also from (3) and the second part of theorem 1 [5]. The converse to the above theorem can also be proved.

Theorem 4. Let $\left\{X_{n}, n \geq 1\right\}$ be an adapted sequence of random variables. If $\left\{X_{n}\right\}$ converges a.s. to some r.v. X, then it is a D_{v}-amart for some function $v \in I$.

Proof. Let $Y=\sup \left|X_{\mathrm{n}}\right|$. By hypothesis, $Y<\infty$ a.s. There exists a continuous, decreasing function v defined on $(0, \infty)$ satisfying the conditions a) and b) such that $Y \in D_{v}$ (see [4], [5]).

Obviously $\left|X_{n}\right| \leq Y$ a.s. and $|X| \leq Y$ a.s., so X_{n} and Y belong to D_{v}. Similarly for an arbitrary finite stopping time $\tau X_{T} \in D_{v}$. Let τ and σ be finite stopping times. $\left|X_{T}-X_{\sigma}\right| \leq 2 Y$, so, by b)

$$
\begin{aligned}
\lim _{\lambda \rightarrow \infty} \frac{P\left[\left|X_{T}-X_{\sigma}\right|>\lambda\right]}{v(\lambda)} & \leq \lim _{\lambda \rightarrow \infty} \frac{P[2 Y>\lambda]}{v(\lambda)}=\lim _{\lambda \rightarrow \infty} \frac{P\left[Y>\frac{\lambda}{2}\right]}{v(\lambda)} \\
& \leq \lim _{\lambda \rightarrow \infty} C_{a}^{n} \frac{P\left[Y>\frac{\lambda}{2}\right]}{v\left(\frac{\lambda}{2}\right)}=C_{\alpha}^{m} \lim _{\lambda \rightarrow \infty} \frac{P[Y>\lambda]}{v(\lambda)}=0
\end{aligned}
$$

where m is so large natural number that $\alpha^{m}<\frac{1}{2}$. Thus $X_{T}-X_{\sigma} \in D_{v}$.
Let $\eta>0$ be an arbitrary constant. We want to find $n \in N$ such that for all bounded stopping times $\tau, \sigma \geq n$ a.s.

$$
\begin{equation*}
\frac{P\left[\left|X_{T}-X_{\sigma}\right|>\lambda \eta\right]}{v(\lambda)}<\frac{\eta}{2} \tag{4}
\end{equation*}
$$

for every $\lambda>0$, because it implies $\left\|X_{T}-X_{\sigma}\right\| \leq \epsilon$, what completes the proof.
It is obvious that (4) holds for $v(\lambda)>\frac{2}{\eta}$. Because $\lim _{\lambda \rightarrow \infty} v(\lambda)=\infty$ and v is decreasing, there exists a_{η} such that $v(\lambda)>\frac{2}{\eta}$ for $0<\lambda<a_{\eta}$. Take $m \in N$ such that $\alpha^{m}<\eta$, where α fulfils the condition b). Thus, by b), $v(\lambda \eta) \leq v\left(\lambda \alpha^{m}\right) \leq C_{\alpha}^{m} v(\lambda)$, thus

$$
\frac{P\left[\left|X_{T}-X_{\sigma}\right|>\lambda \eta\right]}{v(\lambda)} \leq C_{\alpha}^{m} \frac{P\left[\left|X_{r}-X_{\sigma}\right|>\lambda \eta\right]}{v(\lambda \eta)},
$$

what tends to zero as $\lambda \rightarrow \infty$ by the definition of D_{v}. Let us choose b_{η} so large that the right side of the last inequality is less than $\frac{\eta}{2}$ for $\lambda>b_{\eta}$. Thus (4) holds also for $\lambda>b_{\eta}$.

Now let $\lambda \in\left[a_{\eta}, b_{\eta}\right] . v(\lambda) \geq v\left(b_{\eta}\right)>0$, so it is enough to find such n that for $\tau, \sigma \geq n$ a.s., $\tau, \sigma \in T, P\left[\left|X_{T}-X_{r}\right|>\lambda \eta\right]<\frac{\eta}{2} v\left(b_{\eta}\right)$. We have $P\left[\left|X \tau-X_{\sigma}\right|>\lambda \eta\right] \leq P\left[\left|X_{\Gamma}-X_{\sigma}\right|>a_{\eta} \eta\right]$. Because X_{n} converges almost surely to $X, \lim _{n \rightarrow \infty} P\left[\sup _{m, 1 \geq n}\left|X_{m}-X_{\|}\right|>a_{\eta} \eta\right]=0$. Let us choose n so large that $P\left[\sup _{m, l \geq n}\left|X_{m}-X_{l}\right|>a_{\eta} \eta\right]<\frac{\eta}{2} v\left(b_{\eta}\right)$. Obviously for all bounded stopping times $\tau, \sigma \geq n$ a.s. $P\left[\left|X_{T}-X_{\sigma}\right|>a_{\eta} \eta\right]<\frac{\eta}{2} v\left(b_{\eta}\right)$, what completes the proof.

The following theorem is also true.
Theorem 5. If $\left\{X_{n}, n \geq 1\right\}$ is an adapted sequence of random variables converging a.s. to X, then there exists a sequence of disjoint sets $\left\{B_{n}, n \geq 1\right\}$ such that $B_{n} \in A, n \geq 1, P\left(\cup_{n=1}^{\infty} B_{n}\right)=1,\left\{X_{n}, F_{n}, n \geq 1\right\}$ is a conditional amart with respect to a σ-field $F=\sigma\left(B_{n}, n \geq 1\right)$ and $E^{F} \sup _{n \geq 1}\left|X_{n}\right|<\infty$.

Proof. sup $\left|X_{n}\right|<\infty$ a.s. since X_{n} converges to X a.s. Let $A_{k}=\| X_{n} \mid<$ $k, n \geq 1], k \geq 1$. Obviously $A_{1} \subset A_{2} \subset \ldots$ and $P\left(\cup_{n=1}^{\infty} A_{n}\right)=1$. If $B_{1}=A_{1}$ and $B_{n}=A_{n} \backslash A_{n-1}$ for $n \geq 2$, then $\left\{X_{n}, F_{n}, n \geq 1\right\}$ is a conditional amart with respect to a σ-field $F=\sigma\left(B_{n}, n \geq 1\right)$ and $E^{F} \sup _{n \geq 1}\left|X_{n}\right|<\infty$ a.s. Indeed, $\sup \left|X_{n}\right| \leq$ $\sum_{k=1}^{\infty} k I_{B_{k}}$, thus $E^{F} \sup \left|X_{n}\right| \leq E^{F} \sum_{k=1}^{\infty} k I_{B_{k}}<\infty$ a.s. and so $\sup \left|X_{n}\right| \in L_{F}^{1}$. For every $k\left|X_{k}\right| \leq \sup \left|X_{n}\right|$, so $X_{k} \in L_{F}^{\lambda}$.

Let $\epsilon>0$ and let $m \in N$ be so large that $P\left(\cup_{k=1}^{m} B_{k}\right)>1-\epsilon$. Let $n_{1}>m$ be so large that for every $k=1, \ldots m$ such that $P\left(B_{k}\right)>0$ and for every $\tau \geq n_{1}$ a.s.

$$
\begin{aligned}
\left|E^{F}\left(X_{r}-X\right) I_{B_{k}}\right| & \leq \frac{1}{P\left(B_{k}\right)} \int_{B_{k}}\left|X_{r}-X\right| d P \\
& \leq \frac{1}{P\left(B_{k}\right)} \int_{B_{k}} \sup _{n \geq n_{2}}\left|X_{n}-X\right| d P<\epsilon
\end{aligned}
$$

(it is possible by the Lebesgue dominated convergence theorem). Thus $P\left[\left|E^{F} X_{r}-E^{F} X\right|>\right.$ $\epsilon]<\epsilon$, so $r\left(E^{F} X_{r}, E^{F} X\right) \leq \epsilon$ if $\tau \geq n_{1}$ a.s. $L(X, Y) \leq r(X, Y)$ for any r.v.s X, Y and so $L\left(E^{F} X_{\tau}, E^{F} X\right) \leq \epsilon$ if $\tau \geq n_{1}$. The proof is complete.
0.1. Conditional lemmas of Borel-Cantelli and conditional laws of large numbers. Now we shall give generalized lemmas of Borel-Cantelli. Moreover, we shall show how to generalize the Kolmogorov's strong law of large numbers weakening the condition (1).

Let F be a sub- σ-field of a σ-field A.
Lemma 1. If $\left\{A_{n}, n \geq 1\right\}$ is a sequence of random events such that $\sum P\left(A_{n} \mid F\right)<$ ∞ a.s., where $P(A \mid F)=E^{\bar{F}} I_{A}, E=\left(\limsup A_{n}\right)^{c}=\cup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_{k}^{c}$, then $P(E)=1$.

Proof. We shall show that $P\left(E^{c}\right)=0$.

$$
\begin{aligned}
0 \leq P\left(E^{c} \mid F\right) & =P\left(\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_{k} \mid F\right)=\lim _{n \rightarrow \infty} P\left(\cup_{k=n}^{\infty} A_{k} \mid F\right) \\
& \leq \lim _{n \rightarrow \infty} \sum_{k=n}^{\infty} P\left(A_{k} \mid F\right)=0 \quad \text { a.s. }
\end{aligned}
$$

Hence $P\left(E^{c}\right)=0$ and $P(E)=1$.
Let us remark that convergence of $\sum P\left(A_{n} \mid F\right)$ does not imply convergence of $\sum P\left(A_{n}\right)$.

Example 1. Let $(\Omega, A, P)=([0,1], B([0,1]), \mu)$, where μ is the Lebesgue measure on the unit interval, $A_{n}=\left(0, \frac{1}{n}\right), n \geq 1$, and $F=\sigma\left(A_{n}, n \geq 1\right)$. It is easy to see that $\sum_{n=1}^{\infty} P\left(A_{n} \mid F\right)=\sum_{n=1}^{\infty} I_{A_{n}}<\infty$ a.s., but $\sum P\left(A_{n}\right)=\sum \frac{1}{n}=\infty$.

You can also prove a fact, which is, in some sense, a converse to the above.
Lemma 1°. If $\left\{A_{n}, n \geq 1\right\}$ is a sequence of random events and $P\left(\limsup A_{n}\right)=$ 0 , then for every σ-field F such that $\sigma\left(A_{n}, n \geq 1\right) \subset F \subset A$ we have $\sum_{n=1}^{\infty} P\left(A_{n} \mid F\right)<$ ∞.

Let (Ω, A, P) be a probability space and F a nonempty sub- σ-field of A.
Deflinition 3. Events $B, C \in A$ are called F-independent, if $P(B \cap C \mid F)=$ $P(B \mid F) \cdot P(C \mid F)$ a.s.
σ-fields G_{1}, G_{2} are F-independent, if every two events $A_{1} \in G_{1}$ and $A_{2} \in G_{2}$ are F-independent.

Random variables X and Y are F-independent, if σ-fields generated by these variables are F-independent.

In such case if, in addition, $X, Y, X Y \in L_{F}^{1}$, then $E^{F} X Y=E^{F} X \cdot E^{F} Y$ a.s.
Let us remark that if X is F-measurable and Y is an arbitrary r.v., then X and Y are F-independent.

Lemma 2. Let $\left\{A_{n}, n \geq 1\right\}$ be a sequence of F-independent events and let $A=\left\{\omega: \sum_{n=1}^{\infty} P\left(A_{n} \mid F\right)(\omega)=\infty\right\}$. Then $P\left(\limsup A_{n}\right)=P(A)$.

Proof. Let $E=\left(\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_{k}\right)^{c}=\cup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_{k}^{c}$. Properties of conditional expectations imply

$$
\begin{aligned}
P(E \mid F) & =\lim _{n \rightarrow \infty} P\left(\cap_{k=n}^{\infty} A_{k}^{c} \mid F\right)=\lim _{n \rightarrow \infty}\left(\lim _{k \rightarrow \infty} P\left(\cap_{i=n}^{\infty} A_{i}^{c} \mid F\right)\right) \\
& =\lim _{n \rightarrow \infty}\left(\lim _{k \rightarrow \infty} \prod_{i=n}^{k} P\left(A_{i}^{c} \mid F\right)\right)=\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty}\left[\prod_{i=1}^{k}\left(1-P\left(A_{i} \mid F\right)\right)\right] \\
& =\lim _{n \rightarrow \infty} \prod_{i=n}^{\infty}\left(1-P\left(A_{i} \mid F\right)\right) \leq \lim _{n \rightarrow \infty} \exp \left(-\sum_{i=n}^{\infty} P\left(A_{i} \mid F\right)\right) \quad \text { a.s. }
\end{aligned}
$$

(the last inequality follows from an inequality $1-x \leq \exp (-x)$ for $x \in[0,1]$). Thus for almost every $\omega \in A$ we have

$$
0 \leq P(E \mid F)(\omega) \leq \lim _{n \rightarrow \infty} \exp \left(-\sum_{i=n}^{\infty} P\left(A_{i} \mid F\right)(\omega)\right)=0 \quad \text { a.s. }
$$

Thus

$$
P(E)=\int_{\Omega} P(E \mid F) d P=\int_{A} P(E \mid F) d P+\int_{A^{c}} P(E \mid F) d P \leq P\left(A^{c}\right)
$$

so $P\left(E^{c}\right) \geq P(A)$.
On the other hand, following the reasoning given in lemma 1 , we state that on the set A^{c} only finitely many events from the sequence $\left\{A_{n}, n \geq 1\right\}$ hold, so $P\left(E^{c}\right) \leq P(A)$, q.e.d.

Theorem 6. If G_{1} and G_{2} are F-independent σ-fields, then $\sigma\left(G_{1}, F\right)$ and G_{2} are F-independent σ-fields as well.

Definition 4. Let $X \in L_{F}^{2}$. A random variable $\sigma_{F}^{2} X$ defined by a formula $\sigma_{F}^{2} X=E^{F}\left(X-E^{F} X\right)^{2}$ will be called a conditional variance of X.

Similarly as in the case of independent r.v.s (see [3]) the following theorem may be proved.

Theorem 7. Assume that

X_{11}	X_{12}	\cdots
X_{21}	X_{22}	\cdots
\cdots	\cdots	\cdots

is a matrix of F-independent r.v.s and $F_{i}=\sigma\left(X_{i 1}, X_{i 2}, \ldots\right), i=1,2, \ldots$. Then the σ-fields F_{1}, F_{2}, \ldots are F-independent.

The above results lead us to a generalization of the well-known Kolmogorov's inequality.

Theorem 8. If $\left\{X_{n}, n \geq 1\right\}$ is a sequence of F-independent r.v.s belonging to L_{F}^{2}, then for an arbitrary F-measurable r.v. $\epsilon>0$ a.s. we have

$$
\epsilon^{2} P\left[\max _{1 \leq k \leq n}\left|S_{k}-E^{F} S_{k}\right| \geq \epsilon \mid F\right] \leq \sum_{k=1}^{n} \sigma_{F}^{2} X_{k} \quad \text { a.s. }
$$

where $S_{n}=X_{1}+\ldots+X_{n}$.
This inequality implies the conditional Kolmogorov's strong law of large numbers.
Theorem 9. If $\left\{X_{n}, n \geq 1\right\}$ is a sequence of F-independent r.v.s such that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\sigma_{F}^{2} X_{k}}{k^{2}}<\infty \tag{*}
\end{equation*}
$$

then

$$
\frac{S_{n}-E^{F} S_{n}}{n} \rightarrow 0 \quad \text { a.s. as } n \rightarrow \infty
$$

Definition 5. We say that r.v.s X, Y are identically F-distributed, if for every Borel set $B \subset R P(X \in B \mid F)=P(Y \in B \mid F)$ a.s.

Theorem 10. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of F-independent, identically F-distributed r.v.s and let $S_{n}=X_{1}+\ldots+X_{n}$. Then $\frac{S_{n}}{n} \rightarrow Z$ a.s. for some r.v. Z iff $X_{1} \in L_{F}^{1}$. If this condition holds, then $Z=E^{F} X_{1}$.

Example 2. Let $(\Omega, A, P)=([0,1], B([0,1]), \mu)$, where μ is the Lebesgue measure, and let $F=\sigma\left(\left[0, \frac{1}{2}\right],\left(\frac{1}{2}, 1\right]\right)$. Let $X_{n}(\omega)=1$ for $\omega \in\left[0, \frac{1}{2}\right]$ and $X_{n}(\omega)=-1$ for $\omega \in\left(\frac{1}{2}, 1\right] . \frac{S_{n}-E^{F} S_{n}}{n}=0 \rightarrow 0$, but you cannot find real numbers A_{n} such that $\frac{S_{n}-A_{n}}{n} \rightarrow 0$ a.s.

Proofs of the above generalizations are similar to proofs of the corresponding well-known theorems.

Acknowledgments. We thank the referee for valuable comments.

REFERENCES

[1] Austin, D.G., G.A.Edgar and IonescuTulcea, A., Pointwise convergence in terms of expectations, Z. Wahrsch. Verw. Gebiete 30, (1974), 17-26.
[2] Billingsley, P., Convergence of probability measures, Wiley-Interscience, New York 1968.
[3] Billingsley, P., Probability and Measure, John Wiley \& Sons 1979.
[4] Dzhvarsheishvili, I.A., On one space of measurable real functions, Izw. Arm. SSR, Math., 20, No 3, 269-283 (in Russian).
[5] Dzhvarsheishvili, I.A., On amarts with discrete time, Theory Probab. Appl. 33 (1988), 260-269.
[6] Edgar, G.A. and L. Sucheston, Amarts. A class of asymptotic martingales. A: discrete parameter, J. Multivariate Anal. 6 (1976), 193-221.
[7] Gut, A. and K.D. Schmidt, Amarts and set function processes, Lecture Notes in Mathematics 1042 (1983).
[8] Meyer, P.A., Le retournement du temps, d'apres Chung and Walsch, Seminaire de probabilites V, Lecture Notes in Mathematics 191, Springer-Verlag, Berlin 1971, 213-236.
[9] Neveu, J., Discrete-parameter martingales, North Holland/Elsevier, Amsterdam 1975.
[10] Szynal, D. and W. Zięba, On some characterization of almost sure convergence, Bull Acad. Polon. Sci. Math. 34, No 9-10, 635-642
[11] Ziéba, W., Conditional semiamarts and conditional amarls, In Proceedings, Six Pannonian Symposium on Mathematical Statistics 1987, 305-315.

Authors' address:
(received December 29, 1993)
Instytut Matematyki UMCS
Plac M. Curie Sklodowskiej 1
20-031 Lublin, Poland

