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n-Geodesics on Hypersurfaces
n-geodezyjne na hiperpowierzchniach

R-reofe3uyeckue Ha XUIMEePrnoBepXHOCTAX

In this peper we deal with the problem of the coincidence
of T -geodesics with geodesics on a hypersurface MnCEn”.
In the first part of this paper we’ll consider those X-geode-
sics which are determined by a temsor X of the type (0,2)
that is associated in a natural way with hypersurfaces e.g.
the third and fourth fundamental tensors of hypersurfaces. In
the second part we define T -geodesics determined by a tensor

field T of the type (1,1).
1. T -GEODESICS WITH ¥ BEING OF THE TYPE (0,2).

First we recall some fundamental definitions and theorems.

DEFINITION 1 [8]. A vector field W on a manifold M
with a given linear connection [~ is said to be W -geodesic
if:
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Vor¥ = A9, ¥ ¢ § o T, W)

where X is a symmetric, non-singular tensor field on M of
the type (0,2) and A 1is a real differentiable functicn
on M. The integral curve of the o ~geodesic vector ficld on
M 4is called the X -geodesic line.

In a local map U, the equation of this line is:

24 k 5.8 i
d"u ip du_ du du
1) SO (r+ , 32y ¢ - 188,
at ks & Tpe) Gt at at

TEEOREM 1 [6], [?]. The necessary and sufficient condi-

tion for 7 -geodesics on a manifold M to coincide with
geodesics of the connection [~ is:

e VieTyy + ViTyy = pe¥yy + 23Ty

In particular, if T 1is symmotric, then (2) becomess

(3) vk'ﬂ'id = Pll‘rid

where Py is some covector field on M.

THEOREM 2 [3]. 1If, on a surface M2CE’ with K # 0,
symmetric tensor fields g and g are the solutions 9_5 the
equations Vksl.‘l =0 and det(gid) £ 0, det(@id) # 0, then
g = oLg, o= const, ( V- the Levi-Civita connection),

DEFINITION 2 (5]. Let V be an n-diﬁensional vector
space and R € Hom(VAV, Hom(V,V)). The mapping R is said to
be regular if and only if- R(XAY) £# 0O for each bivector
XAY€VAV - {0},
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DEFINITION 3. A point xeM 1is said to be regular for
the curvature tensor R of a differentiable manifold ' M - with

a linear connection " ie
Rxe Hom('l‘x_M AT{J, Hom(T’g&. 'rxu))

is a regular mapping.
We have: '

THEOREM 3 [5]. Suppose, that two Riemannian connections

given on a connected differentiable manifold M of dimension

n23 with metric tensors g and E, have 1_:31_e same curvature

tensors and the set of regular points of these tensors is

.@_1_11_ M. Then ‘Ez Ag where' A = const.

REMARK 1, Observe, that in case of a surface IIZCEi,
the dinension of Txmz A TJJJIZ is one and the condition of
regularity of the curvature tensor R of the Levi-Civita
conmection of MZ at any x 48 equivalept to the non-vani-
shing of the Gaussian curvature of M2 at this point, namely:
ir B4y and bid are components of the first and the second

fundamental tensors of M2 respectively, thens

o
Rykip = RykaBip = Yypbiy = Pigpbyn
or r

1
Rjkg = (B by = by by)ed

and if ;1' 'x'a are vectors of the natural basis of Txl'z.
then:

- 1
ROZ AR,) = (byybay = Dpybey )€

Since det(g™') # 0, then R({,AX,) = O if and only ifs
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b11b2k - b21b1k =0 for each 1,k = 1,2, what is equivalent
to det(bi;j) = 0, And 80 R(X ;AX,) # 0 1s equivalent to

K £ 0. :

When we combine theorems 2 and 3 we get:

THEOREM 4, If £+ is the Levi-Civita connection of a
hypersurface MnCEm"l, n>2 such, that the set of rcgular

points of the curvature tensor R is dense in ne end g, g
0

are symmetric, non-singular tensors with Visjk = vigjk =

then ?13 & .Asu with A = const.

Now we can prove two more theorems:

THEOREM 5. Suppose, that on a Riemannian manifold M

with the metric tensor g, there }_g given a non-singular,

symmetric tensor field W of the type (0,2) satisfying

'J['j_:,gi;j # 0 everywhere on M. Then, if Ir-geodesics

T ——— e

coincide with geodesics on M, we haves vk'ri;j = Py Ti;j

e

and Py = Bklnhrgl where TE = 'Iidgia and there .9’,‘},§ES

a scalar function A £ O sugh, that Vk( l'J(ij) =0 and
A= c(ﬂfs)'1, ¢ = const £ O,

Proof. Since Tr-geodesics are geodesics on N,

thus:
T
k Xyy = P Tyy
In virtue of the fact that Ve’ = 0 we haves
8y _ Js
Vi %) = L
Putting 8 = 1 and summing with respect to i, we get:
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or
e _ (1
3k1[ = pk‘Jt
Hence

Py = akln ]:Isl

Now, let T=Ar , A#0 and V4% =0, then:

Vk'ﬁij 'ak }"7['13 + )nd'xiJ = ak.?t ‘Iid + 'Apk:n-ij =

?k). .Jrij + .A 3k1n|'1r8|'.}l‘ia =0
Hence
A + Ay in |78| = 0
or
Bkln IA'KSl =0
or

A= c(x&™ Q.E.D.

THEOREM 6. Suppose that two Rismannian connections i

Fas
and (7 are given on a differentiable, connected manifold M

with the metric tensors g and g, respectively. Assume

that the set of regular points of the curvature tensor R of

the comnection [ is dense in M and Vb4 = Vi,

vhere V is a differentiation operator with respect to [,
A e e—— —

Then | and [ have the same geodesics if and only if
€= Ag with A= const.

Proof, From the condition (11) [8]) we know that

A
[Tena [ determine the same family of geodesics if and
only ifs '

7

P§k= r‘%k+p33i+pk8§
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Now we can find: V;igkr'

L A o 1 5. A
Vagkr = Vaskr - (py 83" + pksg)gir - (py 3L+ prsd)gm:
A A A )
= - (ZpJgkr + Pksar + prgdk
Since ngkr * kg,jr' so we haves

A A A ~ A A
2P4Byr + PyByp * PpByx = 2PyByp + Pyl + Préyy

or

A A
Py8yy = Pxbyp
or

py Sk = P33
Putting 8 = k and summing over k, we get:
pJ = 0
Hence %
i i
F';,k = r‘ak
Now, from the Theoram 4 it follows thats
3 !
84 = Agid, A= const. Q.E.D.

The following will be useful:

THEOREM 7 {6]. Suppose, that [ 1s a symmetric, linear

connection on M with the symmetric Ricci tensor R . If o

e g

is 2 pon-singular tensor field of the type (0,2) and
Vi Wy = Py Wyy Where p is a covector field on I, fthon
P is the gradient field (i.e. py = O, f, where £ 1is

scalar function on M).

8

-

REMARK 2. If the assumptions of this theorcm hold, then

one can f£ind a scalar function A £ O such that
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Vk( R'I'ij) = 0 (compare the proof of the theorem 5).

At last, we deal with TJr-geodesics in case T 1is a ten=
sor field assqciated in a natural way with a hypersurface :
uPcE™T j,e., T 18 either the third,or the fourth funda-
mental tensor of a hypersurface.

In the paper [2] the following has been provedt

THEOREM 8 [2]. Let M°CE> be a surface and K # O
being its Gaussian curvature. The family of b-geodesics on
u2 coincides with the family of geodesics of this surface if

g_l}_q.'only if K = const and H='const, where b 1is the

second fundamental tensor of o

We can proves

THEOREHM 9, On a surface M2CE5 with the gaussian curva=

fure X £ 0 _h-geodesics, where hi;j = o(,b:‘.‘.j + Pgid’ af 0,
det(hiJ) # 0, coincide with geodesics of this surface if and
only 12 1 4o a sphere (locally),

Prootf.’
=>On account of the Theorem 7 and the Remark 2, we haves
VelAny ) = 0

From the Theorem 2, we get:

}\hid r\gid
b1y = Y&y
Wo now show that ‘K is constant.

From the above equality we get:

or

kaia = 'Bk]' 513
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Having used the Codazzi equations for bij’ we obtain:

0= Vidyy - Vibyy = Opyeyy ~ 957 by

or

3):53:' ¥y =0
Putting 8 = 1, we get:

and 1=const for n>1.

<= It is obvious. Q.E.D.

DEFINITION 4 (4], "Let M2 E™? be an orientable hyper-
surface and N denote the normal Yector field to Mn, then
a tensor field o of the type (0,2) on M2  defined in the
following ways

c(X,Y) = (dN)(X)-(dN)(Y)

is sald to be the third fundamental tensor of M°.
If gid and bid are the components of the first and

the second fundamental tensors of M7 respectively, then:
st

are the components of the third fundamental tensor of i,

In particular, for n = 23

where XK and H are the Gaussian and the mean curvatures of
MZ respectively.

Now, if we take Ot = 2H and P = = K 4in the Theorea 9,
we’ll gets
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THEOREM 10. On a surface M°CE> with K # O and
R £ 0, c-geodesics coincide with geodesics on HZ if and

91313 1{ H =const and K = const or ll2 1_s a sghere

(localg)o
For n>2 we haves

THEOREY 11. Suppose that the set of regular points of

EEE curvature tensor R 2_{ the Levi-Civita connection [

on a hypersurface l!’:‘c:]!"""‘1 n>3 is dense in M® and
E— e et——— ’ — —— — ———

det(bid) # 0 and
(6) biabnﬁjk’i‘i = const £ O

Then, oc-geodesics coincide with geodesics on M" if and only
ir u° is a sphere (locally).

Prootf. Suppose, that c-geodesics coincide with
geodesics on M, Then, from the Theorem 1, we haves
chia = pkciao
By virtue of the condition (6) and the Theorem 5 there exists

A= ,),(08)-1 = const, e = b“ﬁatbt;s"ﬁ, lu: const such,
thats

(7 Vku\ou) =0
From the Theorem 4 it follows thats
(8) 013 = “513' O = const

After having multiplied (8) by %X and having substituted
44 from (4), we gets
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Because of (9), the tensor:
i sl o, 1 Bygr

(10) _ hy = by ¥ (&) =%,

satisfies the condition (2) of the Theorem 2 {11, i.e.
Vendn) = o

8o it says, that there exiats the connection fr‘ such, that:

7 4
1) Vahd 20
~ 1 i 131 i 1%ir ~8
where Pdk '_rdk +t s hp th.i = r‘dk +5b Sx'pv:j(bkas DyhE

i 1%ir_ ~ i 171
=y +zd Srpgsp v;jbks - r;)k 17 i V;jbkr
We now compute vsb;jk'

vsb;jk g as.':':]k r‘sj pELE r‘sk Jots Vsbjk 0
(12) - 2’ ® PEYb dr ok = 2 D rbdp Vobir = Vebak o
1
= 7 Vgbyy - szbka =0

Using (11) ami {(12), we haves

0= V= oo d = Upy, + vy, V5™

- de Vs-éki
Hence' V% g
or
(13) Velyy = ©

It is easy to observe, that [ 1is torsionless (we use thn
Codazzi equations for hi:l}' g0 we can apply the Theoren 3 ard
as a result we haves bij = Y Bigs 7 = const, Q.FE.D.
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DEPINITION S {4]. A tensor field Q on a hypersurface
BCEP*!  with the componentss

g 1t 1<}
'S k
where by = bip'ép and &4y = { /5' g i:di g = det(sid
18 said to be the fourth fundamental tensor of l(nCEn
Now, let n = 2, then:
1 k k 2 2
P11 = Z By + Eqbp) = Eqomy = VB
1 X gk i 3 1
€12 = 2{ &l + Ehy) = 3(S4p05 + E54hy) =
=3 M6 (5 - n})
G TLT k 1
P22 = ¢ Eoibo + Eph) = - VEhy
One knows, thats
(15) 2H=5‘Pbd“ =g b¢1+g“ bdazh.:-o-h%
and
ny € B &
£ o b P11%22 = P12P2 4 L iy e
g~ T
€ !q Ea2 h; Bx2
- $
1 h, 811 &2 e A
-4 = jnd - md

hf h% 12 82
The determinant e is:
- Jem2 - uh? 2 - g2 - nlh2 4 h%h;]-
= - z8[] + B5)? - annd + unlpl] -
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- § el + 1202 - sl - 1]
Using (15) and (16) we get:
Q--.;;s(mz-tbx) =-s(n2;K)

H2 = K 18 always positive, provided that on H2 there are no
umbilical points. Hence e is negative. This means, it makes

sense to investigate Q-geodesics on hypersurfaces.

THECREM 12, Suppose, that on a hypersurface u°CE™’

the set of regular points of the curvature tensor R of the

——

Levi-Civita connection [ is demse in L and det( Qu);!o.

Then e-geodesics never coincide with geodesics on ut, (In

other words, there doesn’t exist a hypersurface on which
R ~geodesics coincide with geodesics).

Proof. On account of the Theorems &4 and 7 we know,
that Q-geodesica should have coincided with geodesics if and
only if

(18) ?u = O €y

Multiplying both sides of (18) on gi* and putting k = 4,
we gets

(19) 0y48°" = na
The left hand side of (19) is
B ~4q a ~g i ~8 i
eiasa = z(&ipbdss- p‘éj + aapbias pgﬁ ) =
d gipbns'ésl"éji =0

because &ip =~ Epy and baa‘gspédi X bas'és:l'é;jp.
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Hence o = O, what leads to a contradiction.

2. T-GEODESICS WITH J BEIRG OF THE TYPE (1,1).

Analogously to the definition of the X -geodesic given
by K. Radziszewski [ 8] we introduce the definition of the
T -geodesic in case I 1is of the type (1,1).

DEFINITION 6., A vector field W on a manifold M with
a given linear connection T 1s said to be N -geodesic ifs
V;Tl'-‘- = AUy TAz: L —=T(£,#W), £ - any covector field
on M, where X is non-singular tensor field on M of the
type (1,1) and A 1is a real differentiable function on M.
The integral curve of the JU-geodesic vector field on M is
called o -geodesic line.

It is easy to show, that in a local map U, the equation of
this line is of the form:

2.4 s k .3 i
A £ T 3 S Wkl R A

Suppose, that M ia_Riemannian n-dimensional manifold
with the metric temsor g. :

The tensor field ‘X may be viewed as a linear transformations:
T —= TM, Let X satisfy the following conditions:

(21) /\ .

g(¥X,Y) = glX,XY)
X,YeTM

or in a local map Us

1 1
5 B3 Tk = BTy

Provided that (21) holds, it suffices to observe that the
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problem of coincidence of dJr-geodesics with geodesics on X
is the same as the problem of covering geodesics with
:Its-geodesics in the sense of the definition 1 (X® 4s a ten-
sor with components T ;‘gik).

¥e can proves

THEOREM 13. Suppose, that the set of regular points of

the curvature tensor R 2:‘; 8 Riemannian, connected manifolg M

is dense in M g_q_g_._ there is given a non-singular tensor field

X of the type (1,1) on M satisfying (21). Then X -geode-
sics coincide with geodssics on M if and only if: W= A-I.

Proof, Since, the condition of coincidence of
T -geodesice with geodesics provided that (21) holds, is
equivalent to the problem of coincidence of :n'g-geodesics
with geodesics, then from the Theorems 3 and 7 it follows that:

1
X381k = Ajx

Hence .
'Jrj =0 8} Q.E.D.

As a special case of this theorem, we haves

THEOREM 14. If hi = b 'Y are the components of the

he dense set of rogular points of the curvature tensor R,
then h-geodesics are the same as geodesics on U" if and

oply if M is a sphere (locally).
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STRESZCZENIE

W tej pracy zajmu'jenv si¢ problemem pokrywania sie
4 =geodezyinych z geodezyjnyml na hiperpowierzchni Illn CEnn.
plerwszej czglci rozpatrujemy or-geodezyjne, gdzie I Jest
' naturalny sposéb zwigzany = hiperpowierzchnig. W przypadku

-

(77 o Jest trzecim podstawowym tensorem hiperpowierzchni,
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wtedy X -geodezyjne pokrywajg sle 2z geodezyjnymi wtedy 1 tyl-
ko wtedy gdy hiperpowierzchnia jest lokalnie sferg, natomiast
gly T Jest czwartym podstawawym tensorem powierzchni wtedy
nie istnieje hiperpowierzchnia, na ktérej Ir-geodezyjne po-
krywajq sie¢ & geod;zyanymi.

W druglej czesci rzajmujemy sig ?[-geodezyjnymi wyznaczonymi

przez pole tensorowe typu (1,1).

Pe3nue

B aroft paGoTe 3aHUMaeMCR npolaeMoit coBnazanuf JL-reozesu-
weckux c reozeamueckuuu nosepxsocTamu MYc E™'. B nepso#t wacrm
paccuatpusaeu JU -reozesugeckue onperenuMEe TEH30PAMHU, KOTODHE
HATYypanbHHM O06pPA30M CBA38HH C XWUMEPNOBEPXHOCTHM., lITak, KOrLa
ABNAETCA TpeTuM (QyHAAMEHTAJBHHM TEH30pOM XWIEPMNOBEPXHOCTH, TOI-
Ia A Toro 4TOoOH JU -reole3uuecKue COBMAZANW C Te0Le3UYEeCKUMH,
HEOOXOZMMO ¥ ANCTATOYHO, YTOCH XUMEPNMOBEPXHOCTH Obla JOKAABHO
chepot, 3aTo worza JU sABAAeTCA ueTBepTHM DYHIABMEHTANBHHMN TEH-
30pOM, TOTA8 HE CYNECTBYeT XUIepNnoBEpXHOCTH, H8 koTopoit JU -reo-
ZI@3UYECKHE COBMANAWT C TeORe3UYECKUMU.

Bo BTOpO# wacTu 3arumMaemMca JU -reoZe3muYECKUMYU OnpeleneH-

HHMW TeH3opamu THnma (17) .



