ANNALES

UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

VOL. XXXIII, 11

SECTIO A

1979

Filia Politechniki Łódzkiej, 43-300 Bielsko-Biała

Janusz MATKOWSKI, and Wanda OGIŃSKA

Note on Iterations of Some Entire Functions Uwaga o iteracjach pewnych funkcji całkowitych Заметка об итерациях некоторых целых функций

Let f be entire or rational function. Consider the sequence of iterations

 $f_{n}(z) = z, f_{n+1}(z) = f(f_{n}(z)), n = 0, 1, \dots$

In the iteration theory an important part is played by the set F(f) of those points of the complex plane (where $\{f_n\}$ is not normal in the sense of Montel. It is well known that the set F(f) has the following properties (cf. [2], [4], [5], [7])

1) F(f) is nonempty and perfect.

2) $F(f_n) = F(f)$ for n > 1.

3) F(f) is completely invariant with respect to f, i.e., for every β , $\beta \in F(f) \iff f(\rho) \in F(f) \cap f^{-1}(\{\beta\}) \subset F(f)$.

A point α is said to be a fixed point of order n iff $f_n(\alpha) = \alpha$ and $f_k(\alpha) \neq \alpha$ for k = 1, 2, ..., n-1.

J. Matkowski, W. Oginska

The derivative $f'_n(\alpha)$ is called a multiplier of fixed point α . A fixed point of order n is called attractive, indifferent or repulsive according as

$$|f'_{n}(\alpha)| < 1, |f'_{n}(\alpha)| = 1, |f'_{n}(\alpha)| > 1,$$

respectively.

4) Every repulsive fixed point belongs to F(f) and every attractive fixed point does not belong to F(f).

It is also known that if f is rational and F(f) has a nonempty interior then F(f) = 0. In 1918 Latte constructed a rational function for which this case really occurs (cf. also [3]).

I.N. Baker [1] proved that there is a $k > e^2$ such that $F(kze^2) =$. However, the question if $F(e^2) =$ is still open.

The aim of this paper is to prove the following

THEOREM. $F(2k\pi ie^2) = 0$, $k = \frac{1}{2}$, $k = \frac{1}{2}$, $k = \frac{1}{2}$

Let f be entire, let S denote the set of all finite singular points of the function f^{-1} and put

$$E(f) = \bigcup_{n=0}^{\infty} f_n(S).$$

In the sequel D is a domain contained in $(\F(f))$. We shall use the following results proved by I.N. Baker [1].

THEOREM 1. If $\lim_{k \to \infty} f_{n_k}(z) = \alpha$, $z \in D$, $\alpha \in \emptyset$, then $\alpha \in L(f) := \overline{E(f)} \cup \{\infty\}$.

112

Note on Iterations of Some Entire Functions 113 THEOREM 2. If int L = Ø and $(\L$ is connected then for every convergent subsequence $\{f_n\}$ of iterates

 $\lim_{k \to \infty} f_n(z) = \alpha(z), \quad z \in D \Rightarrow \alpha(z) = const.$ for $z \in D$.

Proof of the Theorem. Put $f(z) = 2k \pi i e^{z}$ and note that for the inverse function f^{-1} the point z = 0 is the unique singularity which is transcendental. Hence the set L = L(f) has the form

 $L = \{0, 2k \pi i, \infty\}.$

Since int $L = \emptyset$ and $\P \setminus L$ is connected, by Theorems 1 and 2, every limit function of any convergent subsequence of $\{f_n\}$ in D is constant and equals to 0, $2k\pi i$ or ∞ .

Now we shall show that:

 ∞ is not a limit of any subsequence $\{f_{n_k}\}$ in D.

For an indirect proof suppose that there is a subsequence $\{f_{n_k}\}$ and a domain D such that $\lim_{k \to \infty} f_{n_k}(s) = \infty$ for $z \in D$. Let us note that this implies

lim $f_n(z) = \infty$ for $s \in D$.

Indeed, in the opposite case one can find another subsequence $\{f_{m_k}\}$ which converges to one of the remaining points of the set L for $z \in D$. Hence for every compact set $K \subset D$ there are an $a > 2k\pi$ and infinitely many n such that

 $f_n(K) \subset \{z : |z| \leq a\}.$

Because |f(a)| < |f(|f(a)|)|, we have

 $f_n(\mathbf{K}) \subset \{z : |z| > |f(|f(a)|)|\} \not \supset f_{n-1}(\mathbf{K})$

J. Matkowski, W. Ogińska

for infinitely many n. Evidently, for such an n,

$$f_{n-1}(K) \not\subset \{z : |z| < |f(a)| \}.$$

Therefore, for infinitely many n we have

 $f_{n-1}(K) \cap B \neq \emptyset,$

where $B := \{z : |f(a)| \le |z| \le |f(|f(a)|)\}$. Consequently, one can find a subsequence of $\{f_n\}$ which converges to a point of the set B. Since $B \cap L = \emptyset$ this is a contradiction. Thus we have proved that

$$\lim_{n\to\infty} f_{\underline{n}}(z) = \infty, \quad z \in D.$$

The function $f(z) = 2k \pi i e^{z}$ is bounded in the left half plane $\omega = \{z : Rez \leq 0\}$. Therefore

 $f_n(\mathbf{K}) \cap \omega = \emptyset$

for sufficiently large n. In particular, for those n,

$$\mathbf{f}_{n}(\mathbf{K}) \cap \mathbf{R}_{=} = \mathbf{f}_{n}(\mathbf{K}) \cap \mathbf{f}^{-1}(\mathbf{R}_{=}) = \emptyset$$

where $R_{\pm} := (-\infty, 0)$. One can easily verify, that $f^{-1}(R_{\pm})$ consists of the straight lines $y = \frac{\pi}{2} + 2n\pi$, $n = 0, \pm 1, \pm 2, ...$ The complement of the set $f^{-1}(R_{\pm})$ does not contain a disc of diameter greater than 2π . On the other hand we have

$$f'[f_n(z)] = f_{n+1}(z)$$

and consequently

$$\lim_{n \to \infty} \mathbf{f}'[\mathbf{f}_n(z)] = \infty$$

uniformly in the compact sets KCD. Take a compact set KCD

114

Note on Iterations of Some Entire Functions with int $K \neq \emptyset$ and $z_0 \in int K$. Hence

$$\lim_{n \to \infty} f'_n(z_0) = \lim_{n \to \infty} \prod_{j=0}^{n-1} f'[f_j(z_0)] = \infty$$

and there is an r>0 such that $U_{z_0} = \{z : |z - z_0| < r\} \subset K$. The functions

$$g_n(z) := \frac{f_n(z)}{f'_n(z_0)}$$
, $n = 1, 2, ...,$

are holomorphic in the disc U_{z_0} . By Bloch's theorem ([6], p. 386) there exists a disc $U_n(b)$ of positive radius b such that

$$U_n(b) \subset g_n(U_{z_0}) = \frac{f_n(U)}{f_n'(z_0)}, \quad n = 1, 2, ..., n$$

i.e., $f'_n(z_0)U_n(b) \subset f_n(U_{z_0}) \subset f_n(K)$, n = 1, 2, ... The diameter of the set $f'_n(z_0)U_n(b)$ is equal to $2|f'_n(z_0)|b$ and is Greater than 2π for $n \ge n_0$. This implies that

 $f_n(K) \cap f^{-1}(R) \neq \emptyset$ for $n \ge n_0$

which is impossible. This contradiction proves that ∞ cannot be a limit of any subsequence of $\{f_n\}$.

In the sequel we shall need the following

LEMMA. If L = L(f) is closed and consists of isolated points then every repulsive fixed point α of the function f is not a limit of any subsequence of $\{f_n\}$.

Proof of the Lemma. By assumption $A := |f'(\infty)| > 1$. Take an $\mathcal{E} > 0$ such that $A - \mathcal{E} > 1$. There is a $\delta > 0$ such that

$$A = \varepsilon |z - \alpha| < |f(z) - \alpha| < (A + \varepsilon)|z - \alpha|$$

for

 $|z - \alpha| < (A + \varepsilon)^2 \delta$

and

$$(A + \varepsilon)^2 \delta < \inf \{ |\alpha - \beta| : \beta \in L, \beta \neq \alpha \}.$$

Suppose that

$$\lim_{k \to \infty} f_n(z) = \alpha, \quad z \in D.$$

Hence, for compact KCD we have

 $f_n(K) \subset \{z : |z - \alpha| < (A - \varepsilon)\delta\}$

for infinitely many n. Since

$$|f(z) - \alpha| > (A - \varepsilon)|z - \alpha| > |z - \alpha|$$

for $|z - \alpha| < (A + E)^2 \delta$, we have

 $f_{n+1}(\mathbf{E}) \not\subset \{z : |z - \alpha| < (\mathbf{A} - \mathbf{E}) \delta\}$

and

$$|f_{n+1}(z) - \alpha| < (A + \varepsilon)|f_n(z) - \alpha| < (A + \varepsilon)(A - \varepsilon)\delta <$$

< $(A + \varepsilon)^2\delta$

for the same n. Putting

$$B = \{z : (A - \varepsilon) \delta \leq |z - \alpha| \leq (A + \varepsilon)^2 \delta \}$$

we see that $B \cap f_n(K) \neq \emptyset$ for infinitely many n. Consequently, there exists a subsequence of $\{f_n\}$ which has a limit in B. By Theorem 1 and 2 this is a contradiction, because

116

Note on Iterations of Some Entire Functions 117 $B \cap \{L \setminus \{\alpha\}\} = \emptyset$. This completes the proof of the Lemma.

It is easily seen that $z = 2k\pi i$ is a repulsive fixed point of f. By Lemma, $2k\pi i$ cannot be a limit of any subsequence of $\{f_n\}$.

Supposing that $\lim_{k \to \infty} f_{n_k}(z) = 0$ for $z \in D$, we see that

 $\lim_{k \to \infty} f_{n_k+1}(z) = f(0) = 2k\pi i.$

This contradicts the previous part of proof and completes the proof of the Theorem.

REFERENCES

- [1] Baker, I.N., Limit functions and sets of non-normality in iteration theory, Ann. Acad. Sci. Fenn. Ser. A I Math., 469(1970).
- [2] Brolin, H., Invariant sets under iteration of rational functions, Ark. Mat., 6(6)(1965), 103-144.
- [3] Cremer. H., Über die Iteration rationaler Funktionen, Jahresber. Deutsch. Math.-Verein., 33(1925), 185-210.
- [4] Fatou, P., Sur les équations fonctionelles, Bull. Soc. Math. France, 47(1919), 161-271.
- [5] ,, , Sur les équations fonctionelles, Bull. Soc. Math.France, 48(1920), 33-94, 208-314.
- [6] Hille, E., Analytic function theory, II, Ginn and Comp. Boston 1962.
- [7] Julia, G., Mémoire sur l'itération des fonctions rationelles, J. Math. Pures Appl., 8(1)(1918), 47-2 5.

STRESZCZENIE

W teorii iteracji funkcji całkowitych f podstawową rolę odgrywa zbiór F(f) tych punktów płaszczyzny w których ciąg iteracji f_n funkcji f nie jest rodziną normalną w sensie Montela.

W tej pracy dowodzi się, że $F(2k\pi ie^{Z})$, $k = \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ jest całą płaszczyzną.

Резюме

В теории итерации целых функций f основную роль играет множество F(f) этих точек, в которых последовательность итерации функции f_{Ω} функции f не является нормальным семейством в смысле Монтеля. В этой работе доказывается, что $F(2k \Pi le^2)$ $k = \pm 1, \pm 2,...$ составляет целую плоскость.