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1. Let Д* denote the set of the all distribution functions F with F(0) = 0. The //€ Д*
is defined by

0, if X < 0 
1, ifx>0.

By a r-norm we mean a function T'. <0, 1> X <0, 1) -* <0, 1> defined as follows. 

Definition 1. T: <0, 1> X <0, 1> -* <0, 1) and satisfies the following conditions:

1. T(a, b) = T(b, a) for all a, be <0, 1>

2. T(a, T(b, c)) = T(T(a, b), c) for all a, b, <?G <0, 1>

3. (a < c A b < d) =» T(a, ft) < T(c, d) for all a, b,c,de <0, 1>

4. T(a, 1) = a for every a G (0, 1)

5. sup T(a, a) = 1 .

Definition 2. By a Menger space (shortly a Afspace) we mean an ordered triple 
(S, 3-, T), where S is an abstract set, is a function defined on 5 X S such that 
J”: S X 5 -»• A* with 3~(p, q) = Fpq and the functions Fpq are assumed to satisfy the 
following conditions:
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I. Fpq - H it and only if p = q ,

U.Fpq=Fqp for all p, q € S ,

\\\.Fpq{x+y) > r(Fpr(x),Frq(y))

for all triples p, q and r in S and all x > 0 and y > 0, and T is a r-norm.
Definition 3. An ordered triple (S, 3~, T) is called a space normed in probability

(shortly a A-space), if S is a vector space (on (R), 3" is a function defined on S such 
that : S ■* A* with J" (p) = Fp and the functions Fp are assumed to satisfy the 
following conditions

(I) Fp =H if and only if p = 0

(II) Fap(x) = Fp (x/ ! or I) for every p SS, x > 0, and 0 #=ae <R,

(III) Fptq(x + y)> T(Fp(x'), Fq(y)) for all p, q G S, x > 0 and y > 0, and T is a 

r-norm.
jV-spaces have been introduced in [3]. It can be shown that (S, T) is a Af-space if 

(S, ?, T) is a 7V-space and J* : S X 5 -+ Â* with ?*(p, <?) = Fp.q .
Let 'll C 2s x 5 be the class of sets defined as follows:

V= ft/(e,X), e>0,0<X<l] = f[ (p, <?) : Fp<7(e)> 1-X]: e> 0, 0 <X< l] .

It has been shown in [2] that U is a base of neighbourhoods of a Hausdorff uniform 
structure. This uniform structure generates a metrizable topology Tei\ on 5 [2]. Then

VV a
0 < e,X< 1 ne \

Pn FPnP (e)>l-X.
П 9»

P

For uniform structures it can be introduced the concept of completeness. Note that:
a) A sequence ^p„, n > lj of a Af-space is a-Cauchy sequence if and only if for any 

0 < e. X < 1, there exists a nt x such that for all m, n ^nf.*FPmPn&>X
b) A A/-space (S, T) is complete if and only if every Cauchy sequence converges in S. 
It has been shown in [2] that if T is left continuous, then

(Pn РЛ<7Л
T«, X

PnQn FpqW,4, x
4) V

x e « .

continuous in x.

2. Let A C I be a compact convex set in a Banach space (X, || |l) and let M : A 
be a continuous mapping. It is known that M has a fixed point.

We will need yet the Brouwer theorem. Let A C <R” be a closed, bounded and convex 
set in a normed space (6TZ*, II II) and let M : A -*■ A be a continuous mapping. Then M 
hasa fixed point.

Now let (5, J, T) be a complete A-space and A C S be a compact (in re> x) convex set.
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We are searching for conditions under which a continuous in re, mapping M : A -*■ A 
has a fixed point. We shall see that they depend on the r-norm 7.

Definition 4. A set A C S is called bounded in the A/-space (S, 7, T) if

3 V Fp,(e)>l-X.

Lemma 1. Let (S, 3-,T) be a M-space. A set A C S is bounded if and only if

3 V 3 V Fp,(e)>l-X
p,eS O<X<1 e>0 q&A "

Proof. Fix 0< X< 1.
Necessity: This is obvious. 
Sufficiency:

V Fpq (e) > T(Fpp^ (e'), FPo q (e')) > 7(1 - X', 1 - X') > 1 - X
P, <7 SX

if7(1 -X', 1 — X’)> 1 ~\FpPt (e/2) > 1 — X' forallpeS.

Lemma 2.

V V 3 V Fp<?(e)>l-3
pes 0 < X < 1 e > 0 q

V V 3 V Fp<7(e)>l-x| 
0<x<l e>0 9eX J

The proof is obvious.
The probabilistic diameter of A C S, A =#= 0 in the M-space (S.Sr, T) has been intro­

duced in [4] as

№ sup inf Fpq(t) . 
t<x p,q&A

There was shown that DA (0) = 0, DA is left continuous and non-decreasing. It is obvious 
that

[X is bounded ] - => [DA 6 A*].

If the r-norm is left continuous then DA =Dx .
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Definition 5. A set Гр/, 1 < i< л! С 5 
С 5 in the Af-space (5,5; Г) iff

V 3
рел /<р)е(1,2,

A
is called a e, X-system, 0 < e, X < 1, for the set

-,FW’/(p/e)> 1_X- 
n I

Lemma 3. In a M-space A is bounded if and only if A is bounded.
Proof. Necessity: is obvious.

Sufficiency: Fix p0 E S, 0 < X < 1, and take such X', 0 < X' < 1, that 7(1 — X' 1 — X') > 
> 1 - X . Take pEA. Then, for x > 0 there exists p'(p)S/l that Fpp(p)(*)> 1 — X'. 
For this X' there exists e > 0 so that

p 6 A
Then putting e = x + e' we get

\/ F’pp6 (e)> 7(Fpp'(p)(x), (e )) > 7(1 X, 1 X)>1 X.
pEA

Lemma 4. In a M-space (5, f, 7) a set A C S has for every 0 < e, X < 1 a e, \-system 
iff A has for every 0 < e, X < 1 a e, \-system.

Proof. The part (sufficiency) is obvious since A C A.
Necessity: suppose that pk -* p as k -* °°, where pk EA and A has for every 0 < e, 

X < 1 a e, X-system. Let us choose X', 0 < X' < 1 so that 7(1 — X', 1 — X') > 1 — X. If 
fpi, n > i> lj is a e/2, X'-system for A, then there exists Pk S A so that Fppk(e/2 > 
> 1 — X'. Therefore,

FPPtPk№> T(FpPk(el2),FpkPi{Pkj(€/2))>T(l -X’, 1 -X')> 1 -X ,

which completes the proof.
Theorem 1. Let (S, J, T) be a M-space. A compact set ACS has for every 0 < e, 

X< 1 a e, \-systein in A.
Proof. Obviously /1 C 1J t/p(e, X), where Up(e, X) is a neighbourhood ofp. Since 

P e A „
A C 5 is compact, so there must be A C (J UPi(e, X), PieA, i= 1,2, .., n.

i- i '

Theorem 2. Let (S,3-, 7) be a complete M-space. Then A C 5 is compact, if for every 
0 < e. X < 1 A has a e, \-system.

Proof. It is enough to show that every sequence [p„, n > 11 C A contains a conver­
gent subsequence to a point of ,4 (re> x *s metrizable). “

Take e„ 10, 1 > X^ I 0 as n -* <».
For n = 1 there exists a C|, Xi -system £p/i, 1 < r < for {p„, n > 1 j such that 

a subsequence £p„,( n > 1J C jp„, n > lj belongs to a set ^p^,Vi. Xj). Suppose that
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a sequence (p„ (/_,), n > lj is defined. We see that for n = lthere exists a e/, Xpsystem, 
[pit, 1 < / < kij for jp„, n > lj such that a subsequence jp„j, n > ljc ?p„ (/_ t )( n > lj 
belongs to a set Up. fei, \/).

We now show that [pp. I > ijc Jp„, n > lj C A is a Cauchy sequence. Let 
x > 0, 0 < X < 1 be arbitrary numbers. Note that there exists nx x such that for all 
/ > nx x, 2e/ < x and T(l — X/, 1 — X/) > 1 — X. Suppose that m > I > nx x. Then 
{Pn m ’ « > lj C [pnl, n > 1} C p„„Xi x. « > l] C Upknx K(e„x K, \„x x). Therefore, 

for all l,m> nx x

FpilPmm (*) > FpilPmm (2e"jr, x) ** T^FPHPi,nx_ x^«x. X^> FPi„nx, xpmm (e"x, *

Taking into account that (S, T) is complete, we see that there exists a p € A so that 
PH -* p as /

Lemma 5. Let (5, F, T) be a M-space, A compact set A C S is closed and bounded.
Proof. The fact that A is closed is obvious.
We now fix 0 < X < 1 and choose 0 < X', X” < 1 for that 7(1 —X', 1 — X') > 1 — X and 

7(1 — X", 1 — X") > 1 — X’. By Theorem 1 there exists a e, X''-system (p,-, 1 < i < m2 for
A, e> 0. Take x > 0 so that inf Fp«n(x) > 1 — X'. Then for all p, q S A

i,/e[l,..,nl

Fpq(x + 2e)> 7’(7(Fppf^?j(e), ^ppqyt(e))- Fp^-p^fx ))>

> 7(7(1 - X", 1 - X”), 1 - X') > 1 - X ,

what ends the proof.
Remark. Note that in aAf-space (S, J, T):
1. A C S is closed if and only if [(p„ -* p f\pn€.A)=* p€.A],

2. A C S is open if and only if \Z 3 (Z„(e, X)Cj4,
p &A 0 <t, x < l

3. ?1 C S is compact if and only if

, V , f3 . , Aijt-*pasX-<».
fpn,n>ljc4 |Pnjf * * lj» P e A

3. Now let (S, 3r?T) be a /V-space with dim S = n<°°. One can immediately show that 
such a space is isometric to a A'-space of the type (A”, F, 7). It is enough to fix a base

(hr, K/ojcS, define to isomorfizm ft : S -> Rn, p = 2 X'(p)fy -» (X1,X"), 
id /■!

and define F: <R" -* A* by
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(X1, X") -* F(X>, ... x”) - F£-r (x1, ... x") •

In [3] it is shown that ($, re x) *s a metrizable topological vector space in the case 
when (S, 3r, T) is a 7V-space. By this assertion two TV-spaces have equivalent topologies 
re x if an<i °niy if the convergences to zero are equivalent on these spaces.

Lemma 6. In a N-spaces (<R'!, ?, F) there exists a base [Bk,k> \ \ at zero such that 
Bk -Bk, Bk^ \ C Bk, Bk, k> 1, are convex.

Proof. Let e* I 0, 1 > Xjfc I 0. Then £t/0 0*. Xx), k > lj is a base at zero. re,x 
is metrizable so W0(ek. Xx), X > lj is also a base at zero. Put e'k = ek/n and choose XJt, 
0 < XJt < 1 so that 7^,(1 — Xjt) > 1 — X*. If pS.conv Uo (e'k, where conv t/0 (e'k, Xjj.) =

= [P=Z \^p,: 2 Xy> = 1; X0) > 0, p,- G Uo (el, \'k) for; = 1,...«] then 
i 1

FP W • Fn x <»„. (ek) > T". i (F (e^)) > F." i (i - X-) > i - Xjt .

Therefore, conv Ua(ek, X^) C U0(ek, \k). We conclude that [convf/0(e^., X^)]^_, is 
a base at zero. Because the intersection of convex sets is a convex set, then putting

B, = conv Bk = com U0(ek,\k)OBk_l ,

we obtain the required base at zero.
Theorem 3. The topology generated by an arbitrary norm' || || on 6in and r(f x >n 

aN-space (ft”, ?, T) are equivalent.
Proof. First we show that re k is not stronger than the topology generated by the 

norm || ||. It is enough to show that

« II
Pk--------* 0 as к

Te. x
°° =* Pk -------- 0 as к -* °°.

Take the base [e,-, 1 < i < n] C Rn, where e,- = [S<(], Of course, pk =

= 2 XlPe,-^-—> 0 as«-» °° <=» \/ X^P-+0 as XThen
i-i »-1,2, ...n K

V
x > 0 F<, МРч(,) s Tî- • ^«Iw"” ’ T"- ■ к'( "7ТГ ”ł 1 к к n I

since Vх
1,2,..,л

------------- » °o , as к -» °°, Fe. G Д* and sup T(a, a) - 1 .
a<1

We now prove that the topology generated by the norm || || is not stronger than 
re x- We will show that every ball /ky j(O,r) con/tains a set of the base ^5^. k > ljwhich 
has appeared in the Lemma 6.
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Suppose that

*U ,|(0,r) *>1,2,...

Because Bk = %k >n rr, x. moreover, rf_ x >s not stronger than the topology generated 
by II II, therefore Q = Ck in the norm. Obviously, Cjt+i C Q. But the sets Bk are 
convex, so that

3 V Qn£g „(O,r+r')=D*#0.
*H ||(0.r*r') *-1,2,...

Of course, Dk - Dk and Dk are bounded in (<R”, || ||), Dx + 1 c Dk . We see 
that [Dk, k > IJ is a nonincreasing sequence of nonempty compact sets, so that 0#=

* A Dk c A Bk and 0 «É A Dk as 0 É «"\A„ „(0,r). Thus 
k= l k-t *- l

A Bk contains at least two points, but this is a contradiction to the fact that re x is 
*- l

metrizable.
Lemma 7.In a N-space ,7, T):

№l »(0,r) c tzo(e.\)] <=» [ V n B(0,ar) C t/0(ae.X)].
(3) a > 0 (3)

Proof. Sufficiency: putting a = 1.
Necessity: suppose that f p: || p || < rj C Fp(e) > 1 — xl. Then [pi |j p || < 

< ar3 = fa’ = P/a : HP II C fp' =p/a : Fp(e)> 1 -Xj= [p: Fp(ae)> 1 -Xj .
Lemma 8 J C fl" is bounded in x <=> ,A Is bounded in a norm II II on 61.
Proof. Necessity: Suppose that

3 V p6Lo(e,X).
e > 0 pe/t

Since the topology generated by the norm II || and re> x are equivalent, then for a ball 
Kg ii (0, 0 there exists U0(e', X') such that Ay y (0, r) 3 t/0(e', X'). Moreover, there 
exists e > 0 for which A C Uo (e, X'). For ae = e, by Lemma 7, we have

A C U,(e,\')CK, „(0,ra)- 

Therefore,/! is bounded in (<R". II ||).
Sufficiency: Suppose that A C Ay y (0, r). For 0 < X < 1 and e > 0 there exists a > 0 

such that A|| n (0, ar) C f/0(e, X), as the considered topologies are equivalent. Hence, 
by Lemma 7, we get
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A C£, „(0, r)C C/0(e/a,X).

ThusA is bounded in(fl”, 7, T).
Lemma 9. In a N-space (&.n, S', T):

AC ft" is compact in rei x <=» A is closed and bounded.

Proof. The assertion of Lemma 9 is true in || ||). But the topologies re> x and 
|| || are equivalent, therefore, by Lemma 8, we have the equivalence of Lemma 9.

Theorem 4. If A C is convex, closed and bounded in a N-space (<R”, 7, T), and 
f: A -*■ A is continuous in x. then f has a fixed point.

Proof. The statement of Theorem 4 is true in (<Rn, |, ||). KnoUMg that the topologies 
Tt x and || || are equivalent, and using lemmas 8 and 9, we get the assertion of Theorem 4.

Lemma 10. Every Cauchy sequence on a M-space is bounded.
Proof. Fix 0 < X < 1, and next take x > 0 and 0 < X' < 1, such that T(1 — X', 1 — X') > 

> 1 — X. Since \p„, n > lj is a Cauchy sequence, then

3
лх,Х’. > лх, X’ PmPn*. X'1 7

and, of course

3
t > x

Putting e = 2e'

V
m - 1, 2, ...лЖ( x"*

F^P"x, X’ (e')>1 ~X'-

V , FPmPn W>T(<FPmPnx X- FPnx x'Pn (e )) > 
m, n* 1,2,... •*>A *•л

>T(1-X', 1 — X’)> 1 — X .

One can immediately state that:
(i) a convergent sequence is a Cauchy sequence,
(ii) a Cauchy sequence with a convergent subsequence converges.

Theorem 5. A N-space (&.n,7, T) is complete.
j Proof. Let [pn, n > 11 C ft" be a Cauchy sequence. Then by Lemma 10 4pn, n> lj 
is bounded. Therefore £p„, n > lj is compact. From (ii) we conclude that ^pn< zt > lj 

has a limit pC ft".
Definition 6. A mapping M: S -+ 5 on a Af-space (5, 3, T) is said to be compact iff M 

is continuous and Af(5) is compact.
Definition 7. A mapping M: S -* S is said to be bounded on a Af-space (S, 3. T) iff 

A/(5) is bounded.
Definitions. A mapping Af: S -*■ S is said to be finite dimensional on a A'-space 

(S,?, T) iff dim A/(S) <».
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Notice that in a M-space (S', J", T):

1. M„ -+ M. n -> oo <=» \/
p e S

2. n-- °° *=>
0 < e, X < 1

3. M is continuous *=>

V V . 3 V
peS 0 < e, X < 1 0<6,t<1 ?eS

3 , V (W6)>l-*^MpM«(e)>l-X),

4. M is uniformly continuous <=>

0 < e, X < 1 0 < 6, t < l p, q <=S

5. M being continuous on a compact set is uniformly continuous.
Lemma 11. If M„ 3 M as n -*■ °° on a M-space (S.3-, T) and Mn are continuous, then 

M is continuous.
Proof. Suppose that pk -» p as k -> « and fix 0 < e, X < 1. Take 0 < X', X" < 1 such 

that 7(1 -X', 1 — X')> 1 — X, and 7(1 -X", 1 -X")> l.-X'. SinceM„ 3Mas 
a -* °o, then there exists M„o such that

V FMpM„oP(e/3)>l -X". 
p e S

Mn<> is continuous, therefore

Thus for k k0

FMPkMp^)>T{T(FMpkMn^pk{el3), FM„tp Mp(.(/^i),FMni>pkMni>p(e/3y)> 

> 7(7(1 -X", 1 -X"), 1 -X')> 1 -X .

It means that Mpk-+ Mp as k -*■
Theorem 6. Let (S,$, T) be a complete M-space and M„: S -* S be a sequence of 

compact mappings IfMn 3M as n-*°°, then M is also compact.
Proof. By Lemma 11 M is continuous. Hence, using Lemma 4 and Theorem 2, it is 

enough to show that M(S) has for every 0 < e, X < 1 e, X-system. Take now 0 < X' < 1 
such that T(l — X', 1 — X') > 1 — X. Since Mn 4M as «-*<*> andM„ are compact, then



36 Martin Franke, Dominik Szynal

3 V Рмп P Mp (e/2) > 1 - X'. 
peS

Let fa, n> i> lj bea„e/2, X'-system for Л/„о (S). Then Гр,-, n>i> Û isa„e, X-system 
forAf(S): 1 J

FMpp/(M„'P)(e) > T(FMpMl^p(e/2), FMn'PPjiMn'pfofiy) > r0 _X'> 1 —X')> 1 —X .

Theorem 7. Let (S, J, min) be a complete N-space. Then A is compact if and only if 
conv A is compact.

Proof. Sufficiency: This implication is obvious as A C conv A.
Necessity: fix 0 < e, X < 1. Let [p,-, 1 < i < Xj C A be a e/2, X/2-system for A.

We note that conv [p,, p2, p/f] is compact. This follows from the fact that it is com­
pact in a norm, and by Theorem 3.

Let jw,-, 1 < i < «} C conv [pi, p2, .., p„] be e/2, X/2-sytem for this set. We show 
now that Wi, 1 < i < n C conv A, where

conv A = [p = 2 X^p/: p/ 6 A. 2 Xw = 1, Xw > 0; r = 1, 2,...] ,

is e, X-system for conv A.
For

”i(p) = WH^.X x(jyPi(p^,P^comA,

we get

fp-»/(p)(c) = fs/ri >№p/-wHp№ >
> min (F^ xW(p/-p,(P/.))(e/2)> F^.x №pi(pfl-*Hp№2^ >

> minCmin/., (/rxV)(p/-p/(p/))(eX(/’)/2)),F£J_i x^p/(p/)-wl{p)(«/2))>

> min (min ^(6/2)), 1 - X/2) > min (1 - X/2, 1 - X/2) > 1 - X ,

Lemma 12. Let (S, J, min) be a M-space. Define for 0 < X < 1 the function 
A ’• S X S ■+ <C0 (fl*0 = U i0}), (p, q) - inf [x: Fpq (x) > 1 - X], Then

1- A (P. q)<e~=>Fpq(e)> 1 -X

2. A « continuous.

Proof, ad. 1 Sufficiency: Fpq is left continuous, therefore Fp<? > 1 — X on an interval 
(e-e',e>.
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Necessity: it follows immediately from the definition, 
ad. 2. Suppose that pn -+ p, and q„ -> q as n -* °°. Note that

/x(P, ?) ~ “»f [*: Fpq(x) > 1 — X and Fpq is continuous in x ]. 

By the definition of inf

,Vn 3 x' -e'/2<JK(p,q).

Since the set of all points of continuity of Fpq is dense in fi, then

3 x —e' <A (p, q) and Fpq is continuous in x.
x' > x> q)

From 1, we have Fpq(x‘) > 1 — X < Fpq (x). Therefore,

/x(P, ?)> inf[x: Fpq(x)> 1 — X andFpq is continuous in x ].

By the reason \xewill consider only points of continuity of But min is continuous, 
hence in these points « > lj converges to Fpq .

Now we are going to prove:
a) lim sup fK (p„, q„) < fK(p, q): Take x >/x(P. q). Since Fpq(x) > 1 - X, then

there exists an interger N such that FPnqn(x) > 1 — X, n > N. Therefore, by 1.,
lim sup /x (Pn. Qn) < x- But was assumed that x > /x (P. <?)> s0 we have 

n

lim sup/x(P„. <7n) < fx(P. q)- 
n->~

b) lim inf f\(pn. <ln) > fx(p, q)'- Assume that for some sequences jp«, « > lj and

\qn, n > l] such that p„ -* p, and as zt -* «> lim f\{pn, Qn) < A(P. Q)- Let us

consider now the following causes:
(0 Fpq takes at most at one point the value 1 — X. Then there exists x > 0 such that

ton A(Pn. qn) < X <fx(p. q) and 1 - X > Fpq(x) = lim FPnqn (x) > 1 - X. 
n «« n ■»“

(ii) Fpq = 1 — X on an interval. Then, there exist x, y > 0 such that

3 V hSp„, qn)<y<x<f\(p.q) , and Fpq(y) = Fpq[x)= 1-X.
N, n >

But Fppn((x ~ y^ "" Fqqn((x and Fpnqn^ "* pm№ = 1 - X as
/i -* oot then there exists N2 such that

V min( FpPn((x ~y)l2),Fqqn((x ~y)/2), Fpnq„(y)) = FPnqn(y) . 
n > N 5
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Hence, for n>N2,1 -X = Fp?(x)>min(Fppn((x-j)/2),FWn((x-j)/2),Fp?i<?n(») =

= Fp„q„ O’) > 1 — X . Thus in both cases we have a contradiction, what completes the 
proof of Lemma 12.

Theorem 8. Let Q / A C S be a compact convex set in a N-space (S, T, min). Then

V V
M: A - Л 0 < «, X < 1 

M is continuous

3 V
Xfe,\: A -* A p e A 
Me,\is continuous and 
finite dimensional

1_X •

Proof. Let 1 < i < kj C A be e, X/2-system for A. We define for i = 1, 2,.., k, 
: /1 •* iRq. P max [0, < ~ AI ifflp—yj)]. By 1 from Lemma 11, we have

fii(P) > 0 — fK/2(Mp -yj)<e~~FMp_у .(e) > 1 - X/2 . 

From the definition of fy,-, 1 < i < kJ we have

V 3 Mf(p)(P) > 0.
p<=A i(p)e 11,2, ...kJ

Since M is continuous, then the functions p/ are continuous. Therefore, for ie [ 1,2,..,X] 
the functions «

X/ : <0,1>. p -+ m(p)l. Z*. , p/(p)

k k
are also continuous and 2? X,(p) = 1. Define now Me \p = 2 X,(p) j/. Of course,

'*1 ’ /« i

Mtt\ is finite dimensional and Me<\(A) C conv [yj, ..,/*] £ A, hence : A ■+ A. 
Mt t x is continuous as it is continuous in a norm || ||f and x is equivalent to the topo­
logy generated by the norm. Take now p £ A. Then, using above facts on X and F, we have

F^«,XP-^P(e) = F£*. t K/(p)Z/-Mp<C)X=F£j.1 X,s(p)y,t-Mp(e) =

= , Xf,(P) O'if-Mp)(e)>minI- 1 (^(pHy/j-MpiCX/je)) =

= minj, ,(F>/rMp(e))>mi^.x(l — X/2)> 1-X,

where \s(p) > 0.

Theorem 9. Let 0 A C S be a convex compact set in a M-space (S,$, min). Then 
every continuous mapping M: A -*■ A has a fixed point.

Proof. Take 1 > e„ X 0, 1 > X^ X 0. By Theorem 8 there exists a mapping M„ : A -» A 
which is continuous and finite dimensional, and moreover,
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\/ Mp - Mnp(tn)> 1 •

Define Dn - conv Mn(A) C A. Since A is convex, then Mn (Dn) = M„ (convM„(/1)) C 
M„(A) C conv M„(A) = Dn. Hence, M„ : Dn -*■ Dn, where Dn is compact and convex 
in a finite dimensional iV-space.

Now, by Theorem 4, we get \/ 3 ^nPn — Pn- But A is compact, therefore
/ieN Pn^A

there exists a convergent subsequence ft,* -* p € A as Fix now x > 0,
If 2enk <x, then

V FMp_p(x)> niin(FMp. mind ~\tk, Fp p(x/2)).

It is obvious that 1 — -* 1 as k -*■ °° and -p(x/2) -» 1, k-o<>, so that

V „ FMp-p (?) = 1 MP = P •
x > 0

Theorem 10. Every compact mapping M : S -+ S on a complete N-space (S.3-, min) 
has a fixed point. ___

Proof. We know that M(S) is compact. Hence, by Theorem 7, A = conv^\t(S) 
is compact too, and

M(A) C M(S) C conv M(S) = A .

Noting that A/ satisfies the assumption of Theorem 9, we end the proof.

4. In what follows the z-nornt T will be always left continuous.
Definition 9. By the probabilistic distance octween two nonempty sets A, B of a

Af-spaCe (S.3-, T) we mean the function dist. R(x) = sup sup Epq(t).
° t < x p € A

q e B

We see that dist^ g S A*.

Lemma 13. distj^ = dist^.

Proof. First we will show that dist^g = disL,g. Of course, distjfl> dist^^. Fix now 

x > 0, e > 0. Then there exist p e A, q G D and t' < x for which
I

dist^ fi(x) < FM(Z') + e/4.

Since the set of points of continuity of Epq is dense in 41, then there exists t < f’.'such 
that Fpq is continuous in t and
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Ppq(l )<^Ppq(.t) + e/4 .

Hence,

dist^(x)<Fpł(0 + e/2.

But p S A, therefore there must exist pn -*p as n -»<», p„ EA. The point t is a continuity 
point of the function, and consequently FPn<7(7) -* as n -+ «>. Obviously, there
exists a n0 such that Fpq (r) — e/2 < FPn° q (r). Thus

V 0 ,Y. Рл^ел 

q e В

,3* distJfiW<FPt,e<?W + e,

i.e. dist^ < dist^. Moreover, we have

dist^ = dist4i = dist^x = distfi?1 = distX2? .

In [ 1 ] it has been defined the probabilistic Hausdorff distance between two nonempty 
bounded setsX, B of a Af-space (S, $, T) in the following way

sup T( inf sup Fpq(t), inf sup Fp?(r)). 
t<x p£A q&B q^Bp£A

It was proved that F%B S A*, F%B = F^B, and that (77V, 3H, T) is again a Menger 
space, where 7)t denotes the class of all nonempty, closed and bounded sets. We will 
prove now

Theorem 11, If (S, T, T) is a complete M-space, then (7)1, , T) is also a complete
M-space.

Proof. Suppose that for ^A„, n > 1 Jc 7X.we have

VnFA„A■* 1 as m’ n ■*" •
x > 0

Wt have to show that

A e 7М/
• V (x) -* 1 as л -* ». 
x > 0 л

Notice that F^ -> H as n -* °° <=»

V T( inf sup 
x>0 p„eA„peA

V inf sup 
x > 0 p„ e Л„ рел

FpnP to, inf sup FPnP (x)) -* 1 as n - °o <=> 
p e л p„ 6Л„

• 1 asn->-«>A \/ inf sup F„„d(x)-»-1 asn- 
x>0 p.eA p„£A„ PnP'
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V 3 V V 3 ^p„p(x)>l-X A
KX<l,x>0 nX'K n>nx>K p^A p„eA„

(0

V 3 V V 3, fp„p(x)>i-x. (a)0 < X < l.x > 0 nx \ n > nX'K P„ SA„ p^A n K '

By the assumptions, we have 

FAmA„-*^asm, «-*«>*=*

V T( inf sup FPmPn (x), inf sup FPmPn (x)) - 1 as m, n - ~
x>0 PmE^mPnE^n PnEAnpm£Am

<=> V inf sup Fpmpn (x) -+ 1 as „
x>0pm&Am pneAn

V 3 V V, 3 FpmPnM>i-*-w
0 < X < l,x > 0 nxK m,n>nXt\ pmeAm pneA„

Define A = Q Q Am. Then A = A. Note that p € A <=> 
n»i m = n

p = lim p„k, pnk £A„k, nk increases. Fix 0 < X < 1, x > 0. Ad (i): Take 0 <X' < 1 
It-»«

such that 7(1 - X', 1 - X') > 1 — X and next take p„fc such that f>Pnjt(x/2) > 1 — X', 

for nk > nx/2, x'. Then we take pn for p„k from (iii) and we get

3. . v_. .V
0<X'< l,x>0 nx/2>x' n>"x/2,X' P^A p„6A„

FPnkP  ̂> r(i - x’; i - X’) > i - x.

Ad (ii): Define for / = 1, 2, ... x0) = x/2/+1, x<0)!= e/4, 7(1 - X(o), 1 - X(o)) > 
> 1 -X.-70 -X^, 1 — X^)> 1 -X^ " ‘>. From (iii), we get

3 V. V«, 3n0 p„eAn pmt eAmo

and

3 V Vrt, > m„, m, > n, Pm<t eAm) pmi e?tWi
(x(,))> 1,-X(l) .

Take m0 = and suppose that »/_ t, / = 2,2.... is defined. Then
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3 y>„, X, %,„/•««)>i-x<«.
nf>ni-\ mj>nj Pn/^^nj Pmj^Amj J '

Therefore, for every pn E A„, n > n0, there exists a sequence $pn,, j> It,«/ increases, 
Pn/e ^nj such that J

FPnPnt 1 -^(0>.%P„/+ , (*</))> 1 “X(')./= 1, 2........

We see that ^p„j, j > lj is a Cauchy sequence. Take now < x, X^’ " 1 < X. Then 

z<Fn /Yz. FpniPnhi(x)> %'«/♦ /(x</)) >

> ^FPnspn,t, c^0)) > t7/.;* * (i - x(i)) > i - x</- > > > i _ x.

Therefore the sequence \Pnp / > 1J converges to p € A .
We have to show yet that A is bounded. Fix 0 < X < 1, q E S and take 0 < X’, X" < 1

such that F(1 — X’. 1 — X’) > 1 — X, 7(1 — X”, 1 — X”) >. 1 — X’ . From (iii) we have

3 y . V V f,„P„w>i-x".
0 < e, X < I rttf m, n > nCi \ pn € An Prn Afn

Fix now m > nt X" . Then for an arbitrary p& A there exists p„ E A„. n > A" such 
thatFpPn(e)> 1 — X” . Since Am is bounded, then

V 3 V />_<,(/)> 1-X”.
0 < x" < 1 x' > 0 pm cAm Pmq

Hence, for x = x' + 2e

/>,(*)> ^„(ex T(FPmPn^\ FPmq(x')))>

>Г(1-Х', Г(1 -X", 1 -X"))> 1 -X.
Now we prove that

О <У< 1 X > 0 ? „У, Уса 3c A FPPpM> 1 -X •
0vX<l,x>0 n, n > n, p„eAn pc A

We see that

/У I. 2.... Fprlp{X) > T^Fp-pn, ^-.1 (FPnsr>ns. , FP„,. , P(v/4))
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Since FPnj + , P<e/4) " *' then FPnPW > T(FPnPmt (*/4)> r7- 1 (FPnsPns. , (*W))) •

5. Let Gldenote the class of all compact sets different from 0 and let7i0 be the class 
of all finite sets different from 0.

Theorem 12. If a Menger space is complete, then 7L0 = Tbih .
Proof. Necessity: Take?l ETLand 1 > en \ 0,1 > X„ \ 0. LeM„ C A be e„, X„-system

for.4. We note that

3 „yn> pyxF,„pM>i-x.
It follows from the definition of e, X-system by taking zi0 such that en < x, X«o < X , 

Sufficiency: Suppose that An GT-o and Fa„A "* as n ■+ °°,A GTJL.’Then

V 3 V V 3 Fp„p(x)>l-\.
0<X<l,x>0 n, n>n„ p£A pneA„

Thus?l„(| is e, X-system for A.
Definition 10. By the .noncompactness measure of nonempty a bounded set ,4 C S we 

mean the function pa (x) = dist^ £4? (x) .
Lemma 14.^1 •' 77t-*A*.
Proof. This fact follows from the properties of the distance.
Lemma IS.p^ = PA-
Proof. It is enough to note that F^B = Ffb .

Lemma 16. pA = dist^x^J •

Proof. By Theorem 12Tl0 = TC and by Lemma 13 dist^£ = distjg which prove 
Lemma 16.

Lemma 17. A C B =» pA > pß .

Proof, p, (x) = sup sup Faa^ =
A t < X 4t«7t„ Al>A

= sup sup inf sup
t < X A t STi„ p & A pt e A 0

> sup sup inf sup
t < X A, eTt0 psB p, e4,

Lemma 18.,4 is compact *=■ pA = H.

Proof. A eTt = A S7l0 <==* V
0 < x < 1, x >

W')>

5

V sup F% A (x) = L 
x > 0 A„ eH, °

FA A^>1
eTl,

• dist^ = dist^ = 11.

Theorem 13. If the N-space (S, IF. min) is complete then PoomA — Pa •
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Proof. We know, by Lemma 16, that Ptonv.4 < Mx Fix now x > 0, e' > 0. We will 
show that ha (x) < Mconv/4 (*) + c' • One has

0<?<x 4,3= jPf, i </<xJ e<fl„ PaP)eA,Fp'Pi(p)(X

But, by Theorem 3, conv ?lo is compact so that there exists e/2, X-system fw,-, 
1 < /< «Jc convx40 such that 1 — X > (x) — e', where t

conv A = [p= 2 x^p,-: Xw > 0, 2 X0) = 1, p/E/1; r = 1, 2,... ]
/-1 /•!

Moonv a (x) inf sup Fp _ w(x e/2) —
pecomU w e [w,, w,,... w„]

> minin <»■*;., > * <«- «»■ %, x%,? - (e/2)) *

min (niinf (F (x - e), 1 - X)) > min (p (x) - e, 1 - X) = p. (x) -1 e'.
' yi pHPj)

Theorem 14. Let (S, ?, T) be a complete M-space and ^4„, n > lj C W a nonincrea­

sing sequence with p. -* H as n-+ Then A = Cl x4n£TL
An n-l

Proof. First we show that A =#= 0. Take 1 > ek \ 0 and 1 > Xfc \ 0. We have

0<xX<1>'X>° A^eTl. P^A(„k) k ,k

what implies that A°n is ek, X*-system for/l„^. Take now a sequence , k > 1J,

pn € An . Since A°n is finite, then there exists a subsequence W1) ( X> lj C l//°\ 
k k ' * k * k

k > ’J and P (nJ e A(n,) Such that {P»V’ *> j] C ,(«1 • AO •

Suppose that they are defined [p^~ k > lj C X > lj and

p°n j £ A°n y I > 2. There exist a subsequence , k > lj C l), X > lj
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and p° . g A° . such that , k > lj C U-a (e„ X,)- We consider now the 
<"/> <"/> lnk -1 p(n,) 1 1

sequence /> lj • This a Cauchy sequence. Fix 0 <x, X < 1. We see that 

3 V r(l-X„l-X.)>l-X, 2e.<x,

Then

X.2,
pl

V W>r(Fn(Z)5. (e),F-. B(/*/)(e))Pln^'''‘Pln,)P
n!*i

r(l-X/,l-X/)>l-X.

Therefore , / > lj has the limit point pGS. Since , / > K is a subsequence of

fp ,k>]\,p (=A ,and/l > are closed, then p g fi A = A Q. Of course
(. nk J nk nk "it* n-t "

A = A. It is also true that A is compact. Since p . < p < ... and p. -*H
n An*i A An

as n -* then = H. From Lemma 18, A gQt.

Theorem 15. Let (S,$ , min) be a complete N-space. If C g W- is convex and the 
mapping M. C-*C is continuous and

3
*5(0, 1)

V m
C z A e W x

then M has a fixed point. j_________
Proof. Define Co = C, + t = conv Af(Cn), n = 0, 1, 2, .... Of course, Cn g 771 are

convex. We are going to show that .W(C^) C C .
It is obvious that A/(C0) C Co. Suppose that M(Cn . ,) c - i' M(Cn) =

= Affconv M(Cn _ ,)) C Af(conv CH_1)=s M(Cn _ t) C conv Af(Cn_ t) = Cfl. Therefore,

C = conv.V(C~)C M(C ) C C .
«+1 v n' v nJ n

We show now that pr -*■ H as n-+ °°. Note that \/ pr (x) = p u.(x) - 
cn x>0 Ln+i COnV7M(CMJ

= ^„v Xf(Cn)W > MCn(x/l) > ... > MCq(*/*" + 1) -* I as n since p^ g A*.

Therefore, C. = ! C gTt. This follows from facts C'T, C g 7fl, pr -+//asn-+ov,
„.« " nt n c
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and from Theorem 14. G. is convex as C„ are convex. Note that

V A/(G>) C M(C„) C convM(C„) = C„ + , . 
n- 0,1,...

Hence,

M(G.)C n c„= n C„ = C-.
n • i n « o

Thus we can apply here the Theorem 9, and this completes the proof.
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STRESZCZENIE

Praca zawiera twierdzenia o punkcie stałym dla ciągłych odwzorowań na przestrzeniach zupeł­
nych, unormowanych według prawdopodobieństwa. Uzyskane wyniki uogólniają pewne klasyczne 
twierdzenia o punktach stałych.

РЕЗЮМЕ

Работа содержит теоремы о неподвижной точке для непрерывных преобразований на 
полных, нормированных по вероятности пространствах. Полученные результаты обобщают 
некоторые классические теоремы.


