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1 1. Introduction. The importance of convergence in distribution in statistical inference:
arises as follows. The data yx,..,yn arising from n performances of a given random process 
e is used to calculate various quantities of interest, = (Wxn,.., say, which are 
then used to construct significance, confidence intervals etc. These require the evaluation 
of probabilities of the form f’fhyi £/l), for given sets A &R1. If the distribution of is 
intractable, an approximation to P(1V« € A) 1S available when the sample size n is large in 
the case when the sequence J Wn J converges in distribution to a variate W with know 
distribution for then ([2], Theorem 2.1)

lim P(Wn&A)=P(WeA) 
n ~

for all sets A of practical interest.
Consider now the situation in e.g. MANOVA. There are now several (k say) indepen­

dent random processes et, .., ejt, the data arises from n,- performances of c,-, i = 1,.., k, 
and leads to quantities of interest of the form H'Mi ... nk_ An approximation 
to P(W„ ... tty G A) when all the sample sizes.., Ufc are large may then be important 
in practice for similar reasons. Such approximations arc provided by the type of corner 
gence in distribution of multiply-indexed arrays jIV,,, ... nk\ of random vectors that is 
defined below.

2. Multiply-indexed arrays. We discuss in some detail only the case k = 2, since th 
treatment when k> 2 presents no additional difficulties.
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2. 1 Definition and notation. We call a set of real numbers {a„> 1, n2 > lj a 
doubly-indexed array. It may be conveniently pictured in table form —

\ "l
1 2 3 ...

1 «u «ii «» •••

2 «13 «31 •••

3 «>1 «« «11 •••

In view of later use in MANOVA, it will be convenient to write N - diag («i, n2), 
on,n, =^v]>and the array aN.

Further, if A', = diag (mu, nl2\N2 = diag (n21, n22), we shadwriteA, >N2 it 
«ii > n2j and n12 > n22, with a similar meaning for A, > N2.

Finally by 'Ais arbitrarily large' we shall mean that nx and «2 are both arbitrarily 
large.

2.2 Limit points. We say that a (finite) is a limit point of {ayj if f°r arbitrary e > 0
and n > 0, El A> nJ such that | — a | < e.

There is the usual extension to infinite limit points. (There will be similar extension 
below, which in general will not be mentioned explicitly.)

We show now, by a standard argument, thet every array {ay]has a limit point.
In the case when {ay] is bounded, ay e/0 = [«> £]VA say, construct a sequence

{•/„ ] of closed intervals by repe ated subdivision of Jo, viz., for n = 1,2, .., J„ is the 
left half of Jn . , if this half contains terms ay with A arbitrarily large, and otherwise Jn 

is the right half. Then {/„] defines the point a = This point a is a limit point of

fcv} , since V n Jn contains a and terms ay with A arbitrarily large. Moreover, a = 
= lim inf ay, since for arbitrary e> 0, El «o sueh that ay > a - e V A> n0Z

If \qn} « not bounded, a similar argument shows that ay has a limit point, which 
now may be infinite.

2.3 Subarra/ys. Let 5 be a subset of diagonal matrices N that contains matrices that 
are arbitrarily large. We call {ay, Ae S’] a subarray of [ay].

Limit points of subarrays are defined in the obvious way, and it follows, as in 2.2, 
that every subarray has a limit point.

2.4 Convergence. We say that {ay] converges to a (finite), and write lim ay = a,
N *»

if for arbitrary e > 0,3 «o such that | ay — a | < e V A> n0I.
Similarly, we say that the subarray {ay, Ae S] converges to a (finite) if for arbitrary

e > 0,3 «o such that | ay —a | < e VAe 5 such that A> n0I.
The usual results then follow. As an example, we prove that if a is a limit

point of {ay] then there exists a subarray that converges to a.
In the case when a is finite, let {e,J be a null sequence of positive terms, and construct

a set S = {A,] as follows.
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Choose > I such that | ay i — a | < ej, then successively choose , > A/ such 
that lay,. — a | < ef + ,, / = 1, 2,.., (such AQ always exist, from2.2).

For given e> 0,3/ such that q <eVf >/. Then | ay. — a | <eV»>/.
Writing n0 = min («/,, „/2), where Nj = diag(«/,, n/2), then 5 Cl £ N, N > nol J = [N(, 
i], whence \ a^ — a \ < e N £ S such that N > n0I and the subarray [a/v, N e SJ

converges to a.
There is a similar result for limit points of subarrays.
We mentione one further result, viz., that if £ay} converges to a, then every subarray 

of {ay} converges to a. And there is the corresponding result for convergent subarrays.
2.5 Lim inf and lim sup. The following treatment is parallel to Feller’s treatment of 

lim inf and lim sup ([4], IV. 1), and uses his Cl, U notation.
We first introduce a sequential ordering of the terms of fayl with jV> nJ, viz.

ann> an* in- ann*l>am-2n<an*ln+l> ann + 2. an + 3«> — •

Next, consider the sequence {w„ }, where

wn = ann <^annt i Oa„, 2n n... = n ay.
W > nr

Clearly w„t, whence {w„} convergence to a limit, a say. Thus, in the case when a is 
finite, for arbitrary

e>O,3«o suchthata —e<H’„ (1)

We now show that for arbitrary e > 0,

3 «i such that >a — eV^V> zjj/, ana (i)

3 jV arbitrarily large such that ay < a + e, (ii)

from which it follows that a = lim inf ay. Firstly, since by definition w„
>n0J, then, from (1), (i) holds with n2 = n0. Next, suppose that (ii) does not hold. Then 
3 fi > 0 and m2 such that ay > a + er V N"^n2I. But then w„ > m,„j > a + e, V a > 
> n2, which contradicts (1).

There is a similar treatment for lim sup ay.
2.6 Fatou’s lemma and the dominated convergence theorem. We consider now an arrav 

{/y(x)J of functions/:Rl -*R'. Then, from 2.5, for each x,

defines an increasing sequence f w’„(x)J that converges to lim inf/y (x).
Fatou’s lemma. ([4], IV. 2) Suppose that {/y (x)j is an airay of non-negative functions,

and that F(x) is a distribution function (d.f.).
///y is integroble for all N, i.e. if
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E[fN]= jfSfN(x)dF(x)<oOVN

then

E [lim inffa] < lim inf E .

Proof. Define a sequence of functions as follows. For each n > 1, choose Nn 
such that Nn > nl, and define

fn =fNn (2)

By definition of wn,wn<fn V n, whence £(w„) <£(/„) V n, and so

lim inf£(M'„)< lim inf£(/„) . (3)

Since w„t, lim w„ = lim inf/y» and w„ is integrable for all n, then, by the momotone 
convergence theorem ([4], FV. 2), converges, and lim E(wn) = £(lim w„).

It follows then, using (3), that

£(lim inf/„)<lim infÆX/Jy) . (4)

Since (4) holds for all sequences satisfying (2), it is enough to show that there 
exists such a sequence for which lim inf E(J„) - lim inf E(f^). To show this, consider 
the array and write a = lim inf E{fa). By 2.4, there exists a subarray {£(Zv)>
7V€ Sj that converges to a. Consider now the corresponding subarray [fa, N£S], and 
construct from it a sequence J as follows. Choose any element N{ of S and define 
fi - fNx > ^en for n = 1,2, .., choose an element N„ + , of S such that Nn + , > Nn and 
define/„ + , = fan,, -Then

(i) Nn >nl Vn, so that {/„J satisfies (2)..
(ii) Since {£(/„)] = [Etfa^NesA, where 5, = {/V,} C S,

and, by 2.4, the subarray [E(fa), N S converges to a, then lim £(/„) = a and 
lim inf E(fn) — lim inf E(fa), as required. ” * “

The following theorem then follows from Fatou’s lemma in the standard way (see e.g. 
[4], IV. 2).

Dominated convergence theorem. Zf array such that fa is intégrable VN,
and that lim Z/v(*) = f(g) pointwise, and that there exists an integrable function u

N * ~

such that i fa(x) i < u(x) V x, then

lim £(/Ar) = £(/).
TV -> «■

2.7 Helly’s theorem. Helly’s theorem ([4], VIII. 6) may be generalized to arrays 
of d.f. The proof is essentially the same as the proof in Feller, and depends on

the following lemma.
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Lemma. If p/y(x)} is a given array of bounded functions (R^ -» Rl) and {a, J is a given 
sequence of points in Ra, then there exists a subarray jfN, N £ 5} that converges at all 
points a^.

Proof, (c.f. [4], VIII. 6). By 2.2, the bounded array has a limit point, and
hence contains a convergent subarray )» N 6 Sjj • Proceeding in this way, the
bounded subarray (Zvfe). N € 5 J has a limit point, and hence contains a convergent 
subarray {Zv(^), N G S2J. Continuing this procedure, we generate a sequence of sets 
Si 3 S2 3 ... 3 S„ 3 ... such that for each i = 1,2, .., [fN(aj), NS. is a convergent 
subarray.

For each n > 1 we now choose an element ;V„ € Sn such that Nn nl, and define 
S = {rV„}. Then the subarray /jy, N & S has the required property. For consider 
J/)v(aj), N & S\. Since N„ £ S„ C S,- V «> i, then apart from a finite number of terms, 
[/}v(flj),rV£ S j is a subarray of {Zv(gi), N&S) j which we know converges.

Thus {f^(ai),N& Sj converges for /=1,2,...
The generalizations of these results when k > 2 are now used to develop a theory of 

convergence in distribution for multiply-indexed arrays.
3. Convergence in distribution for multiply-indexed arrays. Let be a k-fold

multiply-indexed array of 8 X I vector variates and W an 8 X I vector variate. We denote 
the corresponding d.f. by and F(x), the cone-characteristic functions (c.f.) by
{fjv(£)j and $(f), and write

=/c/(£)dF/v(x)
and

Definition, We say that {h'y} converges in distribution to W, and write W,
iff lim ^a(x) = ^(x) V continuity points x of F.

Theorem 1. IVy W if and only if either

(i) lim P(Wn £ 7) = P(W £ /) for all bounded open ‘rectangles’ I such that 
N - - ~ ~

PfW<EbI) = ff
or (ii) lim P(Wy £ /4) = P(W £ A) for all Borel sets A such that P(W £ bA) = 0, 

or (iii) lim EN(f) = E(f) for all bounded and continuous functions f-.R'-^R1,

or (iv) lim fjv(0 = ?(£>V£‘

Moreover, if tVyv IP, then the convergence in (iv) is uniform for all-in any bounded 
domain ofR1.

Proof. The proof of (ii) and (iii) depends only on the content of 2.1 — 2.4 and follows 
step for step tire cor responding proof of Bilingsley ([2], §2). The fact that (i) =* (iii) similarly 
follows the proof of the theorem in [4], VIII. 1. The fourth part (a continuity theorem 
for c.f.) depends also on 2.6 — 2.7, and can be proved in the same way as the 
corresponding ‘ordinary’ theorem, as e.g. in [4], XV. 3 or in [3], Chapter 11.
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In the case when W has a singular distribution concentrated at the single point a, we 
say that {jVy} converges in probability to a, and we shall write B'yy -^+a, as well as the 

standard. > a.
All the* standard results for convergence in distribution of sequences of vector variates 

have their obvious counterparts in the theory of convergence in distribution of multiply- 

-indexed arrays. We recall in particular two results. The first states that, If J^iyy —4 H't

and B'2jy a2, then writing IVy = (j/jjy, ~ i&)’> where
P(W2'== <*2) ~ b i-C- the limiting pint distribution is singular, and concentrated on the 
hyperplane W2 — a2. In such a case, we shall write

z*-'
Kuv

&A'j a2

The second result, which has widespread application, we state as a .theorem.
Theorem 2.

Zv r*

for every Borebmeasurable function </>• -+R11 such thatP(WS D<f) = 0, where

- [x; 0(x) is discontinuous^.

The proof again follows step for step the corresponding proof in Billingsley ([2], 
Corollary 3 of theorem 3.3).

4. Some asymptotic results in MANOVA. As an application of §3, we now derive some 
asymptotic results in MANOVA, on the assumption of a common non-singular covariance 
matrix 2. ..,

4.1 MANOVA notation. We suppose thatthedata is obtained from «,■ performances of 
the random process £/, i = 1, .., k, where £1(... Sjt are independent processes. For 
we denote the p X 1 variate by yj and its mean by fij. We denote the corresponding 
n,- X p data matrix by Y/, and the sample mean and covariance matrix by yj and We 
write

*
2 «/ = n, ’ N = diagn*),
1 *•*»•

M =

r ' A 
«4

= (Mi/). =

r • > 
2»

= O'//)»
k x p

ft*
k X p &

J
f N

&
Yt = > Y = • 9

»/ x p A n X p
I *■/
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1
n — k

k
2

i » l
and S 

px p
-k f — S(r> = O//-7/) Oiy -yt)'.

~
2
/-1

The above assumptions, which we shall call the model G, can be summed up as follows:

G: The rows of Y are independent vector variates, and 
E(Y) = XM, Var(K) = 2®J„,where (5)

X = 
n X k

Note that

XX = A,XY = NYn and r(X) = k (6)

and further, that each column of £(K) C ft(X) C R", that P = X(X'X)~ 1 X = XN~ 1X1 
is the orthogonal projector matrix (o.p. matrix) onto <R (.¥), and that (n — k)S = 
= Y1(I — P)Y.

We now consider the usual kind of MANOVA hypothesis//, viz.

H: M = XxBx
where Xx is a know«, kX r matrix of rank r. (7)

When H is true, E(Y) = XXxB, = XQBx where Xo = XX x has rank r, each column ot 
F(T) C fl(X0) c the o.p. matrix onto (R(X0) is

p0 = xxx (^rvz,)“1 
and J

So ~--------- r(/-P0)K
n—r

is an unbiassed estimate of 2.

The MANOVA table for testing fit is then

Source SSP DF MSSP

H vs. C Y(P-P,) Y = S, k —r
Within class Y'([—P) Y = S n — k s

Total Y (I — Pt) Y = St n —r S.

4.2 A central limit theorem.
Theorem 3. On G, N™(Yn^-7/(0,2 ®/*)• 
Proof. Writing



90 Kerwin W. Mortis, Dominik Szynal

T
k X p

the c.f. $N(T) of Wn=N1,2(Yn —M) is

f/v(D = £[exp(z 7>(T'H'Ar))] =£[ ^ (exp(z ))] =

= n £[exp(z -p/)V^)]= n <&$(*)
/«i ~ ~ /-1 ' ~

since Ji,... yk are independent wherer*J

<t>^ Q) = ~Mf) V"7 L 7 =• 1, k-

But it is known from the ordinary multivariate central limit theorem that, for given tj, 

hm (tf) = CXP(-O.5{/S£/), 7=1,..,*
flj -> •• '

Thus, for given T,

lim f N(T) = 11 exp (- 0.5tz 2£) = exp(- 0.5 Tr(TZr)) = E[wp(iTr(TH7))],
N ->- /■ i

and the theorem follows from theorem 1.
4.3 The asymptotic distribution of St. Suppose that A is a p X p symmetric matrix. 

By A we shall mean the p(p + 1 )/2 X 1 vector

A — (fill, -> a\p> a22, ", a2p, ", Opp) .

Theorem 4. When H is true, S, -^*K, where V - if U and U ~ 7V(0, E ® Ik-r)~ 
~ ~ (*-/•) x p

Proof. When H is true, the columns of XM lie in ft(X0) C ft(X), so that (P — P0)XM = 
= 0. Thus

S, = Y'(P-P0)Y = (Y-XM)'(P-P0)(Y-XM)=W^I-PN)WN, 

where, from (6) and the definitions of P and Po,

PN = NU2Xl(X'lNXiyiX'lN1'2, 
k X k

the o.p. matrix onto the /--dimensional subspace of Rk, where £2jy = ft (Nl,2Xi). 
Now let be a matrix whose columns are an orthonormal basis of f?N. Then

k x (Jt - r)
H'nHn = Ik-r, HnHn ~1 “■fy, and
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Si - U'NUN (8)

where d
We now show that t/,v —* U ~ 7V(0, 2 ® r), from which the theorem follows by

a simple application of theorem 2. From Theorems 3 and 1

fjV(T) = exp(-0.57y(rEr'))+/Ar(D (9)

where lim ff/(T) = 0 uniformly for T in any bounded domain^ C Rkp.
N -> -

Consider now the c.f. 0,v(^'i) of t/jy, where 1\ is (fc — r) X p.

<t>N(Tx) = £[exp(i Tr{T\ f/jv))] = $nWnT\). using(8)

= exp(— 0.5 Tr(HNT, XT'M +fy(HNT\) = exp(- 0.5 Tr(T, 21',)) + fN(HNTt)

since H\Hn =Ik-r-
For fixed T,, choose in (9)^1 = \T;Tr(TJT)^Tr{T'lTi)\. Since TrWNTj(HNT\)y =

= Tr^Ti) VN, then, from (9) lim ~ 0, and the result follows by an
N - “

application of Theorem 1.

Theorem 5. On G, S 2.
Proof. We wrpe Vj = nj — = k and v = n — k, so that

sU«.)!,,,.

It is well-known that for each/ S(/j ~'+- as nj "* °° • Thus, writing

(£) =£'[exp(i £/«(/))] = exp(t^ 2) +/(ny (tj),

then lim /'^? (Z^) = 0 uniformly forjy in any bounded domain.

Now writegfy (t) = exp(— (£). 7 = 4 k
Then

4/)(p=(/+4)^)exp(''^)

and, since I exp(t'2 r2) 1 = 1. then, g>vcn ei > 0. * > 0. 3 «0/ such that I < e,
V«/>noyand

V/S/l= {£ £'£<*]. (10)

Consider now the c.f. $w(t) of S, viz.
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**$“*1^ exp(/f(iy/p)S(/))] = n ty&jtjv), 

since S,,Sk are independent. Thus (all logs being principal-valued)

log fyv (0 = O'/,' 2) Z (Fy/p) + Z log (/ + gW (y^v)) + (2Cyjr) i,

where Cn is integer depending on TV.
Since Z (p//p) = 1, the theorem will follow by showing that, for fixed^r,

^lim Z log (/ + (Pftjv)) = 0 .

Using the fact that
| log (/ +z) | < 2 | z | if | z | < 0.5 ,

then
I 2 log (Z + g<tf {Vjt/vf) | < 2 Z {vtfv) |

provided that

For arbitrary e > 0, choose now e, = e/2fc and k = ft* in (10), and write 
«o = max (n0/> nojfc)- Since v^v&A \fN, it then follows from (10) that

2 ||^>(Fzr/p)|<eV7V>n0/

and hence that
^lim Z log (Z + gU? (VjtJv)) - 0 .

4.4 The eigen-values of S^S " 1. We now consider the asymptotic distribution of the

e. values of S,S ~ 1 when H is true. Since Theorem 5 =» | S | | Z | > 0, it follows
that the possible lack of definition.of S~ 1 has no effect on the asymptotic distribution. 
Furthermore, since

r(Si) < p = min (p, k — r) VN,

with equality almost always when n is large, only the p largest e. values £! > > ... > ip
are of interest.

Theorem 6. When H is true, L> where &N = Wx.... lp)',L=(Li,..,Lp)',
Lx > Li > > Lp are the largest e. values of Z'Z, and Z ~ N(Q, Ip^k_r^).

Proof. From theorem 4 and 5 (* - 0 X p

Si Dt
f \

V

s z
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Since = <p(Si, S), where 0 is Borel-measurable and continuous when S = 2, it

follows from Theorem 2 that Zn 0(K, 2), i.e. the vector of the p largest e. values of 
K2" 1 = i/'C/ 1, where from Theorem 1.4,

t/~TV(o,L® Ik.r).

Write now 2”1 = A2, where A is symmetric. Since K2“ 1 = \4-1 (AU'UA)A = 
= A “ 1 (Z'Z) A, whereZ - UA ~ 2V(0, Ip(k _ r)), then KE* 1 and Z'Z have the same e. 
values, and the result follows.

This theorem allows us to write down the asymptotic distribution when H is true of 
some statistics commonly used in practice for testing//, viz. Hotelling’s To, Pillai’s 
and the statistic U, which is essentially the Normal theory likelihood-ratio statistic, where

and U~ 1 = ft (/ H---------- )
i n—k

see e.g. [1], Ch. 8).
Theorem 7. When H is true, To. and (n — k) (U~ 1 — f) each converges in 

distribution to

Tr(Z’Z)~x2p{k-ry

Proof. It follows immediately from Theorem 2 that

r02 = 2 2 M = Tr(Z‘Z) ~X2p{k_ r)
and similarly that 1 1

K(P) _£> £ L^i + 0.Z,,) = Tr(Z'Z).
1

Finally,

(„ — *)(£/"1 —/) = 22/ + (n-*)_1 s £,£/+... + ----- —y 112/
i /*/ («-*) / •

A 2 Lf + 0. 2 £/£,,• +... + O.ni, = 7r(Z'Z). 
i /*/

(It can also be shown somewhat similarly that

-nlogf/-^-Xp(jt-r) •)

4.5 Estimation of Bx. If H is not rejected, the estimation of Bx will often be 
of importance. We consider the asymptotic distribution of S.y when H is true. where 
fiyv = (*o-*o)’ 1 y is the matrix of minimum variance unbiassed linear estimates of 
B) when//is true. Since £'(£/,') = (A^-Yo) 1 = #i and
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Var (Bv) = (Ip ® (r0X0)' * <,) (2 ® /«) (Ip ® X> AXty 1) = 2 ® (XfaX,)' 1 ,

it might be expected that Bv is as^totically , 2 ® (J'jTVJ,)“ 1), in the sense that, 
if Cy and A are respectively r X r and p X p symmetric matrices such that

C% = X\NXi, A2 = 2'* (11)

thenQ^-B,)/ ^Zl ~N(Q,Ipr) .

To prove this, note first that when H is true E(Y) = XM = X0B,, so that, using (6) 
and the notation of Theorem 3,

BN -B, = (Wo)" ‘ Xo (Y - XM) = (X.NXfa 1 W'2 WN 

and CN(BN-BS)A = CN(XlNXi)~ 1 Jf*,//1'2 WNA=DNWNA ,

where Dn = CN (XtNXty 1 X^N1'2 .

The c.f. (7\) of CN(BN B\) A is

) = E [exp (i Tr (1\DN WnA))] = fa(D'NT,A) =

= exp(—0 5 Tr(D’NTlA'LA1\DN)) + fa(D^TlA), 

from(9), = exp(—0.5 Tr (TiTi)) + fa (D'nTiA),

since, from (11) A2A = Ip andDND'N = (fa (XxNXi)~ 1 Cfa =Ir .

To show that lim fa (D'yTlA) = 0 for fixed T), note first that

Tr ((D'^A)' (D'nT,A)) = Tr(T\Tx2~')VN.

The result then follows from (9) by choosing

A = \T;Tr(T'T)<Tr(T\Tx 2" *)].

Of more interest in practice is the result obtained by replacing 2 by S (or So, which 
is readily seen to converge in probability to 2 when H is true). If we write A = <p2 (2) and 
define

Ay = <t>2(S), (12)
it follows immediately from Theorem 2 that?!^, -^*.4 and that

CN (By ~B,)An= (Cn (Bn-B')A)A-' An - U = 2, ,

which proves the following result. 
Theorem 8. When H is true

BN N(B1,S®(XtNXl)~l)
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in the sense that

CN(BN-Bi)AN-^N(Q,Ipr), 

where CN and AN are defined in (11) and (12).
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STRESZCZENIE

W pracy prezentuje się uogólnienie zbieżności według rozkładu na wielowskaźnikowe tablice 
wektorów losowych. Rozważania te wykorzystuje się w analizie zbieżności według rozkładu sta­
tystyki Tj-Hotellinga i innych statystyk (w przypadku rozkładu różnego od normalnego) wykorzys­
tywanych w MANOYA.

РЕЗЮМЕ

В работе представляются обобщение сходимости по распределению на мультииндексные 
таблицы случайных векторов. Эта исследования используются в анализе сходимости по 
распределению статистики Т^-Хотеллинга и других статистик (в случае распределения разного 
от нормального) использованных в MANOVA.




