ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA

LUBLIN-POLONIA

VOL. XLVII, 8 SECTIO A 1993

Lukasz KRUK and Wiesław ZIĘBA (Lublin)

On Almost Sure Convergence of Asymptotic Martingales

Abstract. The aim of this paper is to give a characterization of almost sure convergence for sequences of random variables, which do not necessarily have first moments. An example of such characterization was given in [5], where a notion of a D_v -amart was introduced. In this work we show that every D_v -amart converges a.s. A proof of this fact can be also found in [5], although it was not mentioned by the author. In the second part of this paper we give proofs of conditional lemmas of Borel-Cantelli. Then we use them to prove a conditional version of the Kolmogorov's strong law of large numbers, in which assumption that expectations exist was reduced.

Let (Ω, A, P) be a probability space, $\{F_n, n \ge 1\}$ an increasing (i.e. $F_n \subset F_{n+1}$) sequence of sub- σ -fields of a σ -field A. We denote by T a set of all bounded stopping times $(P(\tau < M) = 1$, where M depends on τ). A sequence $\{X_n, n \ge 1\}$ is adapted to $\{F_n, n \ge 1\}$ if X_n is F_n -measurable for every $n \ge 1$ amarts can be found in [6], [7]. In the definition of an amart we assume that

$$(1) E|X_n| < \infty ,$$

where $E(\cdot)$ denotes the expectation.

In [5] a definition of a D_v -amart was given, with omitted assumption (1) and unchanged properties of an amart.

In [11] a notion of a conditional amart was introduced. Properties of conditional amarts were examined in [10] and [11]. In the definition of a conditional amart the assumption (1) was replaced by a weaker one.

Let $\tau \in T$, i.e. $[\tau = n] \in F_n$ for $n \ge 1$ and $P[\tau \le M] = 1$ for some M (depending on τ).

The definition of a conditional expectation with respect to a σ -field $F \subset A$ of a nonnegative random variable can be found in [9]. Let $X^+ = \max(X, 0)$ and $X^- = \max(-X, 0)$, then $X = X^+ - X^-$. If $\min(E^F X^+, E^F X^-) < \infty$ a.s., then $E^F X = E^F X^+ - E^F X^-$. A fact that $\max(E^F X^+, E^F X^-) < \infty$ a.s. is equivalent to $E^F |X| < \infty$ a.s. If one of these conditions holds, we write $X \in L_F^1$. Similarly, we write $X \in L_F^2$ if $E^F X^2 < \infty$ a.s.

Definition 1 [11]. An adapted sequence $\{X_n, n \ge 1\}$ of random variables is called a conditional amart (with respect to a sub- σ -field F), if

1. $X_n \in L_F^1, n \geq 1$,

- A net L(E^FX_τ, X), τ ∈ T, converges to zero for some random variable X, where L denotes the Levy-Prokhorov metric. If F = {Ø, Ω}, we obtain the definition of an amart. In general, the assumption 1. is weaker than X_n ∈ L¹ (E |X_n| < ∞), n ≥ 1. Let I denote a class of continuous decreasing functions v defined on (0,∞) and satisfying the following conditions:
 - a) $\lim_{\lambda\to\infty} v(\lambda) = 0$, $\lim_{\lambda\to0} v(\lambda) = +\infty$,
 - b) There exists $\alpha \in (0,1)$ such that $\sup_{\lambda>0} \frac{v(\alpha\lambda)}{v(\lambda)} = C_{\alpha} < \infty$. [2] Let

(2)
$$\|X\|_{v} = \inf\{\gamma : \sup_{\lambda > 0} P[|X| > \lambda\gamma]/v(\lambda) < \gamma\}$$

and let D_v denote a set of random variables such that $X \in D_v$ iff $\lim_{\lambda \to \infty} \frac{P[|X| > \lambda]}{v(\lambda)} = 0$. If $X \in D_v$, then $||X||_v < \infty$ and a metric space (D_v, ρ) is complete and separable, where $\rho(X, Y) = ||X - Y||_v$. Proofs of these facts can be found in [4].

In [5] a notion of a D_v -amart was introduced.

Definition 2. An adapted sequence $\{X_n, n \ge 1\}$ of r.v.s is called a D_v -amart iff

- 3. $X_n \in D_v, n \ge 1$, for some function $v \in I$,
- 4. for every $\epsilon > 0$ there exists $\tau_0 \in T$ such that $||X_{\tau} X_{\sigma}|| < \epsilon$ for $\tau, \sigma \in T, \tau, \sigma \ge \tau_0$ a.s.

Let $r(X,Y) = \inf \{\epsilon > 0 : P[|X - Y| > \epsilon] < \epsilon \}$ denote the Ky-Fan metric.

Theorem 1. There exists a constant V_0 such that $r(X, Y) \leq V_0 ||X - Y||_v$.

Proof. From the definition of $||X||_{v}$ we have

$$\forall \epsilon > 0 \quad \sup_{\lambda > 0} \frac{P[|X - Y| > \lambda(||X - Y||_v + \epsilon)]}{v(\lambda)} \le ||X - Y||_v + \epsilon \;.$$

Thus for an arbitrary $\lambda > 0$ and $\epsilon > 0$

$$P[|X - Y| > \max(\lambda, v(\lambda))(||X - Y||_v + \epsilon)] \le \max(\lambda, v(\lambda))(||X - Y||_v + \epsilon).$$

Let $V_0 = \min_{\lambda>0}(\max(\lambda, v(\lambda)))$, then

$$P[|X - Y| > V_0 ||X - Y||_v] \le V_0 ||X - Y||_v$$

80

$$r(X,Y) \leq V_0 ||X - Y||_v$$

and the proof is complete.

Corollaries.

1. If $\{X_n, n \ge 1\}$ is a sequence of random variables such that $||X_n - X||_v \to 0, n \to \infty$, for some r.v. X, then this sequence converges in probability to X, i.e. $X_n \xrightarrow{P} X, n \to \infty$.

2. If a sequence $\{X_n, n \ge 1\}$ is a D_{ν} -amart, then it satisfies a condition

(3)
$$\forall \epsilon > 0 \ \exists \tau_0 \in T \ \forall \tau, \sigma \geq \tau_0 \ \text{a.s.} \ r(X_\tau, X_\sigma) < \epsilon$$

We shall show that (3) implies almost sure convergence of $\{X_n, n \ge 1\}$.

Theorem 2. If $\{X_n, n \ge 1\}$ is a sequence satisfying (3), then for every sequence $\{\tau_n, n \ge 1\}$ such that $\tau_n \in T, n \ge 1$, and $\tau_n \xrightarrow{P} \infty, n \to \infty, X_{\tau_n} \xrightarrow{P} X, n \to \infty$, for some r.v. X.

Proof. If a sequence satisfies (3), then it satisfies also the Cauchy's condition. Completeness of the space (Φ, r) (where Φ denotes a set of random variables) implies the existence of a r.v. X such that $r(X_n, X) \to 0, n \to \infty$.

Let $\{\tau_n, n \geq 1\}$ be an arbitrary sequence satisfying the following conditions: $\tau_n \in T, n \geq 1$, and $\tau_n \xrightarrow{P} \infty$. Then

$$\forall k \in N \; \exists n_k \; \forall n > n_k \; P[\tau_n < k] < rac{1}{2^k}$$

We may assume that the sequence $\{n_k, k \ge 1\}$ is increasing. Denote $A_k = \{n : n_{k-1} < n \le n_k\}$, where $n_0 = 0$. We have $N = \bigcup_{k=1}^{\infty} A_k$. Define a sequence $\{\tau'_n, n \ge 1\}$ in the following way: if $n \in A_k$, then $\tau'_n = \tau_n$ if $\tau_n \ge k$ and $\tau'_n = k$ if $\tau_n < k$. It is easy to see that $P[\tau'_n \neq \tau_n] < \frac{1}{2^k}$ for $n \in A_k$, thus $P[\tau'_n \neq \tau_n] \to 0, n \to \infty$.

It is easy to see that $X_{\tau_n} \xrightarrow{P} X$, $n \to \infty$, iff $X_{\tau'_n} \xrightarrow{P} X, n \to \infty$, because

$$r(X_{\tau_n}, X) \le r(X_{\tau_n}, X_{\tau'_n}) + r(X_{\tau'_n}, X) \le P[\tau'_n \ne \tau_n] + r(X_{\tau'_n}, X)$$

and similarly

$$P(X_{\tau'_n}, X) \le P[\tau'_n \neq \tau_n] + r(X_{\tau_n}, X)$$

The condition (3) implies $X_{\tau'_n} \xrightarrow{P} X$, $n \to \infty$. This completes the proof.

Theorem 3. Let $\{X_n, n \ge 1\}$ satisfy (3). Then this sequence converges almost surely to some random variable X.

Proof. The space (Φ, r) is complete and therefore there exists a random variable X such that $r(X_n, X) \to 0, n \to \infty$. Let $X^* = \limsup X_n$ and $X_* = \liminf X_n$. Then (see [1]) there exist sequences of bounded stopping times $\{\tau_n, n \ge 1\}$ and $\{\sigma_n, n \ge 1\}$ such that $\tau_n \ge n, \sigma_n \ge n$, $\lim X_{\tau_n} = X^*$ a.s. and $\lim X_{\sigma_n} = X_*$ a.s. Obviously

$$r(X^*, X_*) \le r(X^*, X_{\tau_n}) + r(X_{\tau_n}, X_{\sigma_n}) + r(X_{\sigma_n}, X_*) \to 0, \ n \to \infty$$

by (3), so $r(X^*, X_*) = 0$ and the proof is complete.

Corollary. Every D_v -amart converges a.s.

Indeed, every D_v -amart satisfies the condition (3), so it converges a.s.

A proof of this fact follows also from (3) and the second part of theorem 1 [5]. The converse to the above theorem can also be proved.

Theorem 4. Let $\{X_n, n \ge 1\}$ be an adapted sequence of random variables. If $\{X_n\}$ converges a.s. to some r.v. X, then it is a D_v -amart for some function $v \in I$.

Proof. Let $Y = \sup |X_n|$. By hypothesis, $Y < \infty$ a.s. There exists a continuous, decreasing function v defined on $(0, \infty)$ satisfying the conditions a) and b) such that $Y \in D_v$ (see [4], [5]).

Obviously $|X_n| \leq Y$ a.s. and $|X| \leq Y$ a.s., so X_n and Y belong to D_v . Similarly for an arbitrary finite stopping time $\tau X_\tau \in D_v$. Let τ and σ be finite stopping times. $|X_\tau - X_\sigma| \leq 2Y$, so, by b)

$$\lim_{\lambda \to \infty} \frac{P[|X_{\tau} - X_{\sigma}| > \lambda]}{v(\lambda)} \leq \lim_{\lambda \to \infty} \frac{P[2Y > \lambda]}{v(\lambda)} = \lim_{\lambda \to \infty} \frac{P[Y > \frac{\lambda}{2}]}{v(\lambda)}$$
$$\leq \lim_{\lambda \to \infty} C_{\alpha}^{m} \frac{P[Y > \frac{\lambda}{2}]}{v(\frac{\lambda}{2})} = C_{\alpha}^{m} \lim_{\lambda \to \infty} \frac{P[Y > \lambda]}{v(\lambda)} = 0 ,$$

where m is so large natural number that $\alpha^m < \frac{1}{2}$. Thus $X_{\tau} - X_{\sigma} \in D_{\nu}$.

Let $\eta > 0$ be an arbitrary constant. We want to find $n \in N$ such that for all bounded stopping times $\tau, \sigma \geq n$ a.s.

(4)
$$\frac{P[|X_{\tau} - X_{\sigma}| > \lambda \eta]}{v(\lambda)} < \frac{\eta}{2}$$

for every $\lambda > 0$, because it implies $||X_{\tau} - X_{\sigma}|| \le \epsilon$, what completes the proof.

It is obvious that (4) holds for $v(\lambda) > \frac{2}{\eta}$. Because $\lim_{\lambda \to \infty} v(\lambda) = \infty$ and v is decreasing, there exists a_{η} such that $v(\lambda) > \frac{2}{\eta}$ for $0 < \lambda < a_{\eta}$. Take $m \in N$ such that $\alpha^m < \eta$, where α fulfils the condition b). Thus, by b), $v(\lambda\eta) \le v(\lambda\alpha^m) \le C_{\alpha}^m v(\lambda)$, thus

$$\frac{P[|X_{\tau} - X_{\sigma}| > \lambda\eta]}{v(\lambda)} \le C_{\alpha}^{m} \frac{P[|X_{\tau} - X_{\sigma}| > \lambda\eta]}{v(\lambda\eta)},$$

what tends to zero as $\lambda \to \infty$ by the definition of D_v . Let us choose b_η so large that the right side of the last inequality is less than $\frac{\eta}{2}$ for $\lambda > b_\eta$. Thus (4) holds also for $\lambda > b_\eta$.

Now let $\lambda \in [a_{\eta}, b_{\eta}]$. $v(\lambda) \geq v(b_{\eta}) > 0$, so it is enough to find such n that for $\tau, \sigma \geq n$ a.s., $\tau, \sigma \in T$, $P[|X_{\tau} - X_{\tau}| > \lambda\eta] < \frac{\eta}{2}v(b_{\eta})$. We have $P[|X\tau - X_{\sigma}| > \lambda\eta] \leq P[|X_{\tau} - X_{\sigma}| > a_{\eta}\eta]$. Because X_n converges almost surely to X, $\lim_{n\to\infty} P[\sup_{m,l\geq n} |X_m - X_l| > a_{\eta}\eta] = 0$. Let us choose n so large that $P[\sup_{m,l\geq n} |X_m - X_l| > a_{\eta}\eta] < \frac{\eta}{2}v(b_{\eta})$. Obviously for all bounded stopping times $\tau, \sigma \geq n$ a.s. $P[|X_{\tau} - X_{\sigma}| > a_{\eta}\eta] < \frac{\eta}{2}v(b_{\eta})$, what completes the proof.

The following theorem is also true.

Theorem 5. If $\{X_n, n \ge 1\}$ is an adapted sequence of random variables converging a.s. to X, then there exists a sequence of disjoint sets $\{B_n, n \ge 1\}$ such that $B_n \in A, n \ge 1, P(\bigcup_{n=1}^{\infty} B_n) = 1, \{X_n, F_n, n \ge 1\}$ is a conditional amart with respect to a σ -field $F = \sigma(B_n, n \ge 1)$ and $E^F \sup_{n \ge 1} |X_n| < \infty$.

Proof. $\sup |X_n| < \infty$ a.s. since X_n converges to X a.s. Let $A_k = [|X_n| < k, n \ge 1]$, $k \ge 1$. Obviously $A_1 \subset A_2 \subset ...$ and $P(\bigcup_{n=1}^{\infty} A_n) = 1$. If $B_1 = A_1$ and $B_n = A_n \setminus A_{n-1}$ for $n \ge 2$, then $\{X_n, F_n, n \ge 1\}$ is a conditional amart with respect to a σ -field $F = \sigma(B_n, n \ge 1)$ and $E^F \sup_{n\ge 1} |X_n| < \infty$ a.s. Indeed, $\sup |X_n| \le \sum_{k=1}^{\infty} kI_{B_k}$, thus $E^F \sup_{n\ge 1} |X_n| \le E^F \sum_{k=1}^{\infty} kI_{B_k} < \infty$ a.s. and so $\sup |X_n| \in L_F^1$. For every $k |X_k| \le \sup |X_n|$, so $X_k \in L_F^1$.

Let $\epsilon > 0$ and let $m \in N$ be so large that $P(\bigcup_{k=1}^{m} B_k) > 1 - \epsilon$. Let $n_1 > m$ be so large that for every k = 1, ...m such that $P(B_k) > 0$ and for every $\tau \ge n_1$ a.s.

$$\begin{aligned} \left| E^F(X_{\tau} - X)I_{B_k} \right| &\leq \frac{1}{P(B_k)} \int_{B_k} |X_{\tau} - X| \ dP \\ &\leq \frac{1}{P(B_k)} \int_{B_k} \sup_{n \geq n_1} |X_n - X| \ dP < \epsilon \end{aligned}$$

(it is possible by the Lebesgue dominated convergence theorem). Thus $P[|E^F X_{\tau} - E^F X| \geq \epsilon] < \epsilon$, so $r(E^F X_{\tau}, E^F X) \leq \epsilon$ if $\tau \geq n_1$ a.s. $L(X,Y) \leq r(X,Y)$ for any r.v.s X, Y and so $L(E^F X_{\tau}, E^F X) \leq \epsilon$ if $\tau \geq n_1$. The proof is complete.

0.1. Conditional lemmas of Borel-Cantelli and conditional laws of large numbers. Now we shall give generalized lemmas of Borel-Cantelli. Moreover, we shall show how to generalize the Kolmogorov's strong law of large numbers weakening the condition (1).

Let F be a sub- σ -field of a σ -field A.

Lemma 1. If $\{A_n, n \ge 1\}$ is a sequence of random events such that $\sum P(A_n|F) < \infty$ a.s., where $P(A|F) = E^F I_A, E = (\limsup A_n)^c = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k^c$, then P(E) = 1.

Proof. We shall show that $P(E^c) = 0$.

$$0 \le P(E^c|F) = P(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k|F) = \lim_{n \to \infty} P(\bigcup_{k=n}^{\infty} A_k|F)$$
$$\le \lim_{n \to \infty} \sum_{k=n}^{\infty} P(A_k|F) = 0 \quad \text{a.s.}$$

Hence $P(E^c) = 0$ and P(E) = 1.

Let us remark that convergence of $\sum P(A_n|F)$ does not imply convergence of $\sum P(A_n)$.

Example 1. Let $(\Omega, A, P) = ([0, 1], B([0, 1]), \mu)$, where μ is the Lebesgue measure on the unit interval, $A_n = (0, \frac{1}{n}), n \ge 1$, and $F = \sigma(A_n, n \ge 1)$. It is easy to see that $\sum_{n=1}^{\infty} P(A_n|F) = \sum_{n=1}^{\infty} I_{A_n} < \infty$ a.s., but $\sum P(A_n) = \sum \frac{1}{n} = \infty$.

You can also prove a fact, which is, in some sense, a converse to the above.

Lemma 1°. If $\{A_n, n \ge 1\}$ is a sequence of random events and $P(\limsup A_n) = 0$, then for every σ -field F such that $\sigma(A_n, n \ge 1) \subset F \subset A$ we have $\sum_{n=1}^{\infty} P(A_n|F) < \infty$.

Let (Ω, A, P) be a probability space and F a nonempty sub- σ -field of A.

Definition 3. Events $B, C \in A$ are called F-independent, if $P(B \cap C|F) = P(B|F) \cdot P(C|F)$ a.s.

 σ -fields G_1, G_2 are F-independent, if every two events $A_1 \in G_1$ and $A_2 \in G_2$ are F-independent.

Random variables X and Y are F-independent, if σ -fields generated by these variables are F-independent.

In such case if, in addition, $X, Y, XY \in L_F^1$, then $E^F XY = E^F X \cdot E^F Y$ a.s.

Let us remark that if X is F-measurable and Y is an arbitrary r.v., then X and Y are F-independent.

Lemma 2. Let $\{A_n, n \ge 1\}$ be a sequence of F-independent events and let $A = \{\omega : \sum_{n=1}^{\infty} P(A_n|F)(\omega) = \infty\}$. Then $P(\limsup A_n) = P(A)$.

Proof. Let $E = (\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k)^c = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k^c$. Properties of conditional expectations imply

$$\begin{split} P(E|F) &= \lim_{n \to \infty} P(\cap_{k=n}^{\infty} A_k^c | F) = \lim_{n \to \infty} (\lim_{k \to \infty} P(\cap_{i=n}^{\infty} A_i^c | F)) \\ &= \lim_{n \to \infty} (\lim_{k \to \infty} \prod_{i=n}^k P(A_i^c | F)) = \lim_{n \to \infty} \lim_{k \to \infty} [\prod_{i=1}^k (1 - P(A_i | F))] \\ &= \lim_{n \to \infty} \prod_{i=n}^{\infty} (1 - P(A_i | F)) \leq \lim_{n \to \infty} \exp(-\sum_{i=n}^{\infty} P(A_i | F)) \quad \text{a.s.} \end{split}$$

(the last inequality follows from an inequality $1 - x \leq \exp(-x)$ for $x \in [0, 1]$). Thus for almost every $\omega \in A$ we have

$$0 \leq P(E|F)(\omega) \leq \lim_{n \to \infty} \exp(-\sum_{i=n}^{\infty} P(A_i|F)(\omega)) = 0$$
 a.s

Thus

$$P(E) = \int_{\Omega} P(E|F) dP = \int_{A} P(E|F) dP + \int_{A^c} P(E|F) dP \le P(A^c) ,$$

so $P(E^c) \geq P(A)$.

On the other hand, following the reasoning given in lemma 1, we state that on the set A^c only finitely many events from the sequence $\{A_n, n \ge 1\}$ hold, so $P(E^c) \le P(A)$, q.e.d.

Theorem 6. If G_1 and G_2 are F-independent σ -fields, then $\sigma(G_1, F)$ and G_2 are F-independent σ -fields as well.

Definition 4. Let $X \in L_F^2$. A random variable $\sigma_F^2 X$ defined by a formula $\sigma_F^2 X = E^F (X - E^F X)^2$ will be called a conditional variance of X.

Similarly as in the case of independent r.v.s (see [3]) the following theorem may be proved.

Theorem 7. Assume that

$$X_{11} \quad X_{12} \quad \cdots \\ X_{21} \quad X_{22} \quad \cdots$$

is a matrix of F-independent r.v.s and $F_i = \sigma(X_{i1}, X_{i2}, ...)$, i = 1, 2, Then the σ -fields $F_1, F_2, ...$ are F-independent.

The above results lead us to a generalization of the well-known Kolmogorov's inequality.

Theorem 8. If $\{X_n, n \ge 1\}$ is a sequence of F-independent r.v.s belonging to L_F^2 , then for an arbitrary F-measurable r.v. $\epsilon > 0$ a.s. we have

$$e^{2}P[\max_{1\leq k\leq n} |S_{k} - E^{F}S_{k}| \geq \epsilon |F] \leq \sum_{k=1}^{n} \sigma_{F}^{2}X_{k}$$
 a.s.,

where $S_n = X_1 + ... + X_n$.

This inequality implies the conditional Kolmogorov's strong law of large numbers.

Theorem 9. If $\{X_n, n \ge 1\}$ is a sequence of F-independent $\tau.v.s$ such that

(*)

$$\sum_{k=1}^{\infty} \frac{\sigma_F^2 X_k}{k^2} < \infty \qquad a.s.$$

then

 $\frac{S_n - E^F S_n}{n} \to 0 \qquad \text{a.s. as } n \to \infty \ .$

Definition 5. We say that r.v.s X, Y are identically *F*-distributed, if for every Borel set $B \subset R \ P(X \in B|F) = P(Y \in B|F)$ a.s.

Theorem 10. Let $\{X_n, n \ge 1\}$ be a sequence of F-independent, identically F-distributed r.v.s and let $S_n = X_1 + ... + X_n$. Then $\frac{S_n}{n} \to Z$ a.s. for some r.v. Z iff $X_1 \in L_F^1$. If this condition holds, then $Z = E^F X_1$.

Example 2. Let $(\Omega, A, P) = ([0, 1], B([0, 1]), \mu)$, where μ is the Lebesgue measure, and let $F = \sigma([0, \frac{1}{2}], (\frac{1}{2}, 1])$. Let $X_n(\omega) = 1$ for $\omega \in [0, \frac{1}{2}]$ and $X_n(\omega) = -1$ for $\omega \in (\frac{1}{2}, 1]$. $\frac{S_n - E^F S_n}{n} = 0 \to 0$, but you cannot find real numbers A_n such that $\frac{S_n - A_n}{n} \to 0$ a.s.

Proofs of the above generalizations are similar to proofs of the corresponding well-known theorems.

Acknowledgments. We thank the referee for valuable comments.

REFERENCES

- [1] Austin, D.G., G.A. Edgar and Ionescu Tulcea, A., Pointwise convergence in terms of expectations, Z. Wahrsch. Verw. Gebiete 30, (1974), 17-26.
- [2] Billingsley, P., Convergence of probability measures, Wiley-Interscience, New York 1968.
- [3] Billingsley, P., Probability and Measure, John Wiley & Sons 1979.
- [4] Dzhvarsheishvili, I.A., On one space of measurable real functions, Izw. Arm. SSR, Math., 20, No 3, 269-283 (in Russian).
- [5] Dzhvarsheishvili, I.A., On amarts with discrete time, Theory Probab. Appl. 33 (1988), 260-269.
- [6] Edgar, G.A. and L. Sucheston, Amarts. A class of asymptotic martingales. A: discrete parameter, J. Multivariate Anal. 6 (1976), 193-221.
- [7] Gut, A. and K.D. Schmidt, Amarts and set function processes, Lecture Notes in Mathematics 1042 (1983).
- [8] Meyer, P.A., Le retournement du temps, d'apres Chung and Walsch, Seminaire de probabilites V, Lecture Notes in Mathematics 191, Springer-Verlag, Berlin 1971, 213-236.
- [9] Neveu, J., Discrete-parameter martingales, North Holland/Elsevier, Amsterdam 1975.
- [10] Szynal, D. and W. Zigba, On some characterization of almost sure convergence, Bull Acad. Polon. Sci. Math. 34, No 9-10, 635-642.
- [11] Zięba, W., Conditional semiamarts and conditional amarts, In Proceedings, Six Pannonian Symposium on Mathematical Statistics 1987, 305-315.

Authors' address: Instytut Matematyki UMCS Plac M. Curie Skłodowskiej 1 20–031 Lublin, Poland (received December 29, 1993)