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1. INTRODUCTION

As 1s usually the case we let xé represent the class of

functions of the form
(1.1) £(z) = = +_a2=2 + a;s’ + eae

regular and univalent in the open unit disk A = jze¢ x\z|<1}
Much of the interest in and many inveatist;tions of )J relate
to establishing correct bounds on the coefficients 8y

k = 2,3,,.., and it has been shown, cf.e.g. (2], that |a |«n,
for n=2,3,4,5,6. Except for rotationa the unique extremal

for these bounds is the Koebe function

%
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-z+2z2+323+...

(1.2) k(Z) =2 )d =

1 -2

In his seminal work relating to the conclusion that
|a3|45, Loewner [?] was able to give sharp bounds for the
coefficients which appear in the Maclaurin series for the
inverse of any function in )d . Specifically, if the inverse
of f(z) 1is

(1.3) F(W) =W + 12'2 + T}'B + oo

he showed that

2n
1.4) (4ol 2 (MJ

for n>»2 and that the sharp upper bound is achieved by the
inverse.of a rotation of k(z) defined by (1.2).

To summarize the situation briefly we can say that sharp
bounds for Wnl and each index n have been obtained in a
surprisingly straightforward way, whereas proper bounds on
lan| have beén obtained for only a few indices with great
difficulty. The purpose of this note is to illustraﬁe that
the converse situation appears to hold for some well-known

subciasses of S,
2. CONCLUSIONS

For O£ X €1 we let )d‘: be the subclass of )(f con-
sisting of functions whiél_:\ are oL-starlike, i.,e., £(z) 1is’
s in (1.1) and Re{z£°(2)/£(z2)} > o« for z in A . The
functions £(z) 4in A for which £{A], the image of A

onder f£(z), 48 a convex domain is denoted by K; it is
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well-known that KCS, .

A 5 3 c
The family of all starlike functions is A o!
simply as )0' '.
Also, let P. be the clasas of functions

written

(2.1) P(Z) =14+ p1z + pazz + ene

regular and satisfying the condition Re P(2)>0 for = 4in
»

A. It follows that f£(z) 4s in J,‘ if and only if there

is a corresponding function P(z) 4in P for which

(2.2) ££°(2) = £(2) (1 = x)P(8) + o

With representations (1.1) and (2.1) the last relation yields
the relationships

n=1
(2:3) (n = 1)an = (1 - CX,) Z pdan_a_1. ns= 2.3.... )
3=

Now, if a function and its inverse are given by (1,2) and

(1.3) a brief calculation shows that

(2.4) ]2 = = a5, ]3 = 23% - a3 and Yy = 58 [g;-a%]- a,

and these along with (2.3) ‘give 3‘2 2 - (1~ d)p1 and
(2.5) = = (I=Clp, = 3(1 = Ta)p2
T3 5 (»2 -3 »1ls

which give rise to the following result, 2

THEOREM 1. If f£(2) 1is io 1(5:,_ and its inverse is
glven by (1.3), then |7,|<2(1 - o) and - g
((1- )5 -6a) for 0&x<%,

(2.6) AR
(1 - o) fgor 3ot
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These bounds are sharp.

The first bound follows from the relation [pk|g§-_2 which
e valid for all coefficients of (2.1) ard the second is a con=-
sequence of the following lemma which is quoted in [6].

LEMMA. If P(z) in ¥° is given by (2.1), then
e.?7 ' - pP 2 |<2 max{1, |1 - 2r4|}

and the bound is rendered sharp by Q(z) = (1 + 2)/(1 = 2)
shen |1 - 2r| 21 and by T(z) = (1 + z2)/(1 - 22) otherwise.
Now, replacing P(z) im (2.2) by Q(z) and T(z) and

F
solving for the corresponding £(z) gives functions in )dq ’

namely
z 2
(2.8) ko (2) = e )2(1_“) =z + 2(1 = o)z +
+ (1 v d;)(} - 2“{)23 + ecoe
and

(2.9) ho‘(z) (1—’-'2-)1-_—&- =23+ (1= oc-)z3 -
-z

1 ocg1;oc) L

+ oo

respectively. Appealing to (2.4) we see that k  (z) gives
the sharp upper bound for |‘h| with any value of ¢ and
for |’33| when 04&6%, whereas hm(z) provides equality
in (2.6) for the remaining values of oC.

Theorem 1 shows that no single function serves as the
extremal for all coefficients ‘a’n of inverses for members
o A%, %so(.<1, which differs significanty from )

where one function can provide all extremal values. The situa-
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tion for K appears to be surprisingly difficult; (2.8) with

A g— gives sharp upper bounds |‘a’2]$1 and |‘3'3]61
when f£(z) 4s in K however k,](z) cannot give the sharp
upper bound for l'b’n| Lol M%)~ Ronbhemndnatity TReEGE
likely that using (2.3) and (2.4) and the methods of the theo-
rem can provide the correct bound for ‘[4. However, we can

provide an estimate for l'.xnlc

THEOREM 2, If F(w) = w ¢+ Yo" + .. corresponds to
*
£(z) in s, then

1 [(2n(1 = o) + 1)
(2,10) .
al<x [ M1 - o) + 1]°
To establish (2.10) we represent 7:1 in a novel way,
cf. [5]. Let £(z) and F(w) be as in (1.1) and (1.3) and
let c(r) be the image of {|z| = rel® 0< 8 <2} under
f(z’. then

fo = e | Blwaw J £2Um) R ]
no2qd = 2:1 £(2)2*7
o(r) |2| =r
(2.11) = (— )(‘11 = j -‘HE}.
. 2xi o |e)® | £(z)

[2] =2 |zj=2r

( dz -

SZ'Iin J f(z)ii I
|z =x

How, if f(z) belongs to st; y it is known [4] that

(7tzy )2”‘“’ 1+ @(z), vwhere [w(z)[< |si.

Consequently, using (2,11) and the principle of subordination

wWe may write
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l (-2 4z
29rn [ £(z) 22

'111‘ .-

z|=x
(2.12) giadd o [1+ ox2)|2200= Jjaz|
2% nr
jzl=x
—— fh + 22001 |qz)
2Xnr
|z{ =r

Letting =z = x:e:"e and replacing r by 1 gives

22“(""“) j 2n(1 )
cos i =
(S [ o G
2n(1= o)
(2.13) =2 ](cos §)2n{l=)gy
2%n

0
21 [X2n(1 - o) + 1)
T M1 - &) + D)°

having made reference to standard tables, 3] for example,

For o =0, (2.13) gives l)’nl_{, ( ).. B, which
exceeds the correct value given in (1.4), However the orders
of both bounds, as n —0 , are the same. Also, for o = O,
the computations given in (2,12) and (2,13) are equivalent to
computing an upper bound for lxnl when £(z) 1is the Koebe
function (1.2); hence it follows from the work of Baernstein
[1] that B, 1s an upper bound for coefficients of functions
in nd . Of course, this is superfluocus in view of Loewner’s
earlier result, namely (1.4), but it does provide the correct
order for |y,l, n —=o0 , with relative case.

-It appears then, that bounds for l?nl' £(z) in ;J:

oo# 0, or £(z) in X may be obtainable only with conside-
rable difficulty and that no single member of the class provi-
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des a sharp bound for all indices; on the other hand good

bounds for |a are obtaihable in a straight forward fashion

[23.

nl
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STRESZCZENIE

Otrzymano vatre oszacowania poczgtkowych wspdiczynnikéw

dla funkcji odwrotnych do funkcji o -gwiazdzistych oraz osza-
cowenia nieostre dla wszystkich wspétczynnikéw,
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Peaime

B paGoTe NMOAYUEHO CTpPOTHE OLEHKM HAYANIBHHX KO3Dhduuuen-
T0B InfA QyHkuuit oOpaTHHX K £ ~3Be3AHuM QYHKUUAM, @ TaxKxe

OLGHKM cnalHe A BCEX KO3PPUUMEHTOB.




