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0. Introduction. Notations. Let S be the class of functions
f@=:2 +a,z2 +a;z’ +.=2z+ ki akU’)z" (0.1)
.2
regular and univalent in the unit disk D. The inverse F of f is a function regular and
univalent in | w | < 0.25 which has the form
Fw)=w + AW +A3w® + .. =w+k>': AR (Fywk . 0.2)
-2
In what follows we denote this class of inverses by S~ !.

We introduce the matrices (b,g")), “ IE")), + n, k € N (= the set of all positive integers),
defined as follows

z » 5
['f(z) ] =1+b{Mz+b{M: +. =1 +z 5™ (N z*, (0.3)

r n
F(w -3
t m} =1+ AM w AW =1+ B AMEWE. 04)
w oL

Let £ be the associated class of functions g univalent in the outside D* of the unit
disk D, i.e.g(}) =(f(z)) "', t=2z"" and

s@=ttbo+bit !+ =kt E b@E ", 0.5)
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If -1 is the corresponding class of inverses G =g~ !, then obviously

Gu)=u+Bo +Bu" +.. =u+k>'5 B, (G)u™k (0.6)
=0

and n " w) T n
[_z_ =[£(_‘l , [ﬁ(‘)] =[ ‘ ] Cu=wl. o O7)
@) 3 W Gu) o

Ths implies that the relevant matrices for the class £ analogous to (0.3) and (0.4) are
essentially the same as those for the class S. It follows from (0.2) and (0.4) that

A,F)=40) (F), (0.8)
whereas from (0.4), (0.6) and (0.7) we obtain

B (G)=AL )(F). (0.9)

s+ 1

There is a simple relation (1.1) between blg") and 4 ,f"). In Sect. 1 we shall obtain
estimates for A ,f") and blg") originating in Baernstein inequality. Due to the relation

(0.8) we obtain from our estimates a simple proof of Loewner’s inequality:

14, 1< 'nil (2,';) (0.10)

independent of Loewner’s theory. An analogous estimate

18, 1< ull eny ©0.11)

first obtained by Netanyahu [7] with variational methods implies an estimate of A ,5‘ 1)
The problem: To determine sharp bounds for the coefficients b,f"), A ,f"), is much more
general than the familiarproblems of estimates for a, and b,.In fact, bkf‘) are essentially
the coefficients of g € T, whereas blg' 1) are coefficients of f € S.

It is easily seen that the Koebe fgnction?:

f)=z(1+2)"1, _ (0.12)

resp. its inverse

- 1
Fw)y=Q2w) ' (1—-2w-— m)=nz-;l T

,l‘.l

;:) wh (0.13)

are not always extremal for bk("), or A,f"). In fact, [z Je) '1"=q +2)?" nE€N,
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is a polynomial and consequently b,g") (?) = 0 for k > 2n which obviously is not a

maximal value. Nevertheless, 7 shows to be maximal for bf') with 1 € k€ n+ 1,
cf. Theorem 3.

In what follows we usc a tilde to indicate objects (functions, coefficients, sets)
associated with the Koebe function (0.12).

The notation G(z) € H(z) means as usual that all the Taylor (or Laurent) coefficients
of 1 at 0, or ==, are non-negative and majorize corresponding coefficients of G in absolute
value.

This paper is a continuation of [4], where the relation between A ] Bn and bkf") was

estabdished and some applications have been given. The awhor is much indebted to
Professors R. J. Libera and E. Ztotkiewicz for helpful discussions and criticism.

The results of this paper were presented and the Conference on Complex Analysis
in lialle, GDR, in Scptember, 1980, cf. [3].

1. Estimates of A Is"" and b,g" ) . There is a simple relation between 4 k‘") and b,f"). If
C = {z €C:|z]|= r}, 0 <r<0.25 and n # k then from (0.3) we obtain on integrating
by parts

I’I?,)(.f)=(21rl')'l fcr[z-g'(z))-llnz-k-, ds =

=Q@mi)™! [, w" (FW) %=1 F'(w)dw =

=(n-(n—k)"']- @) fg, [Fow)-w™ ') K w k-t gy e,

' n
BN =—— AP P @). (1.1
from (0. 8) and (1.1) we obtain withk=n—1

A=A =nt, by = (2min)”! fe, V@) "dz, (1.2)

whereas (0.9) and (1.1) yield for k =n+1,

B,=AL 1) =—n"! b = —(Q2min)”! Ie, V@) "z2dz. (1.3)
or
B, =—(rin)" fc, B®Idg, R>1. (1.9)

The formulas (1.2) and (1.4) arc particular cases of the Teixeira's formulas for coefficients
in the expansion of ¢(z) into a series of powers of 6(2), cf. § 7.3 in [8]. Epg.
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(1.3) corresponds to the case Y(2) =z, §(z) = f(z). They are very comenent in evaluating
the coefficients of inverse functions, cf. e.g. [4].

As a matter of example consider the class £’ of functions g € T with hydrodynamical
normalization:

EE)=t+by/E+by/ty +... [EI>L.
Then we have: | g(§) I<|¢|+ ||, cf. [5], and using this and (1.4) we obtain at

once | B, i<2"/n.
We now consider the case k = n. In view of the identity

F F' F(w
—[w™ log-——{w) ]=w™ i ) =Wl el o )
aw w F(w) w
we obtain on integration
dz F'(w)
ey | =n"_— . -1 -n -
b U)=Qxy ! g UEN™ —= = @n” F fg W~ O dw
F(w)
= w1t 1 - dw.
2ni 16k o
Thus, putting
F(w =
log il (2] =y wtypwl+..=3 ')'k(l")wlc (1.5)
w k=1
we obtain
5™ () =ny,(F). (1.6)

We now prove

Lemma 1. We have for fixed n € N and k, f ranging over N and S, resp., the following
sharp estimate

Ik @B =5 5. (1.7

Proof. It follows from (0.3) that

-k
16N 1=2m" I!C,[

F 4

@)

rﬂ
]ﬂz-*-l d2|<
27

£ ety 1 o
0

As shown by Baernstein [1], the last ex;irvssion is maximal for f =?. Using this and
making 7 = 1, we obtain
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a2n

15O I<@nH LT IT o= —— [ leos0/2127 do = 3
o

and this proves (1.7). As an immediate consequence we obtain
Theorem 1. We have for any FES™!

F(w ;w -
log ( )< log 25 X n"‘(z;‘)w“
w

(1.8)

Proof. It follows from (1.6) and (1.7) that

Al | n) —p- 20y _ =1 p (M) (7 = -
LI, 10, ) =nl mex |5 = Gn)=n-1 5™ F =, F)

and this proves (1.8).
Corollary 1. We obtain from (1.8) after multiplication by a and a subsequent
exponentiation

Fowy ., . Fw
T AT <[—w_l‘ (1.9)

for all positive o In particular
|AE) |<AME) =A™ nkeN. (1.10)

If k < n, then by (1.1), (1.7) and (1.10) the coefficients b,ﬁ")(f) are maximal in

absolute value for f=?. This implies an improvement of (1.7) for k < n:
Corollary 2. We have for fixed n, k € N, 1 € k < n, and f ranging over S a sharp
estimate

15 N 1< =(7). (L.11)

We show later (Theorem 3) that this improved estimate also holds for k=n+1.
From (1.2) and (1.11) with n =k — 1 we obtain
Corollary 3, [6]. We have a sharp estimate

|4, (F)|<n™" (,,2_" l)=(n +1)7! (2;',)=An(F)=I" . (1.12)

An inductive proof of inequality (1.12), also based Baerstein’s inequality, .was given in
[2]), as pointed out to the author by R. J. Libera.

Evidently b(°’) Ay (@) make sense for all real a and the equality (1.1) the remains true.
Hence, in view of(l 9) we obtain
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1500 1<8 ) =(25) e >k, ooy

where b é“)(f ) are defined by (0.3) with n = a.
Corollary 4, [6). Putting a = 0.5 in (1.9) we obuain

Fy(w) < [Fw?)]*S =w+ £ n~! (2”“‘2)w’"" (1.14)

= n—1

Jor any Fy = fi', where f; € S is an odd univalent function. An analogous formula for f
with k-fold symmetry may be obtained similarly.

The following problem arises in connection with (1.13): For a given positive a find
the maximal intéger m(a) such that (1.13) holds for any k € m(a) and any fE€ S,

2. The estimate of A,f = 1) and its consequences. If g € T and fE S s its associated
function, then, by (0.7) withn = 1, we have G(u) =g~ * (u) = 1/F(u™), where F =",
This means that the coefficients of G and 1/F coincide. Thus we may consider

Hw)=1/Fw)=w"' —By —Byw—B,w* —_, , FES™ !, Q.1

instead of G € £~ ! . The reason for changing the signs of B, is evident because of
formula (2.3)
From (0.2)'and (2.1) we obtain

=‘BO‘AR+BlAn_|+BIA +.+8 Ai,Al=l. (2.2)

n+1 n-2 nR-1

On the other hand, for F = FandH = I/F we have
I‘{-(w)=w" —2-—w—X,w’ —I,w’—... (2.3)

where 4 n A€ defined in (1.12). Consequently

-~ —~ o~ ~ ~

A,,, =24, +4 ’A".'l tA A, _,+t..tA, A, , A =1. 2.9)
If we take the Netanyahu estimate (0.11) for granted, then by (2.2), (2.4) and an obvious
induction we readily obtain Loewner’s estimate. On the other hand, it follows from (1.7)
that log w/F(w) < log F (w)/w and by exponentiation we obtain w/F(w) < F ) /w.
This is equivalent to the inequality

1B, 1<4,,, (2.5)
which is not sharp. Therefore it appears plausible that a straightforward derivation of

bounds for | B, | while taking (0.10) for granted leads to the estimate (2.5) only.
In view of (0.9) and (0.11), we have
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_ - ) o 2 o ~ Pt
18,@ =145 B <@+ (21) =40, (F)= 1,
Hence, we obtain sharp estimate
14 L D) <4 0(F) (2.6)

which may be restated as
Theorem 2. IfFES™ !, then

wl —[Fw)]™* +a, < F(w). 2.7

On the other hand, we obtain from (1.3) and (2.6) 1B, | = n Vb ()| <

LR |
<@+t (CB)= (22 ]), ie.

18 (N 1<(2r )= ). (2.8)

"this leads to the following extension of Corollary 2:
Theorem 3. We have for fixed n, k EN, | K k < n + 1, and f ranging over S, a sharp
estimate

1N 1< E) =), 29)

Again we can state a similar problem as before: For a given n € N find the maximal
integer my, such that (2.9) holds for any f€ S and any kK < mj,. Obviously n + 1 < m, <
< 2n. It is easily verified that for go (£) = #(1 + £~ *)?? —2%2 and an associated fo €S

we have | 53 (fo) | = (4/3) - 22 > 1 = bV (f) 50 that m; = 3.
The fact that the coefficients of both FE S~ ! and 1/F = H are maximai for F= F

has an interesting consequence.
Let us consider the function

qw) =HW)—F(w)=w"" —Bo —(4; +B))w—(4; +B))W? — ..

which maps conformally the domain f(D) onto C \N[ - 21 2i]. Obviously the coefticients
of q are maximal in absolute value for q = 11 = p Conversely, any function ¢ with
q(0) = > mapping conformally a domain fID) (f € §) onto the outside of a segment of
length 4 bisected by the origin is a rotation of a function of the form # — F. Hence,we mgy
assume without loss on generality thet tesegment coincides with the imaginary axis. On
replacing w by u~ ! we may express these considerations in the form of

Theorem 4. Let Q be a simply connected domain in the extended plane € whose
complementary set T is a continuum which conAains the origin and has the transfinite
diameter d(T') = 1. For any co nformal mapping p of Q onto C\ [ — 2i ; 2] of the form
p(u)y=u+ay +ayu" ' +a,u"? + . we have sharp estimates
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! i A -1 {2n .
lag 1<2; lay |<24, =2-(n+1)7* ( n),n-—l,Z...
The equality is attained in each case by
Py=—F@u +FE D" =Vuu-4 ,

and the extremal domain Q = €\ [0 ; 4]
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STRESZCZENIE

Nicch S bedzie klasg unormowanych w zwykty sposéb funkgji f jednolistnych w kole jednostko-
wym i niech b;(*"’(f) bedzie k-tym wspétczynnikiem taylorowskim funkcji lz/f(z)]’l W punkcie

z = 0. Otrzymujemy doktadne oszacowania:
216" 1<NinkeN fes;
D 15N 1<EhineNk=1.2.,n+1,f€S

Ostatnia nierownos¢ przy k = n — 1, wzgl. k = n + 1 jest rownowazna z oszacowaniem n-tego
wspotczynnika dia funkcji odwrotnej /™', wzgl. g~ !, gdzie g(z™ ') = 1/ f(z2).
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PE3IOME

Mycrs S 0603Hayae T KNACC HOPMHPOBAHHBIX OHOMUCTHRIX B OMMHHYHOM KpYTe GYHKUHA H MycTh

bF}U)» Byner k-Taift KodppuuHCHT dyHkumn [2/f(2)]" B Hawane koopmuHar. MonyueHHnie
TOYHBIC OLCHKH:

a 1M 1<) nkenses;
0 150N 1<(]); neN k=1,2,..n+1.1e5.

Mocnentce HepaseHCTBO WA k =n — 1, HAH kK = n + 1 3KBHBAIEHTHO OLEHKOM n-TOTO K03 DH-
uMeHTa Ay1A o6paTHhIX GYHKUMA [~ ' wn g~ ', roeg(z™ ') = 1/f(2).






