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On the Radius of Univalence for the Integral of f'(a)
Promieh jednolistnodci calki ['(z)®

Panuyc omgHOMMCTHOCTH MHTerpaa f(z)s

In this note we deal with some classes of holomorphic
functions £ in the unit disc K ={z 1 |2|<1] which have
the form

-

(1) d f(’) = 3 ¢4 .-2’2 * o0 s ek,

By S8 we denote the family of holomorphic and un&valent
functions in K which have the form (1) and by IV( pok)  the
class of P- close - to - V. functions {11, i71.

Let us consider the following integral operator

]
(2) P(2) =J,  [£2) = J [r‘(e)]“ [L;!).]P as ,
0

where o and P are arbitrary fixed real numbers. The po=-

wers are defined via the branch of 1log for which log P’°(0)=0O,

¥Dhig work was done while the first author visited the Inati-
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Many authors e.g. [3], [4], [6] considered the behavior
of (2) in the class S as well as in some subclasses of S.
Namely, they obtained the results concerning the bounds for
O and Jb (also in the complex case) which preserve univa-
lence of F or other properties.

In this note we find the bound from below for the radius
of univalence ru(S) of the integral

]
(3) P(z) = J_[t](2) = J [£°¢t)]“ at, £ eSIV( poE)).
: 0

It is known that the integral (3) is univalent for
|:x|<% and is not always univalent for x| > ;-, o #1
(Pfaltzgraff [4], Royster [6]). On the other hand in [7] it
was shgwn that the integral (3) is univalent for all
o €[0,1] 1n the disc |z|<r,(S), where r (S)>0.81.
Here we improve thg last result giving also the dependen-

ce of r (S) (ru(IN(P.k))) on o, We have the following

THECREM 1. Let f€S. Then the function (3) is univalenmt

for |z|<r,(S), where r (S)>r and r,  1is the root of

o —— — S S— —

EEE equation

ldl(zzr-& log 1—2-32-) + 2|1-c|jarc tg r = o, e o ef-1, g]
(4)

- -4
r==¢ if o € (=00, =1 X
e ; 2(2 |d|+|1- a’) ! e ’ )U(g,-ﬁ&)

Moreov.er we have r1/4>0.998, r1/3>0.991.

We begin with the following lemma whick has an indepen-
dent interest. This lemma gives the extension of the family
J.,_.P(H) up to the linear - invariant family B8 for an
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arbitrary linear - invariant family H in the sense of Ponme=
renke [5].

LEMVA., Let H be a linear - invariant family of holo-

morphic functicns f of the form (1) and let J “'P(H) deno-
tes the set of the tunctions F Even by (2). Then 293 family

H £ functions G given Ez the formula

(5) G(z) =T, Pl = T_S_W( [22)]f [eca) - £
L £¢ §> (s -5)}(1 . .)2£-r

where f<«H and & 1is an arbitrery point in x, is the
minimal linear - invariant family containing the family
(5), ‘

“f

Proof. It is known that if fe€H then for every
SGK also the function

_ 2w - 2(H)
(6) glz) = /\k[f](z) 3 + L 1'2 - E
k (1= 1§152°(Y)

’
Let us observe that the set of functions

7 ﬁ‘. WLy, [J (n)] = kJ/\s [/\ (n)]\

2K gex
has the properties mentioned in the Lemma., In fact H is the

Moreover we have /\g(H) = H, teK.

linear - invariant family containing J ;'P(H). The minimal
Property of H follows from the formula (6) because every
other linear - invariant family containing J . P(H) nust
contain H.

Now in order to get the formula (5) we use the relation

(7). Por g = /\ J [.f]) we have
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g(z) = k[Jq [rl(“—‘-‘-—i—) -J [f](‘:s)l =
2 1 + §2

. 5
- k J [276)]" [z-iilr at,

where k 1is a constant depending on 5 .

Changing the variable in the above formula by t = 2 : 5

we get

Z
(2t s
y P
glz) = k 8 + + ¥ 8 ds
1 [[erer il |12T ——
1+ k 8 -———5-- 1+ ¥s)

(o} L 1 + S 8
k1 is a constant,
Putting into above formula the function /\_!Ffl instead of
£ after simplifications we obtain (5) which ends the proof

of the Lemma.

Proof. According to the Lemma for P = 0 the fami-
A A v
ly H=S for H =S consists of the functions F given by

A i
(8) fzy = | 28] dt £es €K. "
1 - 5"3)2-2“ 4 ’ . S

So far we know that g is the linear -~ invariant family we

have the following formula for the radius of univalency
A
r,(8) = r, [(5]:

r
(9) ru=——9———~= ’
3 / 2

T+ Y1 - r,

where r, is the radius of the largest disc with centre in
the origin in which every function feg is different fron
zero except for the origin. The reasoning as in [5, Satz. 2.6]
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implies that if f£€S and £(r,)) = O, then arg £'(r,) = *2x
Now we see that in order to get r, ve should find Tge

Using the well known exact estimate for |arg f'(z)l ’

rfes [2], we have from (8) (\{z\ = r):

(10) |arg f‘fz)l < |«|larg £°(2)| + 211 < x| arg (1 = §2) &

-‘.2 “
leol ¢ X + log -1-4-?) +21 -=a| arc sin r
it -1$ot<§
4 |of are sin r + 2|1 = | arc sin r

if o’'< -1 or ot.>§ o

FProm (10) and the above remarks follows that r, = r°(§)<

sr& where r:‘ is the unique root of the equations
(T + log 1;2—-2) + 21 -a| arc sin r = 2%
-T
(1) 1f 1<uss

arc 8in r = X if o« <=1 or d.>§_.
2 el + |1 - «f

The formulae (9). and (11) lead to the result (4), which ends
the proof of Theorem 1.

Analogous results may be obtained for other classes of
holomorphic functions for which the bound of arg £°(z) is
known. |

We get such result for the quite wide class LV(F.k)

[1], [7].

THEOREM 2, Let £ € LV( F,k), PBO, k>2. Then the
function (3) is univalent for (z[<ru(LV(lo,k)\ where

,
ruz-rd and
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vi
<2 p + X + 21 - |

(12) = =uinf1, te }+ is zeal

The proof of the Theorem 2 can be established in the
same way as Theorem 1. It is.only necessary to take into
account that |arg £°(z)| <(2 F + k)arc sin |z| for
£EeW(pK) (7]
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STRESZCZENIE

Nioch S oznacza klas¢ funkcji £, £(0) =0, £°(0) =1,
holomorficznych 1 jednolistnych w kole K = {z 3 \z|<:1}.

W pracy podaje sie¢ oszacowanie od doiu dla promienia je=
dnolistnosci ru(S) caltki

P(z) = ! £ ()™ at, fes, «€R

Mianowicie dowodzi sig, 2e ru(S);=ru y edzie r_ dane
Jjest jako pierwiastek réwnan (4).

Analogiczny problem zostat przedstawiony dla klasy
Wep,o [7]

Pezpme

ycts S-xknacc Qysxuuit f, F(0)=0,f'(0)=1 , TONOMOPPHEX
¥ ONHONMCTHHX B Kpyre K= {2: |2l < 1} . B Hacrosmeit paGore nomy-
YeHa OUEHKA CHU3Y, ANA paiuyca ORHOMUCTHOCTH ry (S )uHTerpans
F(z)sz'(t)d'dt, feS, o eR
Nokasano, 4To 7y (S)= 4 + TI€ Iy, ABIAETCA KODHEM yP8BHEHUR
(4 ).Ausnoruunan ssnava pemena aas kmaccalV (B k)[7].
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