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1. Introduction. The importance of convergence in distribution in statistical inference:
arises as follows. The data y,, .., ¥, arising from n performancesof a given random process
¢ is used to calculate various quantities of interest, IV,, = (Win,.., Win) say, which are
then used to construct signiticance, confidence mtervals etc These require the evaluation
of probabilities of the form P( . € A), for given sets A € R 1f the distribution of W,, is
intractable, an approximation to P(Wp € A) is available when the sample size n is large in
the case when the sequence ,W,, converges in distribution to a variate W with know
distribution for then ([2], Theorem 2.1)

lim P(Wp € 4) = P(WE A)
n+=
for all sets A of practical interest.

Consider now the situation in e.g. MANOVA. There are now several (k say) indepen-
dent random processes €, , .., €, the data arises from n; performances of ¢;, i = 1, .., k,
and leads to quantities of interest of the form Wn 5 . An approximation
to P(w .. ng € A) when all the sample sizes 1, .., ng arc large may then be important
in pragnce for similar reasons. Such approximations arc provided by the type of conver-
gence in distribution of multiply-indexed arrays ) IV,, nk'{ of random vectors that i
defined below, 3

2. Multiply-indexed arrays. We discuss in some detail only the case k = 2, since th
treatment when k > 2 presents no additional difficulties.
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2. 1 Definition and notation. We call a set of real numbers ga,,s,,,; n=1,n > l} a
doubly-indexed array. It may be conveniently pictured in table form —

n
PN e S

1 a, a,; a;, ...
2 @y a5 a4y ...
3 Gy, Gy Gy ...

In view of later use in MANOVA, it will be convenient to write N = diag (n,, ny),
an, n, ={a~})and the array ay.

Further, if N, = diag (n,4, n,3), Ny = diag (ny;, ny,), we shallwrite Ny > N, if
Ny > nyy and ny, > ny,, with a similar meaning for ¥y 2N, .

Finally by "Nis arbitrarily large’ we shall mean that n; and n, are both arbitrarily
large. - -

2.2 Limit points, We say that « (finite) is a limit point of {aN} if for arbitrary e > 0
and n> 0, | N > nf such that |ay — a | <e.

There is the usual extension to infinite limit points. (There will be similar extension
below, which in general will not be mentioned explicitly.)

We show now, by a standard argument, thet every array {a)v}has a limit point.

In the case when {aN} is bounded, ay € Jo, = [a, b}/ N say, construct a sequence
{Jn 1 of closed intervals by repeated subdivision of Jy, viz., forn = 1,2, .., J, is the
left half of J, _, if this half contains terms ay with N arbitrarily large, and otherwise In

is the right half. Then {J,,} defines the point a = fﬁ.!,.,. This point « is a limit point of

{a‘y}. since ¥ n J, contains a and terms ay with N arbitrarily large. Moreover, a =
= lim jnfaN, since for arbitrary € > 0, =} n, sueh thatay > a — e ¥ N = nol.

If QaN} is not bounded, a similar argument shows that ay has a limit point, which
now may be infinite.

2.3 Subarrasys. Let S be a subset of diagonal matrices N’ that conAains matrices that
are arbitrarily large. We call jay, N € S} a subarray of {aN}.

Limit points of subarrays are defined in the obvious way, and it follows, as in 2.2,
that every subarray has a limit point.

2.4 Convergence. We say that {aN} converges to a (finite), and write lim « ay = a,
if for arbitrary € > 0,3 nq such that |ay —a | <e* N> ngl.

Similarly, we say that the subarray {aN, Ne S} converges to « (finite) i for arbitrary
€> 0,3 ng such that |ay —a | < e ¥ NE S such that N > nyl.

The usual results then follow. As an example, we prove that if a is a limit
point of {a/v} then there exists a subarray that converges to a.

In the case when a is finite, lct {e;} be a null sequence of positive terms, and construct
asetS= {N,-_} as follows.
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Choose Ny > [ such that | ay, — a | <€, then successively choose Ny, ; > N; such
thatjay; —al<e€,,,i=1, 2, .., (such &V; always exist, fram 2.2).

For glvene>0 3jsuchthate; <eVi=j. Then|ay. —a|<eWi=j.

Writing ny = min (1}, nj,), where Nj = diag (n;y, ny,), then SN N, N> nol | = {Ni,
i >]}, whence | ay —a | < e ¥ N €S such that N 2 ny/ and the subarray {aN NES}
converges to a.

There is a similar result for limit points of subarrays.

We mentione one further result, viz., that if {aN} converges tc a, then every subarray
of {ah} converge$  to a. And there is the corresponding result for convergent subarrays.

2.5 Lim inf and lim sup. The following treatment is parallel to Feller’s treatment of
lim inf and hm sup ([4], IV. 1), and uses his N, U notation.

We first introduce a sequential ordering of the terms of { ﬂN_} with N > nl, viz.

Ann,qn+ 1ny A9nne 1,9n+¢2m %+ 1 ne1,8nn+2,8n « 305 - -

Next, consider the sequence {w,,} , where

Wy = app ﬂan*l,,na,,,,.lﬁa,“,n ﬁ_,_ = vg ,aA, .
4 n

Glearly wy,t, whence {w,,} convergence to a limit, a say. Thus, in the case when a is
finite, for arbitrary

€>0,9ngsuchthata—e<w, <avnzn, (1)

We now show that for arbitrary € > 0,
3 n, such thatay >a—e%N>n,l, and (i)
3 N arbitrarily large such thatay <a '+ e, (i)

from which it follows that a = lim inf ay. Firstly, since by definition wp, Say ¥ N2
= nol, then, from (1), (i) holds with n; = nq. Next, suppose that (ii) does not hold. Then
J €, > 0and n, such that ay > a + €; ¥ N=2nyl. Butthenwy 2w, >a+e, ¥n>
> n,, which contradicts (1).

There is a similar treatment for lim sup ay.

2.6 Fatou’s lemma and the dominated convergence theorem, We consider now an arrav
{f/v (x)} of functions f*: R'>RY. Then, from 2.5, for each x,

“."(:S"= ’.-"] fN(’E)

> nl

defines an increasing sequence fw (x)t that converges to lim inf fy (x).

Fatou's lemma. ({4}, IV. 2) Supposé that { v (x) _f is an airay of non-negative functions,
and that F(x) is a distribution junction (d.f.

If fy is integroble for all N, i.e. if
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EUNI= [ IN@) dF)<=¥N
then
E [liminf fy] < lim inf E [fy] .

Proof. Define a sequence of functions {f,,} as follows. For each n > 1, choose N,
such that N, 2 nl, and define -

fn = 1INy, ()
By definition of w,, w, < f,; V¥ n, whence E(w,) < E(f,) ¥ n, and so
lim inf E(w,) < lim inf E(f;) . 3)

Since wy, 1, lim wy, = lim inf fy, and w, is. integrable_for all n, then, by the monotone
convergence theorem ([{4], IV. 2), {E(w,,)j converges, and lim E(wy,) = E(lim wy,).
It follows then, using (3), that

E (tim inf f) < lim inf E(f,)) . (4)

Since (4) holds for all sequences {f},} satisfying (2), it is enough to show that there
exists such a sequence for which lim inf £(f;) = lim inf E(fy). To show this, consider
the array {E(fy)}, and write a = lim inf £(f). By 2.4, there exists a subarray {E(fy),
Ne S} that converges to a. Consider now the corresponding subarray { v, NE S}, and
construct from it a sequence {f,} as follows. Choose any element N; of S and define
fi = fn, i then forn = 1, 2, .., choose an element N, , , of S such that N, , ;, > N, and
define fn, ; =fn,,, - Then

(i) Np > nl ¥ n, so that {f;} satisfies(2). .

(ii) Since {E(f,,)} = {EUn). NES}, whereS, = {N,} CSs,
and, by 2.4, the subarrav [E(fN). Ne S,j converges 10 a, then lim E(f,) = a and
lim inf E(fy;) = lim inf E(fy), as required. nes

The following theorem then follows from Fatou’s lemma in the standard way (see e.g.
[4],1V.2). .

Dominated convergence theorem. If { fy (l{).i is an array such that fy is integrable f N,
and that ‘Lim v (.{) = fQ:) pointwise, and that there exists an integrable function u

such that | [y (x) | <u(x) VX, then
lim E(f§)=E(f).
Nae=
2.7 Helly’s theorem. Helly’s theorem ([4], VIII. 6) may be generalized to arrays

{ FN(?} of d.f. The proof is essentially the same as the proof in Feller, and depends on
the following lemma.
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Lemma. If { j}v(x)} is a given array of bounded functions (R® > R") and {ai} is a given
sequence of points in RQ, then there exists a subarray {fN, Ne S} that converges at all
points g,

Proof. (c.f. {4}, VIII. 6). By 2.2, the bounded array {;}\,r(g} )} has a limit point, and
hence con.tains a convergent subarray {vagj ), NES ,}. Proceeding in this way, the
bounded subarray {fN(Q: YNES ,} has a limit point, and hence conAains a convergent
subarray {fx(a;), N € S2}. Continuing this procedure, we gencrate a sequence of sets
S; O08;D..D8,D.. such that foreachi=1,2, ., {fN(Ej). NEe S,-} is a convergent
subarray.

For each n = 1 we now choose an element N, € S, such that N,; = n/, and define
S = {N,,}. Then the subarray fj, N € S has the required property. For consider

In@),NE S}. Since Ny € S, C S; ¥ n =i, then apart from a finite number of terms,
IN@),N€E S} is a subarray of {fN (@), N€E S,} which we know converges.

Thus {fN(a,-),NE S} converges fori= 1, 2, ...

The generzﬁizations of these results when k > 2 are now used to develop a theory of
convergence in distribution for multiply-indexed arrays.

3. Convergence in distribution for multiply-indexed arrays. Let {W,,! be a k-fold
multiply-indexed array of 2 X [ vector variates and W an £ X  vector variate. We denote
the corresponding d.f. by [F N(f)} and F| (:5), the corre-characteristic functions (c.f.) by
{(N(L)} and §(f), and write

Ex(f)= IRQth) dFy(x)
E(f)= J'Rgf(;}) dF(x) .

and

Definition. We say that {h’N} converges in distribution to }g and write ,L"N 2, W,
iff Nl'illl.. Fy (,i‘) = F(x) ¥ continuity points x of F.
Theorem 1. Wy < W if and only if either
(i) 13'im P@N € 7) = P(g € I for all bounded open ‘rectangles’ I such that

P(wean =0,
or (ii) lim P(Wy € A) = P(W € A) for all Borel sets A such that P(W €-34) = 0,
N «= v e A

or (iii) lim En(f) = E(f) for all bounded and continuous functions f : R'>R!,
Na=
or () lim_n() =SV

Moreover, if Wn 2 W, then the convergence in (iv) is uniform for all L in any bounded
domain of R -

Proof. The proof of (ii) and (iii) depends only on the content of 2.1 — 2.4 and follows
step for step the corresponding proof of Bilingsley ([2], §2). The fact that (i) = (iii) similarly
follows the proof of the theorem in [4], VIII. 1. The fourth part (a continuity theorem
for c.f) depends also on 2.6 — 2.7, and can be proved in the same way as the
corresponding ‘ordinary’ theorem, as e.g. in 4], XV. 3 or in 3], Chapter 11.
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In the case when W has a singular distribution concentrated at the single point a, we
say that {,,“,’N} converges in probability to Q and we shall write W'y —qva, as well as the

P
standariﬂ,\r —a
All the standard results for convergence in distribution of sequences of vector variates
have their obvious counterparts in the theory of convergence in distribution of multiply-

-indexed arrays. We recall in particular two results. The first states that, if Wl N L, W,

and W,y 2% a;, then writing WN = (W',N, E’;A) Wy = W= (W, &’;) where
P(W, = a,) = |, i.e. the limiting ]omt distribution is singular, and concentrated on the
hyperplane ¥, = a; . In such a case, we shall write
T
AV D EI
.
‘!1’_11\'- @

The second result, which has widespread application, we state asa _theorem.
Theorem 2.

D D
Wy 2> W= 9(Wy) = 6(W)
for everv Borel-measurable function ¢ : R® - RY9 such that P(h’ €Dy) =0, where
Dy = {5  $(x) is dicontinuous}.

The proof again follows step for step the corresponding proof in Bilingsley ([2],
Corollary 3 of theorem 3.3).

4. Some asymptotic results in MANOVA. Asan application of § 3, we now derive some
asymptotic results in MANOVA, on the assumption of a common non-singular covariance
matrix Z.

4.1 MANOVA notation. We suppose thatthedata is obtained from n; performances of
the random process &;, i = 1, .., k, where &,, .., & are independent processes. For &;,
we denote the p X 1 variate' by be} and its mean by 4j. We denote the corresponding

n; X p data matrix by Y;, and the sample mean and covariance matrix by y;and § ) We
write

k
Zn=n, 7 N = diag(ny, .., ng),
1 - ~
7’
) = [z
Moo= =@, Yy =111 =0y
i E}‘ (ﬂxl) X pr X}'( (yu),
Ak g
i = e 4 A
ny X 14 ; : X - : i
k \X/"i/ i kYkJ
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1 1 k ny
and § = Z (m-=1 S, = - =92 (vii — B3
pxp - n—k i (=1 Se n—k 1?. /2:, Qi =20 Qi o

The above assumptions, which we shall call the model G, can be summed up as follows:

G: The rows of Y are independent vector variates, and

E(Y) = XM, Var(Y) = Z@ I, where Q)

TR R

n§k= "0" 'I‘% A 9

o o

Note that \ ‘
XX=NXY=NYyandr(X)=k (6)

and further, that each column of E(Y) C R(X)CR", that P=X(X'X)"' X = XN~ ' X’
is the orthogonal projector matrix (0.p. matrix) onto & (X), and that (n — k)S =
=Y (-PY.

We now consider the usual kind of MANOV A hypothesis H, viz.

H: M=X,B,
where X, is a known kK X 7 matrix of rank ., 7

When H is true, E(Y) = XX,B, = X,B; where Xo = XX, has rank r, each column of
E(Y)C &(X,) C R(X), the o.p. matrix onto R(X,) is

Py = XX, (X}NX,)" txax
and !
S =—— Y‘([—PO)Y

n—r

is an unbiassed estimate of Z.

The MANOV A table for testing A is then

Source SSP DF MSSP
Hvs G YP—P)Y=S, k—vr s,
Within class Yd-PY=S n—k S
Total YUJ-P)Y=S, n—r S,

4.2 A central imit theorem.
Theorem 3. 0n G, N"’(YN —M) 25 W~N(0, Z Q).
Proof. Writing
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b
T =|:
kXp Y,
Sk

the c.f. En(T) of Wy = NV (Y — M) is
. k . r -
v (T) = E[exp(i Tr(T' Wy))] = El}‘ﬂl (exp(i 0% —w) V' )] =
i 1N k

= 1 Elexpl (i —upvm)l= 1 &) (1)
since yy, .., Z’f are independent where

o) (1) = Elexpli LG —u) Vi 1 =1,k
But it is known from the ordinary multivariate central limit theorem that, for given f;,

lim 6 (5) = exp(—0.54/ ), i =1, ..k

nj+e=

Thus, for given T,
k
/3'im Sx(D =I" exp (— 0.5¢; Zt)) = exp(— 0.5Tr(TET')) = E[exp(iTr(T' W))] ,
-> - =1

and the theorem follows from theorem 1.
4.3 The asymptotic distribution of S,. Suppose that 4 is a p X p symmetric matrix.
By 4 we shall mean the p(p + 1)/2 X 1 vector

A= (alll - alpn a2, .., azp. oy app) O
Theorem 4. When H is true, S, -2 V, where V = U'U and U ~NOI®I,).
~ >, (k-r) X p

Proof. When H is true, the columns of XM lie in R(X) C &(X), so that (P — Py ) XM =
=0. Thus

Sy = Y'(P—Po)Y =(Y — XMY (P—Po) (Y — XM) = Wi(I —Py) Wy,
where, from (6) and the definitions of P and Py,
Py =NV X, (X;NX,)~ ' X N3,

k Xk

the o.p. matrix onto the r-dimensional subspace S0y of R¥, where Qy = & (NV2X,).

Now let Hy  bea matrix whose columns are an orthonormal basis of €/ ~N.Then
kX (k-7r)

HNHN =1k -, HyHN =1— PN, and
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Si = UyUy 8)
where Uy = HyWy,.

We now show that Uy 2, U~ N(0, Z @I _,), from which the theorem follows by
a simplc application of theorem 2. From Theorems 3 and 1

En(T) = exp(—0.5Tr(TET") + fi(T) 9
wherel‘l/im Sn(T) =0 uniformly for T in any bounded domain4 C R*P.
Consider now the c.f. ¢ (T, ) of Uy, where Ty is(k —r) X p.

¢ (Ty) = E[exp(i Tr(T Un))} = {N(HNT)), using (8)
= exp(— 0.5Tr(/INT \ ZT Hy)) + [N (HNT1) = exp(— 0.5Tr(T, ET1)) + [N (HNTy)

since HyHy =1I - ».
For fixed 7, choose in (9) A = {T: TrH(T'T) STH(T T)}. Since T(HN T, ) (HNT))) =
= THT\Ty) ¥N, then, from (9)/~llim Sw(HNT,) =0, and the result follows by an

application of Theorem 1.

Theorem 5. 0n G, § 2> Z
Proof. We writev; =nj — 1, j =1, .., k and v = n —k, so that

S =’_:§1 wj/v) Sy -
It is well-known that for each/ S(;) -2*_.:.. agnj > oo, Thus, writing
&) () = Elexp( Syl = exp(i 2) +19) (1),
thenﬂli'm f(n/;) (%) = 0 unifonmly for ¢ in any bounded domain.
joe

Now write g/ (1) = exp(=i L' E) [i) (.7 =1,..
Then

(1’) (.,) o (1 2 g(/) Q) exp(i‘!‘:’g)
and, since | exp(i 1'Z) | = 1, then, given €, > 0, k > 0, 3 1, such that ig(J'JQ](el

W ny 3 ngj and
Vi1€EA=[L11<k]. (10)

Consider now the c.f. {N(Q of S, viz.
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k ’
EN(=EL I explL'G) Syl = o) v,

since Sy, .., Sy are independent. Thus (all logs being principal-valucd)
=t + @) o, + )i
lo SN () = (1) T) T (/) + B log (1 +£) 0ygfo) + (2Cwm)

where Cy is integer depending on V.,
Since Z (vy/v) = 1, the theorem will follow by showing that, for fixed ¢,

Uy oy, L
n}f“:l- Z log(I+8 (u,.!/v)) 0.

Using the fact that
|log({+2)1<21lz]| if |1z2}<0.5,

then
| Zlog 1+ £9) ) 1<2 Elx D ()|

provided that
18P ) 1<05, j=14..k

For arbitrary € > 0, choose now ¢, = €/2k and & =‘£',t. in (10), and write
ne = max (N}, --» Moy). Since vi‘{/vEA %A N, it then follows from (10) that

k :
2 §|g‘,{j) O1v) | <N > nol

and hence that
hm E log (I+g (v,{/v)) =0,

4.4 The eigen-values of S,S ~ ‘. We now consider the asymptotic distribution of the

e. values of §;S ! when H is true. Since Theorem 5 = | S | & | Z 1> 0, it follows
that the possible fack of definition of S~ ! has no effect on the asyiptotic distribution.
Furthermore, since

r(S1)< p=min(p, k —r)¥N,

with equality almost always when n is large, only the p largest e. values £, 28, > ... 2 ¢,
are of interest.

Theorem 6. When H is true, 8y > L, where 8y = (&4, .., 2,), L = (L1, .. L,),
L, 2Ly > .. 2L, are the largest e. values of Z'Z, and z ~ N, Iy - r)-

Proof. From theorem 4 and § (k-ryxp

s, (v
=y when H is true.

s] iz

~ o~
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Since &y = ¢(S1, S), where ¢ is Borel-measurable and continuous when § = Z, it

follows from Theorem 2 that 2y 2, ¢(V, Z), i.e. the vector of the p largest e. values of
VE-! =U'UT™*, where from Theorem 1.4,

U~NO,2® I;_,).

Write now ™! = 4?2, where A is symmetric. Since V™! ="4"1 (AU'UA)A =
=A" ' (Z'Z)A,whereZ = UA~ N(0, Ip,x _ y), then VI~ ! and Z'Z have the same e.
values, and the result follows.

This theorem allows us to write down the asymptotic distribution when H is true of
some statistics commonly used in practice for testing H, viz. Hotelling’s T3, Pillai’s VU’),
and the statistic U, which is essentially the Normal theory likelihood-ratio statistic, where

—k L g
=TS, 8" )= Eg, v = Tr(S,Ss )= I  ___
! n=r I 1+ (/n—k)
2 E,
andU™'=II(1 + )
1 n—k

see e.g. [1], Ch. 8).
Theorem 7. When H is true, TS, VP) and (n — k) (U~ * — I') each converges in
distribution to

Tr(Z'Z) & X;(k =-r)-
Proof. It follows immediately from Theorem 2 that

P L
Ti= 2422 Li=DZ'D~Xp4- )
and similarly that 1 !

p
ve) 2, s L+ 0.L)=TrZ'Z).
1
Finally,

P
(n=kyU ' =D=Z{+n—k' ‘2.2,v2,+,,_ T ng,

n—k)‘
DL, 40 ZLLi+.. +00L; =T 2'2).

1 isf

b"‘

(It can also be shown somewhat similarly that
—nlog U2 42 )
n log Xpk-r)*

45 Estimation of B;. If H is not rejected, the estimation of B; will often be
of importance. We consider the asymptotic distribution of By when H is true, where
By = (XoXo) ™ ' XgY is the matrix of mnm. ium variance unbiassed linear estimates of
B; when H is true. Since E(By) = (XoXo)™ ' XoXoB, =B, and
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Var (By) = (I ® (XoXo) ™' X0)(Z®In)(Ip ® Xo (XoXo)™ ') =Z ®(X\NX;)™ !,

it might be expected that By is asymptotically N(B,, £ ® (X;NX;)" '), in the sense that,
if Cy and A4 are respectively r X r and p X p symmetric matrices such that

Cy=X\NX,, A’=2"" (11)
then Cy(By —B1) A 2>Z, ~N(0, ) .
To prove this, note first that when A is true £(Y) = XM = X, B, so that, using (6)

and the notation of Theorem 3,

By =B, = (XoXo)™ ' Xo (Y — XM) = (X;NX,)™ ' XoN' Wy,

and Cy(By —B1) A =Cy (XiNXy)™ ' XiNY? Wyd = Dy WyA ,
where L).V=CN (X;NXI)-I X;Mn o
The c f. oy (T1) of Cy(By —By) A is

¢n(T1) =E [exp (i Tr (T\ Dy Wy AD] = {y (DT 4) =
= exp (— 0.5 Tr (Dy T\ AZAT, Dy)) + fy (DyT1A),
from (9), =exp(—0.5Tr (T, T))) + [y (DT, A),
since, from (I'1) 424 =1, and DDy =Cyn (X\NX) ™ Cy =1,
To show that Jé_irP“ fn (DyTyA) = 0 for fixed T, note first that

Tr (DyT1AY (DyT,A)) =Tr(T\T,Z™ ') ¥N.

The result then follows from (9) by choosing
A={T:Tr(T'D<Tr(T\T, =" .

Of more interest in practice is the result obtained by replacing £ by S (or Sy, which
is readily seen to converge in probability to T when H is true). If we write A = ¢, (Z) and
define

it follows immediately from Theorem 2 that 4, -Q*A and that

Cy By —B) Ay =(Cy By —B)AVA™ Ay 2,47 4 =2,

which proves the following result.
Theorem 8. When H is true

By L N(B,. S®XiNX)™ ),
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in the sense that
Cv By —B1) Ay 2N (O, 1,),

where Cy, and Ay, are defined in (11) and (12).
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STRESZCZENIE

W pracy prezentuje si¢ uogélnienie zbieznosci wedtug rozktadu na wielowskaznikowe tablice
wektoréw losowych. Rozwazania te wykorzystuje si¢ w analizie zbiezno$ci wedtug rozktadu sta-
tystyki T3-Hotellinga i innych statystyk (w przypadku rozktadu réincgo od normalnego) wykorzys-
tywanych w MANOVA.

PE3IOME

B pa6ore npencraBnsoTcs 0606LIeHHe CXOIMMOCTH MO PACMpENENeHHID Ha MYNbTHHHAICK CHbie
TabIMUBLI CIYYAAHBIX BEKTOPOB. JTH HCCIENOBAHHA HMCNONBIYITCA B 2HANKH3IE CXOMMMOCTR 0O
paclipefieNieHHI0 CTATMCTHKHM T'3-XOTe/IMHIA H PYTUX CTATHCTHK (B Clyuae pacipefieieHHA pa3HOro
OT HOpMAILHOTO) HcoNL3oBaHHBIX B MANOVA,






