UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN - POLONIA

VOL. XXXIII, 10
SECTIO A
1979
Instytut Matematyki, Uniwersytet Marii Curie-Sklodowakiof, Lublia Department of Mathematical Sciences, University of Delaware, Newark, Delaware, USA

Jan G. KRZYZ, Richard J. LIBERA, ${ }^{\text { }}$ Eligiusz Z\&OTKIEWICZ

Coefficients of Inverses of Regular Starlike Funetions

Współczymiki funkeji odwrotnych do funkeji regularnych gwiafdzistych
Коэффициенты функстй обратных х регулярнвох звезднвых фунхсрили

1. INTRODUCTION

As is usually the case we let X represent the class of functions of the form

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \tag{1.1}
\end{equation*}
$$

regular and univalent in the open unit disk $\Delta=\{z \in:|z|<1\}$ Much of the interest in and many investigations of δ relate to establishing correct bounds on the coefficients ak, $k=2,3, \ldots$, and it has been shown, cf.e.g. [2], that $\left|a_{n}\right| \leqslant n$, for $n=2,3,4,5,6$. Except for rotations the unique extremal for these bounds is the Koebe function

[^0]\[

$$
\begin{equation*}
k(z)=\frac{z}{(1-z)^{2}}=z+2 z^{2}+3 z^{3}+\ldots \tag{1.2}
\end{equation*}
$$

\]

In his seminal work relating to the conclusion that $\left|a_{3}\right| \leqslant 3$, Loewner [7] was able to give sharp bounds for the coefficients which appear in the Maclaurin series for the inverse of any function in δ. Specifically, if the inverse of $f(8) 18$

$$
\begin{equation*}
P(w)=w+\gamma_{2} w^{2}+\gamma_{3} w^{3}+\cdots \tag{1.3}
\end{equation*}
$$

he showed that

$$
\begin{equation*}
\left|y_{n}\right| \leqslant \frac{1}{n}\binom{2 n}{n+1} \tag{1,4}
\end{equation*}
$$

for $n \geqslant 2$ and that the sharp upper bound is achieved by the Inverse of a rotation of $k(z)$ defined by (1.2).

To summarize the situation briefly we can say that sharp bounds for $\left|\gamma_{n}\right|$ and each index n have been obtained in a surprisingly atraightforward way, whereas proper bounds on $\left|a_{a}\right|$ have been obtained for only a few indices with great difficulty. The purpose of this note is to illustrate that the converse situation appears to hold for some well-known subclasses of S.

2. CONCLUSIONS

For $0 \leqslant \alpha \leqslant 1$ we let \mathcal{S}_{α}^{*} be the subclass of \varnothing consisting of functions which are α-starlike, 1.e., $f(z)$ is 28 in (1.1) and $\operatorname{Re}\left\{z f^{\circ}(z) / f(z)\right\} \geqslant \alpha$ for z in Δ. The functions $P(z)$ in X for which $P[\Delta]$, the image $0: \Delta$ under $f(z)$, is a convex domain is denoted by $K_{;}$it is

Coefficients of Inverses of ...
well-known that $K \subset S_{\frac{1}{2}}^{*}$.
The family of all starlike functions is X_{0}^{*}, written simply as 8*。

Also, let P be the class of functions
(2.1)

$$
P(z)=1+p_{1} z+p_{2} z^{2}+\cdots
$$

regular and satisfying the condition $R e P(z)>0$ for z in \triangle. It follows that $f(z)$ is in S_{α}^{*} if and only if there is a corresponding function $P(z)$ in ρ for which
(2.2) $\quad \varepsilon f^{\prime}(z)=f(z)(1-\alpha) P(z)+\alpha$

With representations (1.1) and (2.1) the last relation yields the relationships
(2.3)

$$
(n-1) a_{n}=(1-\alpha) \sum_{j=1}^{n-1} p_{j} a_{n-1-1}, \quad n=2,3, \ldots
$$

Now, if a function and its inverse are given by (1.2) and (1.3) a brief calculation shows that
(2.4) $\quad \gamma_{2}=-a_{2}, \quad \gamma_{3}=2 a_{2}^{2}-a_{3}$ and $\gamma_{4}=5 a_{2}\left[a_{3}-a_{2}^{2}\right]-a_{4}$ and these along with (2.3) give $\gamma_{2}=-(1-\alpha) p_{1}$ and (2.5)

$$
\gamma_{3}=-\left(\frac{1-\alpha}{2}\right)\left[p_{2}-3(1-\alpha) p_{1}^{2}\right]
$$

Which give rise to the following result.
THEOREM 1. If $f(z)$ is in X_{α}^{*} and its inverse is given by (1.3). then $\left|\gamma_{2}\right| \leqslant 2(1-\alpha)$ and .

$$
\text { (2.6) } \quad\left|\gamma_{3}\right| \leqslant\left\{\begin{array}{l}
(1-\alpha)(5-6 \alpha) \quad \text { for } 0 \leqslant \alpha \leqslant \frac{2}{3} \\
(1-\alpha) \\
\text { for } \quad \frac{2}{3} \leqslant \alpha<1 .
\end{array}\right.
$$

These bounds are sharp.
The first bound follows from the relation $\left|p_{k}\right| \leqslant 2$ which 1. valid for all coefficients of (2.1) and the second is a consequence of the following lemma which is quoted in [6].

EMMA. If $P(z)$ in γ is given by (2.1), then
(2.7)

$$
\left|p_{2}-\mu p_{1}^{2}\right| \leqslant 2 \max \{1,|1-2 \mu|\}
$$

and the bound is rendered sharp by $Q(z)=(1+z) /(1-z)$ fam $|1-2 \mu| \geqslant 1$ and by $T(z)=\left(1+z^{2}\right) /\left(1-z^{2}\right)$ otherwise. How, replacing $P(z)$ in (2.2) by $Q(z)$ and $T(z)$ and solving for the corresponding $P(z)$ gives functions in f_{α}^{*}, namely
(2.8)

$$
\begin{aligned}
k_{\alpha}(z) & =\frac{z}{(1-z)^{2(1-\alpha)}}=z+2(1-\alpha) z^{2}+ \\
& +(1-\alpha)(3-2 \alpha) z^{3}+\ldots
\end{aligned}
$$

and
(2.9)

$$
\begin{aligned}
\mathbf{h}_{\alpha}(z) & =\frac{z}{\left(1-z^{2}\right)^{1-\alpha}}=z+(1-\alpha) z^{3} \\
& =\frac{\alpha(1-\alpha)}{2} z^{5}+\ldots
\end{aligned}
$$

respectively. Appealing to (2.4) we see that $k_{\alpha}(z)$ gives the sharp upper bound for $\left|\gamma_{2}\right|$ with any value of α and for $\left|\gamma_{3}\right|$ when $0 \leqslant \alpha \leqslant \frac{2}{3}$, whereas $h_{\alpha}(2)$ provides equality in (2.6) for the remaining values of α.

Theorem 1 shows that no single function serves as the extremal for all coefficients γ_{n} of inverses for members of $\ell_{\alpha}^{*}, \frac{2}{3} \leqslant \alpha<1$, which differs significantly from δ where one function can provide all extremal values. The situa-
timon for K appears to be surprisingly difficult; (2.8) with $\alpha=\frac{1}{2}$ gives sharp upper bounds $\left|\gamma_{2}\right| \leqslant 1$ and $\left|\gamma_{3}\right| \leqslant 1$. when $f(z)$ is in K however $k_{1}(z)$ cannot give the sharp upper bound for $\left|\gamma_{n}\right|$ for all ${ }^{\frac{1}{2}} n$. Furthermore it is not likely that using (2.3) and (2.4) and the methods of the theorem can provide the correct bound for $\gamma_{4^{*}}$. However, we can provide an estimate for $\left|\gamma_{n}\right|$.

THEOREM 2. If $F(w)=w+\gamma_{2} w^{2}+\cdots$ corresponds to $f(z)$ in f_{α}^{*}, then

$$
\begin{equation*}
\left|\gamma_{n}\right| \leqslant \frac{1}{n} \frac{\Gamma(2 n(1-\alpha)+1)}{[\Gamma(n(1-\alpha)+1)]^{2}} . \tag{2.10}
\end{equation*}
$$

To establish (2.10) we represent γ_{n} in a novel way, $c f$. [5]. Let $f(z)$ and $F(w)$ be as in (1.1) and (1.3) and let $c(r)$ be the image of $\left\{\left|z^{\prime}\right|=r \theta^{1 \theta}: 0 \leqslant \theta \leqslant 2\right\}$ under $f(z)$, then
(2.11)

$$
\gamma_{n}=\frac{1}{2 x^{1}} \int_{0(x)} \frac{P(w) d w}{w^{n+1}}=\frac{1}{2 \pi i} \int_{|z|=5} \frac{g f^{\prime}(z)}{f(z)^{n+1}} d z=
$$

$$
=\left(\frac{1}{2 \pi 1}\right)\left(\frac{-1}{n}\right)\left\{\left.\frac{z}{f(z)^{\bar{L}}}\right|_{|z|=r}-\int_{|z|=r} \frac{d z}{f(z)^{n}}\right\}=
$$

$$
=\frac{1}{2 \pi \text { in }} \int_{|z|=x} \frac{d z}{f(z)^{x}}
$$

How, if $f(z)$ belongs to X_{α}^{*}, it is known [4] that $\left(\frac{z}{f^{\prime}(z)}\right)^{\frac{1}{2(1-\alpha)}}=1+\omega(z)$, where $|\omega(z)| \leq|8|$. Consequently, using (2.11) and the principle of subordination we mas write

$$
\left|\gamma_{n}\right|=\frac{1}{2 \pi n}\left|\int_{|z|=r}\left(\frac{z}{f(z)}\right)^{n} \frac{d z}{z^{n}}\right|
$$

(2.12)

$$
\begin{aligned}
& \leq \frac{1}{2 \pi n r^{n}} \int_{|z|=r}|1+w(z)|^{2 n(1-)}|d z| \\
& \left\langle\frac{1}{2 \pi n r^{n}} \int_{|z|=r}\right| 1+\left.z\right|^{2 n(1-\alpha)}|d z| .
\end{aligned}
$$

Letting $z=r e^{1 \theta}$ and replacing r by 1 gives

$$
\begin{aligned}
\left|\gamma_{n}\right| & \leqslant \frac{2^{2 n(1-\alpha)}}{2 \pi n} \int_{0}^{2 \pi}\left|\cos \frac{\theta}{2}\right|^{2 n(1-\alpha)} d \theta= \\
& =\frac{2^{2 n(1-\alpha)}}{2 \pi n} \int_{0}^{2}(\cos t)^{2 n(1-\alpha)} d t= \\
& =\frac{1}{n} \frac{\Gamma(2 n(1-\alpha)+1)}{[\Gamma(n(1-\alpha)+1)]^{2}}
\end{aligned}
$$

having made reference to standard tables, [3] for example.
For $\alpha=0$, (2.13) gives $\left|\gamma_{n}\right| \leqslant \frac{1}{n}\binom{2 n}{n}=B_{n}$ which exceeds the correct value given in (1.4). However the orders of both bounds, as $n \rightarrow \infty$, are the same. Also, for $\alpha=0$, the computations given in (2.12) and (2.13) are equivalent to computing an upper bound for $\left|\gamma_{n}\right|$ when $f(z)$ is the Koobe function (1.2); hence it follows from the work of Bernstein [1] that B_{n} is an upper bound for coefficients of functions in 8 . Of course, this is superfluous in view of Loemner's earlier result, namely (1.4), but it does provide the correct order for $\left|\gamma_{n}\right|, n \rightarrow \infty$, with relative case.

It appears then, that bounds for $\left|\gamma_{n}\right|, f(z)$ in \mathcal{S}_{∞}^{*} $\alpha \neq 0$, or $f(z)$ in K may be obtainable only with considerable difficulty and that no single member of the class provi-
des a sharp bound for all indices; on the other hand good bounds for $\left|a_{n}\right|$ are obtainable in a straight forward fashion [2].

REPERENCES
[1] Baernstein, A., Integral means, univalent functions and oircular symmetrization, Acta Math., 133(1974), 139-169.
[2] Duren, P.L., Coefficients of univalent functions, Bull. Amer. Wath. Soc. 83(1977), 891-911.
[3] Dwight, H.B., Tables of Integrals and other Mathematical Data, New York, 1961.
[4] Fait, M. and Zlotkiewicz, E.J., Convex hulls of some classes of univalent functions, Ann. Univ. Mariae Curie--Skłodowska, Sect. A. , XXX (1976), 35-41.
[5] Krayi, J.G., Coefficient estimates for powers of univalent functions and their inverses, Ann. Univ. Mariae Curie-Skiodowska, Sect. A, 34(1980) (to appear).
[6] Libera, R.J. and Zzotkiewicz, E.J., Loewner - type approximation for convex functions, Colloq. Math., XXXVI (1976), 143-151.
[7] Loerner, c., Untersuchungen über schlichte konforme Abbilduncen des Einheitskreises, I, Math. Ann., 89(1923), 103-121.

STRESZCZENIE

Otrzymano ustre oszacowania początkowych wsp byczynnikow dia funkcji odwrotnych do funkeji α-gwiaździstych oraz oszacowania aieostre dla wszystkich wspblczynnikóm.

Реаиме

В работе получено строгие оценки начальных коэфФициентов для функции обратных к $\propto-3$ вездным функциям, а также оцөнки слабыө для всех коәффициентов.

[^0]: 1) This was prepared while the 2nd author was at UMCS Lublin under a program sponsored by Polska Akademia Nauk and the National Academy of Sciences.
