ANNALS
UNIVERSITATIS MARIE CURIE-SKLODOWSKA LUBLIN-POLONIA

Janusz MATKOWSKI, and Wanda OGINSKA

Note on Iterations of Some Entire Functions

Uwaga o iteracjach pewnych funkcji calkowitych
Заметкя об итерациях некоторыхх делых функсиия
Let f be entire or rational function. Consider the sequence of iterations

$$
f_{0}(z)=z, \quad f_{n+1}(z)=f\left(f_{n}(z)\right), \quad n=0,1, \ldots
$$

In the iteration theory an important part is played by the set $P(f)$ of those points of the complex plane where $\left\{f_{n}\right\}$ is not normal in the sense of Mantel. It is well known that the set $P(P)$ has the following properties (cf. [2], [4], [5], [7])

1) $F(f)$ is nonempty and perfect.
2) $P\left(f_{n}\right)=P(f)$ for $n>1$.
3) $P(P)$ is completely invariant with respect to f, i.e., for every $\beta, \beta \in F(f) \Leftrightarrow f(\beta) \in F(f) \cap f^{-1}(\{\beta\})<F(f)$.

A point α is said to be a fixed point of order n if $f_{n}(\alpha)=\alpha$ and $f_{k}(\alpha) \neq \alpha$ for $k=1,2, \ldots, n-1$

The derivative $f_{n}^{\prime}(\alpha ;$ is called a multiplier of fixed point α. A fixed point of order n is called attractivo, indifferent or repulsive according as

$$
\left|f_{n}^{\prime}(\alpha)\right|<1, \quad\left|f_{n}^{\prime}(\alpha)\right|=1, \quad\left|f_{n}^{\prime}(\alpha)\right|>1
$$

respectively.
4) Eveny repulaive fixed point belongs to $F(f)$ and every attractive fixed point does not belone to $P(f)$.

It is also known that if f is rational and $P(P)$ has a nonempty interior then $P(f)=$. In 1918 Latte constructed a rational function for which this case really occurs (cf. also [3]).
I.N. Baker [1] proved that there is a $k>e^{2}$ such that $F\left(k z e^{2}\right)=4$. However, the question if $F\left(e^{2}\right)=\$$ is still open.

The aim of this paper is to prove the following

THEOREM. $\mathrm{P}\left(2 \mathrm{k} \pi 1 e^{2}\right)=\$, \mathrm{k}= \pm 1, \pm 2, \ldots$.
Let I be entire, let S denote the set of all finite singular points of the function f^{-1} and put

$$
E(f)=\bigcup_{n=0}^{\infty} f_{n}(S)
$$

In the sequel D is a domain cortained in $\mathbb{\|} \backslash(f)$.
We shall use the following results proved by I.N. Baker [1].

THEOREM 1. Tf $\lim _{k \rightarrow \infty} f_{n_{k}}(z)=\alpha, \quad z \in D, \quad \alpha \in \phi, \quad$ then $\alpha \in L(f):=\overline{E(f)} \cup\{\infty\}$.

THEOREM 2. If int $L=\varnothing$ and 4 is connected then for every convergent subsequence $\left\{f_{n_{k}}\right\}$ of iterates

$$
\begin{array}{r}
\lim _{k \rightarrow \infty} f_{n_{k}}(z)=\alpha(z), \quad z \in D \Rightarrow \alpha(z)=\text { constr. } \\
\quad \text { for } z \in D .
\end{array}
$$

P 101 of the Theorem. Put $f(\varepsilon)=2 k \times 10^{2}$ and note that for the inverse function f^{-1} the point $z=0$ is the unique singularity which is transcendental. Hence the set $I=I(f)$ has the form

$$
L=\{0,2 k \pi 1, \infty\}
$$

Since int $L=\varnothing$ and $\ L$ is connected, by Theorens 1 and 2 , every limit function of any convergent subsequence of $\left\{f_{n}\right\}$ in D is constant and equals to $0,2 k \pi i$ or ∞.

Now we shall show that
∞ is not a limit of any subsequence $\left\{f_{n_{k}}\right\}$ in D_{0}
For an indirect proof suppose that there is a subsequence $\left\{f_{n_{k}}\right\}$ and a domain D such that $\lim _{k \rightarrow \infty} p_{n_{k}}(\varepsilon)=\infty \quad$ for $\quad z \in D$. Let us note that this implies

$$
\lim _{n \rightarrow \infty} f_{n}(z)=\infty \quad \text { for } \quad z \in D .
$$

Indeed, in the opposite case one can find another subsequence $\left\{f_{\bar{w}_{K}}\right\}$ which converges to one of the remaining points of the set I for $z \in D$. Hence for every compact set $K C D$ there are an $a>2 k x$ and infinitely many n such that

$$
P_{n}(K) \subset\{z:|z| \leqslant a\} .
$$

Because $|f(a)|<|f(f(a) \mid)|$, we have

$$
f_{n}(x) \subset\{z:|z|>|f(|f(a)|)|\} \not f_{n-1}(x) \text {. }
$$

for infinitely many n. Evidently, for such an n,

$$
\mathscr{I}_{n-1}(K) \notin\{2: \quad|z|<|f(a)|\}
$$

Therefore, for infinitely many n we have

$$
P_{n-1}(K) \cap B \neq \varnothing .
$$

Where $B:=\{z:|f(a)| \leqslant|z| \leqslant|f(|f(a)|)|\}$. Consequently, one can find a subsequence of $\left\{f_{n}\right\}$ which conVerges to a point of the set B. Since $B \cap L=\varnothing$ this is a contradiction. Thus we have proved that

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{P}_{\overline{\mathrm{u}}}(z)=\infty, \quad z \in D
$$

The function $f(2)=2 k \pi i e^{z}$ is bounded in the left half plane $\omega=\{z$: Res $\leqslant 0\}$. Therefore

$$
f_{n}(K) \cap \omega=\varnothing
$$

for sufficiently large n. In particular, for those n,

$$
I_{n}(K) \cap R_{\infty}=P_{n}(K) \cap f^{-1}\left(R_{\infty}\right)=\varnothing
$$

where $R_{-}:=(-\infty, 0)$. One can easily verify, that $f^{-1}\left(R_{-}\right)$ consists of the straight lines $y=\frac{\pi}{2}+2 n \pi, \quad n=0, \pm 1, \pm 2 \ldots$ The complement of the set $f^{-1}\left(R_{\Omega}\right)$ does not contain a disc of diameter greater than 2π. On the other hand we have

$$
f^{\prime}\left[f_{n}(z)\right]=f_{n+1}(z)
$$

and consequently

$$
\lim _{n \rightarrow \infty} f^{\prime}\left[f_{n}(z)\right]=\infty
$$

uniformly in the compact sets $K \subset D$. Take a compact set $K \subset D$

With int $K \neq \varnothing$ and $z_{0} \in$ int K. Hence

$$
\lim _{n \rightarrow \infty} f_{n}^{\prime}\left(z_{0}\right)=\lim _{n \rightarrow \infty} \prod_{j=0}^{n-1} f^{\prime}\left[f_{j}\left(z_{0}\right)\right]=\infty
$$

and there is an $r>0$ such that $U_{z_{0}}=\left\{z:\left|z-z_{0}\right|<r\right\} \subset K$. The functions

$$
B_{n}(z):=\frac{f_{n}(z)}{f_{n}^{\prime}\left(z_{0}\right)}, \quad n=1,2, \ldots,
$$

are holomorphic in the disc $\mathrm{U}_{\mathrm{z}_{0}}$. By Bloch's theorem ([6], p. 386) there exists a disc $U_{n}(b)$ of positive radius b such that

$$
U_{n}(b) \subset g_{n}\left(U_{\varepsilon_{0}}\right)=\frac{f_{n}(U)}{f_{n}^{\prime}\left(z_{0}\right)}, \quad n=1,2, \ldots .
$$

1. $\theta_{0}, \quad f_{n}^{\prime}\left(z_{0}\right) U_{n}(b) \subset I_{n}\left(U_{z_{0}}\right) \subset I_{n}(K), \quad n=1,2, \ldots$. The diameter of the set $f_{n}^{\prime}\left(z_{0}\right) U_{n}(b)$ is equal to $2\left|f_{n}^{\prime}\left(z_{0}\right)\right| b$ and is
greater than 2π for $n \geqslant n_{0}$. This implies that

$$
f_{n}(K) \cap f^{-1}(R) \neq \varnothing \text { for } n>n_{0}
$$

Which is impossible. This contradiction proves that ∞ cannot be a limit of any subsequence of $\left\{f_{n}\right\}$.

In the sequel we shall need the following

LEMAA. If $L=\dot{L}(f)$ is closed and consists of isolated points then every repulsive fixed point α of the function r is not a limit of any subsequence of $\left\{f_{n}\right\}$.

Proof of the Lemma. By assumption $A:=\left|f^{\circ}(\alpha)\right|>1$. Take an $\varepsilon>0$ such that $A-\varepsilon>1$. There is a $\delta>0$ such that
J. Matkowski, W. Oeinska

$$
(A-\varepsilon)|z-\alpha|<|f(z)-\alpha|<(A+\varepsilon)|z-\alpha|
$$

for

$$
|z-\alpha|<(A+\varepsilon)^{2} \delta
$$

and

$$
(A+\varepsilon)^{2} \delta<\inf \{|\alpha-\beta|: \beta \in I, \quad \beta \neq \alpha\}
$$

Suppose that

$$
\lim _{k \rightarrow \infty} f_{n_{k}}(2)=\alpha, \quad z \in D
$$

Hence, for compact $K \subset D$ we have

$$
f_{n}(K) \subset\{z:|z-\alpha|<(A-\varepsilon) \delta\}
$$

for infinitely many n. Since

$$
|f(z)-\alpha|>(A-\varepsilon)|z-\alpha|>|z-\alpha|
$$

for $|z-\alpha|<(A+\varepsilon)^{2} \delta$, we have

$$
P_{n+1}(K) \notin\{z:|z-\alpha|<(A-\varepsilon) \delta\}
$$

and

$$
\begin{aligned}
&\left|f_{n+1}(z)-\alpha\right|<(A+\varepsilon)\left|f_{n}(z)-\alpha\right|<(A+\varepsilon)(A-\varepsilon) \delta< \\
&<(A+\varepsilon)^{2} \delta
\end{aligned}
$$

for the same n. Putting

$$
B=\left\{z:(A-E) \delta \leqslant|z-\infty| \leq(A+\varepsilon)^{2} \delta\right\}
$$

we see that $B \cap f_{n}(K) \notin \varnothing$ for infinitely many n. Consequent1y, there exists a subsequence of $\left\{f_{n}\right\}$ Which has a limit in B. By Theorem 1 and 2 this is a contradiction, because $B \cap\{L \backslash\{\alpha\}\}=\varnothing$. This completes the proof of the Lemma.

It is easily seen that $z=2 k \pi i$ is a repulsive fixed point of f. By Lemma, $2 k \pi i$ cannot be a limit of any subsequence of $\left\{f_{n}\right\}$.

Supposing that $\lim _{k \rightarrow \infty} f_{n_{k}}(z)=0$ for $z \in D$, we see that

$$
\lim _{k \rightarrow \infty} f_{n_{k}+1}(z)=f(0)=2 k \pi i
$$

This contradicts the previous part of proof, and completes the proof of the Theorem.

REFPERENCES

[1] Baker, I.N., Limit functions and sets of non-normality in iteration theory, Ann. Acad. Sci. Fenn. Ser. A I Math., 469(1970).
[2] Brolin, H., Invariant sets under iteration of rational functions, Ark. Mat., 6(6)(1965), 103-144.
[3] Cremer. H., Über die Iteration rationaler Funktionen, Jahresber. Deutsch. Math.-Verein., 33(1925), 185-210.
[4] Fatou, P., Sur les 6́quations fonctionelles, Bull. Soc. Uath. France, 47(1919), 161-271.
[5] ., , Sur les équations fonctionelles, Bull. Soc. Math. France, 48(1920), 33-94, 208-314.
[6] Hille, E., Analytic Punction theory, II, Ginn and Comp. Boston 1962.
[7] Julia, G., Memoire sur l'itération des fonctions rationelles, J. Math. Pures Appl., 8(1)(1918), 47-2 5.

STRESZCZENIE

W teoril iteracji funkcji calkowitych \mathcal{P} podstawowa role odgrywa zbiór $F(f)$ tych punktow plaszczyzny w ktorych ciag iteracj1 \mathcal{P}_{n} Punkcji \mathcal{P} nie jest rodziną normalna w sensie Montela.

W tej pracy dowodzi sic, ze $P\left(2 k \pi i e^{z}\right), \quad k= \pm 1, \pm 2, \ldots$ jest cala plaszczyzną.

Резюме

В теории итерации целых функций f основнуо роль играет иножество $F(f)$ этих точек, в которых последовятельность итерации фуункции f_{n} функции f не является норкальным семейством в смысле Монтеля. В этоћ работе докөзывается, что $F\left(2 k \pi e^{2}\right)$ $k= \pm 1, \pm 2, \ldots$ составляет целую плоскость.

