ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA
LUBLIN-POLONIA
VOL. XXXIV, 4 SECTIO A 1980

Koordinierungsstelle fur Feldversuchswesen
Bad Lauchstadt, DDR

Instytut Matematy ki
Uniwersytet Marii Curie -Sktodowskiej

Martin FRANKE, Dominik SZYNAL

Fixed Point Theorems for Continuous Mappings on Complete,
Normed in Probability Spaces
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TeopeMmul 0 HEMOBH XHOA TOUKE MNA HENPEPLIBHAIX O peo6paloBaHHA Ha NANHKIX,
HOPMH pOBaHHbIX 10 BE pOATHOCTEA IpPOCTpaHCTBAX

1. Let A* denote the set of the all distribution functions F with F(0)=0.The HE A*
is defined by

0, if x<O
H(x)= {1, if x>0,
By a z-norm we mean a function T (0, 1) X <0, 1) = (0, 1) defined as follows.
Definition 1. T: 0, 1) X (0, 1) = (0, 1) and satisfies the following conditions:
.T(a, b)=T(b, a) foralla, bE O, D
.T(a, T(b, ¢)) = T(T(a, b), ¢) foralla, b, cEO, 1)
3.(@as<cAb<d)=T(a, b)<T(c,d) foralla b, c,dEO, 1)
4.T(a, 1)=a foreverya€(0,1)
S.sup T(@,a)=1.
a<i

—

(%)

Definition 2. By a Menger space (shortly a M-space) we mean an ordered triple
(S, F, T, where S is an abstract set, & is a function defined on S X S such that
F:S§ X § = A* with F(p, q) = Fpq and the functions Fp4 are assumed to satisfy the
following conditions:
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I.Fpg=H ifandonly if p=g¢q,
ll.qu =qu foral]p,qES,
HL Fpq(x + ») 2 T(Fp,(x),Frq(»)
for all triples p, ¢ and 7 in S and all x > 0 and y > 0, and T is a #-norm.
Definition 3. An ordered triple (S, F, 7) is called a space normed in probability
(shortly a N-space), if S is a vector space (on ), F is a function defined on S such
that F : S - A* with F(p) = Fp and the functions Fp, are assumed to satisfy the

following conditions
() F;,=H ifandonlyif p=0
(1) Fop(x)=Fp (x/'al)forevery pES, x> 0,and 0 # ¢ € R,
() Fpeq(x + y) 2 T(Fp(x), Fq(»)) forallp, g€ S, x>0andy >0, andTisa
r-norm. 1&
N-spaces have been introduced in [3]. It can be shown that (S, &, T) is a M-space if
(S, F, TisaN-spaceand F* : S X § - A* with F*(p, q) = Fp_q.
Let U C 25 X S be the class of sets defined as follows:

U= {U(e,x), e>0,0<)\<l} ={((p,q):1-‘,,q(e)>1—>\];e>0,0<x<1}.

It has been shown in [2] that- U is a base of neighbowhoods of a Hausdorff uniform
structure. This uniform structure generates a metrizable topology Te,a ONn S [2] Then

it pee V F YV poteg>1-.
A

gyt 0<e, A<l nga n>ng

For uniform structures it can be introduced the concept of completeness. Note that:
a) A sequence {p,,, n > l} of a M-space is a Cauchy sequence if and only if for any
0 <e.A<1,there exists a n, » such that for allm, n > n, Fppp (€>1— A,
b) A M-space (S. F, T) is complete if and only if every Cauchy sequence converges in S.
1t has been shown in [2] that if T is left continuous, then

(pn Te, A pAq" Te, A q) = v Fpnq"(x} ;_.—. qu(x) ’
XER.

n— = n-t-. o

continuous in x.

2. Let A C X be a compact convex set in a Banach space (X, || |l)and let M : 4 =~ 4
be a continuous mapping. It is known that M has a fixed point.

We will necd yet the Brouwer theorem. Let A C &” be a closed, bounded and convex
set in a normed space (R™, |} |I) and let M : A = A be a continuous mapping. Then M
has a fixed point.

Now let (S,F , T) be a complete N-space and 4 C S be a compact (in r,, ) convex set.
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We are searching for conditions under which a continuous in 7, ) mappingM : 4 +4
has a fixed point. We shall see that they depend on the f-norm T.
Definition 4. A set 4 C § is called bounded in the M-space (S,F, T) if

\v4 Fpq(e)>1—2

0<AK1 e>0 p,geEA

Lemma 1. Let (S, F, T) be a M-space. A set A C S is bounded if and only if

q‘vE’A Fp q(€)>1—2

P;€ES 0<A<]l €350

Proof. Fix 0 <A< 1.
Necessity: This is obvious.
Sufficiency:

; Ye , Fra©>T(Fpp, (€), Fp,q€N>TA =X, 1=\)>1=2

ifT(1 =X, 1=X)> 1=\, Fpp, (/2)>1—NX forallp€ESs.

Lemma 2.

>0 qEA

N £
[es 0<A<1 ea Y Fra(e>1 )‘_]

- V \7’ 3 V Fn,q(f)>1_:]

P,ES 0<AKl e>0 g€

The proof is obvious.
The probabilistic diameter of A C S, A # @ in the M-space (S,F, T) has been intro-
duced in [4] as

D = sup inf Fp,(0) .
A(X) t<gp,qEA paq )

There was shown that D4 (0) = 0, D4 is left continuous and non-decreasing. It 1s obvious
that

(A is bounded ]« = [ D4 € A¥].

If the z-norm is left continuous thenD4 = D37 .
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Definition §. A set fp,, 1<i<n]l C Siscalled ae, A-system, 0 <e, A < 1, for the set
ACSmtheMspace(S? T) iff

F €)>1—A
PEA iP)E(L,2, .0 Ppip)©)

Lemma 3. In a M-space A is bounded if and only {f A is bounded,

Proof. Necessity: is obvious.
Sufficiency: Fix pp € S, 0 <A< 1, and take such X', 0 <A" <1, that T(1 =X, 1 —A")>
> 1--\.Take p €A. Then, for x > O there exists p'(p) € A that Fpp' py(x)> 1 — N’
For this \' there exists e’ > 0 so that

p'be/A Fpp oy(€)>1-X

Then putting e = x + € we get
p\g/A Fpp, (€)> T(Fpp' ) (). Fp' pyp, (€N > T(A =X, 1 =2) > 1 =

Lemma 4. In a M-space (S, F, T) a set A C S has for every 0 <e, A< 1 a €, A\-system
if A has for every 0 < ¢, A< l a €, A-system.

Proof. The part (sufficiency) is obvious since 4 C 4.

Necessity: suppose that py = p as kK = o, where py € 4 and 4 has for every 0 < ¢,
A < 1ae, Asystem. Let us choose A, 0 <A < 1sothat T(1 =X, 1—=\)>1—=AIf
fp,, nzi> 13 is a €/2, X'-system for 4, then there exists px € 4 so that Fppp(e/2 >
> neand Therefore,

which completes the proof.
Theorem 1. Let (S, F. T) be a M-space. A compact set A C S has for every 0 <,
A< lae AsysteminA.
Proof. Obviously A C LEJA Up (e, N), where Up (e, A) is a neighbourhood of p. Since
P n

A C S is compact, so there must be 4 C U Up,.(e, A pieAd, i=12 .n
1= 1

Theorem 2. Let (S, F . T) be a complete M-space. Then A C S is compact, if for every
0<e.A<14 hasa e, \-system.

Proof. It is enough to show that every sequence {p,, n > 1 fC A contains a conver-
gent subsequence to a point of 4 (7,  is metrizable).

Takeey $0,1 >N, § 0asn—+co,

For n = 1 there exists a €, A, -system {p;;, ] i< L,} for {p,, n > 1] such that
a subsequence {p,,,, n> l} C {p,,, n > 1] belongs to a set Up‘l‘(e,, A1). Suppose that
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a sequence {p,, (-1, n> l} is defined. We see that for n = lthere exlsts a €], \-system,

{p,l, 1€i< kl} for {p,,, n> l} such that a subsequence {p,,l, n> I.XC p,. -1y n> 1}
belongs to a set Up! (€L N).

We now show that {pu, 12 I}C {p,,, n> l} C A4 is a Cauchy sequence. Let
x> 0,0< A< be arbitrary numbers. Note that there exists ny » such that for all

12 ny ,\, 2e;<xand TA =N, 1=N)>1—A Supposethatm>l>nx A- Then

ip,, m. N3 13c ip,,,,n) l} C ip,,,, A 12 l} C UPx e (e,,x o >‘"x A) Therefore,
orall ,many

Foupmm )2 Foupmm (2ény, ) 2 TEpppin,  €Enye \) Fpiny o Pmm Eny,\)) >
>T(1 a3 1 =Dy ) > 1—2

Taking into account that §, F, T) is complete, we see that there exists a p € 4 so that
pu=>pasl—>e.

Lemma §. Let (S, ¥, T) be a M-space. A compact set A C S is closed and bounded
Proof. The fact that A is closed is obvious.

We now fix 0 <A< 1and choose 0 <\, A" < I for that T(l =A,1=X)>1—2Aand
T(1 =", 1 —=27")>1—2X" By Theorem 1 there exists a €, A\"'-system fp,, 1<i<n}for

A, e>0, Takex' >0$0thattl/nf[1 lF,,,p,(x)>1—k Thenforallp.qGA
LIE(L,..,n

Fpq(x' + 26)> T(T(Fpp, py (€), ,(q)q(e)) Fpipwicy &N >
>STT( =N, 1-X"),1=X)>1-2)

what ends the proof.
Remark. Note that in a M-space (S, F, T):
1.A C S is closed if and only if [(py > p /A pn EA) = pE A),

2.AC Sisopenifandonlyif % 3 Un(e, \) C 4,
PEA 0<e A<
3.A C S is compact if and only if

- -+ pask —>oo,
zfpn\s./rol}cfi {;gk.k>13,pe,4p"" e

3. Now let (S, F*T) be a N-space with dim § = n <o, One can immediately show that
such a space is isometric to a N-space of the type (&", F, T). It is enough to fix a base

n 2
{b;, 1 <i<n}C S, define to isomorfizm h : S~ &", p = z Ne)b = A, A,
=

and define F: &" - A®* by
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A, N > Foo, = Fiegan o any .

In [3] it is shown that (§, 7, ,) is a metrizable topological vector space in the case
when (S, ¥, T) is a N-space. By this assertion two N-spaces have equivalent topologies
Te, a if and only if the convergences to zero are equivalent on these spaces.

Lemma 6. /n a N-spaces (]", 5, T) there exists a hase | Bk, k=1 } at zero such that
By =Bk, Bk« C Bk, Bk, k 2 1, are convex.

Proof. Let ex { 0, 1 > Ax { O. Then {Uo(ek, o), k= l_} is a base at zero. 7,
is metrizable so IUO (€k. \x), k = l} is also a base at zero. Put € = ex/n and choose A},
0<M<1s0 that Tall= ) > 1 — M. I pE cov U (g, M), where conv U (€, ) =

=[p= 2 RU)p jE AD = 1; )\U)>O p;i€ Us (€x, ;) forj =1, .., n] then

J=1
Fp(ek)=F,’.:' }\(1') (ek)>T (F (ek)) (1—)\L)>l">‘k
R

Therefore, conv Ug (g, Ag) C Us(€x, Az). We conclude that [conv Uy (e, Akk-,
a base at zero. Because the intersection of convex sets is a convex set, then puttmg

By = conv Uy(ey,Ay), Bk = conv U (e, Ak) NBy_,»
we obtain the required base at zero.
Theorem 3. The topology generated by an arbitrary normv || || on &" and Te, A N
aN-space (R",F, T are equivalent.
Proof. First we show that T, A is not stronger than the topology generated by the
norm || |i. It is enough to show that

0 Te, A

pk—> 0 as k = oo = pp 0 as kK & o,

Take the base [e;, 1< i < n] C R", where ¢ = Of course, py =

Biil < j<n’

=% x“)e ———0asn-oe= Y/ MD 0 ask oo, Then
i=1 i=1,2,..,n
n X R
x"c>7’0 Fpn afde W>TL, Fype, (/m) =T, " (E( nn\‘“|)) >l ask oo,
k

- o, as k>0, Fo. €A* and sup T(a,q)=1.
i=1,2,.,n (), a<1
k

We now prove that the topology generated by the norm || || is not stronger than
Te, - We will show that every ball Ky (0, 7) contains a set of the base {Bk, k> l}wh:ch
has appeared in the Lemma 6.
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Suppose that

3 i Ck = (R" Ky 3(0,7)) N By # 0.
Ky "(0,’) k=1,2,..

Because By = By in 1, 5, moreover, 7, , is not stronger than the topology generated
by Ii ll, therefore Cx = Cy in the norm. Obviously, Cx,, C Ck. But the sets By are
convex, so that

CkNKy 0,r+r)y=D;, #0.
Ku “(O,r‘r‘) k-vl,z,... i . “( ) . 0

Of course, Dy = Dy and Dy are bounded in (", | |i), Do, C Dx . We see
that {Dk, k> l} is a nonincreasing sequence of nonempty compact sets, so that @ #

# (VY Dec () Beandoe () Dy aso0e&\K; y0,0). Thus

k=1 ke k=1

D By conAains at least two points, but this is a contradiction to the fact that 1, , is
=]
metrizable.

Lemma 7. In a N-space (", F, T):

Ky “(O,r)‘g)uo(e, N] = | Yo Ky u(O,af)(g) Uo(ae, N)).

Proof. Sufficiency: puttinga = 1.

Nec-essity: suppose that fp Ilplh<r } 'Jp. Fp(e) > l = )\1 Then {p. hpll <
<ar}= [P =pja:iipn<r C {p' =pla:Fp(e)>1-X —{p Fp(ae)>1—2 3

Lemma 8.4 C &" is bound®d in'7,_\ == A Is bounded in a norm || llon & .

Proof. Necessity: Suppose that

3, Y, retien.
0<A<K] e>0 pe
Since the topology gencrated by the norm || || and 7, , are cqluvnlcm then for a ball
Ky (0, r) there exists Ug(e', \") such that Ky 4(0, r) D Uy (€', X\"). Moreover, there
exists e > 0 for which A CUy (€, N'). For ae’ = €, by Lemma 7, we have

ACUs(e, N)C Ky 4(0,ra) -

Therefore, 4 is bounded in (&”. 1 ).

Sufficiency: Suppose that A C Ky (0, r). For 0 <A <1 and e > 0 there existsa >0
such that Ky (0, ar) € Ug(e, A), as the considered topologics are equivalent. Hence,
by Lemma 7, we get
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ACKy (0, C Ujy(ela,X).

Thus 4 is bounded in (R”, F, T).
Lemma 9. In a N-space (R", 3, T):

A C R" iscompactint,, x <= A is closed and bounded.

Proof. The assertion of Lemma 9 is true in (ﬂ". I If). But the topologies 7, a and
Il Il are equivalent, therefore, by Lemma 8, we have the equivaleneof Lemma 9.

Theorem 4. If A C &” is convex, closed and bounded in a N-space (", F, T), and
f: A = A is continuous in 1y, then f has a fixed point.

Proof. The statement of Theorem 4 is true in (R”", || |l). Knowhg that the topologies
7. a and || |l are equivalent, and using lemmas 8 and 9, we get the assertion of Theorem 4.

Lemma 10. Every Cauchy sequence on a M-space is bounded.

Proof. Fix 0 < X < 1, and next take x > 0and 0 <X’ < 1, such that T(1 =X, 1—-1") >
> 1 — . Since {p,,, n> l} is a Cauchy sequence, then

= Y Fompny y 5)>1=N,

Ax A’ m>nyg )\’

and, of course

B V4 Fompny 5 (€)>1-X'.

¢€>x m=1,2, s By A1

Putting €= 2¢’

Fompn €2 TFpmpp_ . €) Fpp, .pn €)>

m,n=1,2,..

2T =X, 1=\)>1=-2A

One can immediately state that:
(i) a convergent sequence is a Cauchy sequence,
(ii) a Cauchy sequence with a convergent subsequence converges.

Theorem 5. A N-space (R™, F, T) is complete.
o Proof. Let fp,,, n > 1t C &" be a Cauchy sequence. Then by Lemma 10 -lp,,, na l
is bounded. Therefore Pn, n 2 1] is compact. From (ii) we conclude that itp,,_ n> U
has a limit p€ &”.

Definition 6. A mapping M: S = S on a M-space (S, ¥, T) is said to be compact iff M
is continuous and M(S) is compact.

Definition 7. A mapping M: S = S is said to be bounded on a M-space (S, F, T) iff
M(S) is bounded.

Definition 8. A mapping M: S » S is said to be finite dimensional on a N-space
(S, 5, T)iff dim M(S) <eo.
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Notice that in a M-space (S, &, T):

.My M n—>ooe= Y/ \7/ 3 \/ o TS
" PES 0<eA<1 ne) n>ngy MnPMP() .

2 MpIM n—»oo= F, e)>1—A,
= 0<¥Z>\<l %_x n;Vrlle')‘ ;Y/es MupMp (€)

3. M is continuous =

Fpa(8)>1—7=F >1-=2),
pES 0<er<]l 0<s,r<1 qgs(pq() 7= Frpmq(©) )

4. M is uniformly continuous <=

0<Y>\<l 0?6,7(1 p,b;es(pq[) T MpMq(€) )

S. M being continuous on a compact set is uniformly continuous.

Lemma 11, If M, 2 M as n - o on a M-space (S,F, T) and M,, are continuous, then
M is continuous.

Proof. Suppose that py = p as k -> = and fix 0 <€, A < 1. Take 0 <\, \" < 1 such
that T(1 = X', 1 —=A)> 1—=2X,and T(1 =", 1 =X")> 1.— X', Since M,, 3 M as
n— oo then there exists Mp, such that

Y/ F €/3)>1—-\".
p&s MpMn,p( /3)
M"o is continuous, therefore

g k\:’h Féty, pickn,p (€/3)>1=X'.

Thus for k > kg

FMpkMp ()= T(T(FMpk Mp, pk(5/3)v FM,,op Mp (¢/3)), FM,,cpk M,,op(f/3)) >
2T(T(1 =", 1=2"),1 =A)>1-2.

It means that Mp, -+ Mp ask o,

Theorem 6. Let (S, F, T) be a complete M-space and My, : S = S be a sequence of
compact mappings. If My, 3 M as n = o, then M is also compact.

Proof. By Lemma 11 M is continuous. Hence, using Lemma 4 and Theorem 2, it is
€nough to show that M(S) has for every 0 < e, A < 1€, A-system. Take now 0 <\’ < 1
Such that T(1 — X', 1 —X) >'1 — . Since M, 3 M as n - o and M,, are compact, then
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3 p\g’sFM"’pMp(e/z)m—x'.

Let {pi, n2i> l} be ap€/2, \'-system for Mp (S). Then {pin>i> 1} iS @, €, \-system
for M(S): t J

Fitp py (M, p)(€) > T(Ftp by p(€/2), Fbty ppi(n p)(€/2) 2 T(L =X, 1 =2)> 1 =X,

_Theorem 7. Let (S, F, min) be a complete N-space. Then A is compact if and only if
conv A is compact.

Proof. Sufficiency: This implication is obvious as 4 C conv 4.

Necessity: fix 0 <¢e, A < 1. Let {p,-, 1<i< k_} C A be ae/2, \/2-system for A.
We note that conv [p,, p., .., px] is compact. This follows from the fact that it is com-
pact in a norm, and by Theorem 3.

Let {wi, 1€i< n} C conv [p,, P2, .., Pn] be €/2, \/2-sytem for this set. We show
now that w;, 1 <i<n C conv A, where

I
cow A=[p=Z A0 p€ A, jé XD =1 \D >0, r=1,2,..],
j=1 =]

is €, A-system for conv 4,
For

Wip) = wi(z;-l A(j)p‘-(pi)), P € conv A,

we get
Fp-wipy(€) = Fr;rl AU)pj-wi(p)(€) 2
> min(Fz?_ A0 i_pi(pj))(e/é), Fz;_l ADp i) -wicpy (/2D >
> min (min || (FAU)(,,I._,,,.(pj))(exU’/z)), Fz! a0y &) >
> min (min f:u (ij_p“p,)(eﬂ)), 1—N2)2min(1 —N2, 1 =32)>1—X,

Lemma 12. Ler (S, F, min) be a M-space. Define for 0 < X\ < 1 the function
H:SXS- Qo (Ry=R"U {o}),(n,q)»mf[x:qu(x)>1—x1 Then

L fa (0 @) <e=Fpq(e)>1—2
2. f is continuous

Proof. ad. 1 Sufficiency: Fpq is left continuous, therefore Fpq > 1 — X on an interval
(e—¢€,e).
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Necessity: it follows immediately from the definition.
ad. 2. Suppose that p, = p, and g, > q as n > o, Note that

(P, @) = inf [x: Fpe(x)> 1—X and Fp,4 is continuous in x ].

By the definition of int

: _ x—€2<hPq).
>0 x> Nie. 9

Since the set of all points of continuity of Fpg is dense in &, then

x —€ <fx (p. q) and Fpq is continuous in x.
x'>x> Mo

From 1, we have Fpg(x') > 1 —\ < Fpq (x). Therefore,
AP, q) > inf[x: Fpqa(x)> 1 —X\and Fpq is continuous in x .

By the reason we will consider only points of continuity of Fp,. But min is continuous,
hence in these points {Fpn%' n> l} converges to Fpgq .
Now we are going to prove:
+ a) lim sup fy (Pn. 9n) < /a(p, q9): Take x > f (P, q). Since Fpqa(x) > 1 — A, then

there exists an interger N such that Fy o (x) > 1— N, n > N. Thercfore, by 1.,
lim sup f\ (Pn, 9n) < x. But it was assumed that x > f (p, q), so we have

na=

nll‘"_l_ sup A (Pn. an) <K (2, Q)

b) lim inf fx(Pn. 4n) 2 [ (P, q@): Assume that for some sequences{'p,,, nz 1} and

na-

fq,,, n> 1} such that p, = p, and @, = ¢ as n =~ = lim fy(pp, 9n) </a(p. Q). Letus

na=

consider now the following cases:
(i) Fpq takes at most at one point the value 1 — A, Then there exists x > 0 such that
nlim H@n ) <x<fi(p.q)and 1 —=A> Fpq(x) = lim Fp o (x) 2 1 —A.
- ne=

(i) Fpq =1—Xon an interval. Then, there exist x, y > 0 such that
3V A@nan)<y<x<Ai@.q), and Fpq(») = Fpglx)=1-1.
N, n>N,
But Fpp,((x —»)[2) = 1, Faq,((x =¥)2)> 1, and Fp o0 (0) * Fpa(¥y)=1— 1A as
N - oo then there exists N = N, such that

. yN min( Fpp,, (¢ —¥)/2), Faqn((x =32 Fppan (M) = Fppgn(¥) -
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Hence, for n3> N,, 1 — A = Fpq(x) 2 min(Fpp, (x =)/2), Faq, (x —¥)/2), Fp,q, (")) =

= Fppga(7)> 1 =\ . Thus in both cases we have a contradiction, what completes the
proof of Lemma 12.
Theorem 8. Let @ #+ A C S be a compact convex set in a N-space (S, ¥, min). Then

Y Fy,. ©>1-N\.
M:A~A 0<ea<l Mgaid—A pea MP-Mew

M is continuous Me, A is continuous and
finite dimensional

Proof. Let {yj, 1 <i < k] C A bee, \/2-system for A. We define fori=1,2,.,k,
Hi: A~ &g, p~ max [0,€ —fx ;2(Mp—y;)]. By 1 from Lemma 11, we have
B(P)>0=fx2(Mp —y))<e=Fpp_y(€)>1—N2.
From the definition of { yi, 1<i< kj we have

u >0.
p24 TBreL2, .k 1OP)

Since M is comtinuous, then the functions.y; are continuous. Therefore, fori€ (1,2, .., k]
the functions d

N A0, D, p > m(P)]-Zf. | u(p)
k
are also continuous and E'f_ L NP =1L Define now M, \p = lE Ai(p) yi. Of course,
=1

M, , is finite dimensional and M, (4) C conv [y,, .., ¥k ] G A, hence M, 5: 4 + A.
M, is continuous as it is continuous in a norm || ||l:and g, » is equivalent to the topo-
logy generated by the norm. Take now p € 4. Then, using above facts on A and F, we have

Fuenp-Mp@=Fgk \10yyi-mp©=Fr?  \i@ryiy-mp© =

=Fgr  a, @) 04, - Mp)© 2 Wi Fay o)1, - Moy ;€)=

= min Fy, - Mp(€)> minf | (1-N2)>1-1,

where N\, (p) > 0.

Theorem 9. Let  # A C S be a convex compact set in a M-space (S, F , min). Then
every continuous mapping M: A - A has a fixed point.

Proof, Take 1 > €, ¥ 0, 1 > ), \ 0. By Theorem 8 there exists a mapping Mp: 4 > A4
which is continuous and finite dimensional, and moreover,



Fixcd point thcorems for continuous mappings on complcte, normed in probability spaces 39

Fyp - €)> 1=, .
py.‘i Mp M,,p( n) An

Define Dy, = conv M, (4) C A. Since A is convex, then My, (D) = My (conv M,(A)) C

M, (A) C conv Mp(A) = Dy. Hence, My : Dy — D,,, where Dy, is compact and convex
in a finite dimensional V-space.

Now, by Theorem 4, we get v 3 Mnpp = p,. But A is compact, thercfore
n EN Pn € A

there cxists a convergent subsequence i, = p € A4 as k -+ o, Fix now x > 0.
If 26,,," < Xx, then

k‘;:’ " Fotp - p (x) > min(Ertp - My oy, @) Foy - p (6/2)) > min(1 =Ny, Fp,, — p(x/2)).

It is obvious that 1—2A,, - 1 as kK + o and f"pnk-p[x/Z) = 1, k =+, so that

YV Fyp.px)=1>Mp=p.
x>0Mpp() p=p

Theorem 10. Every compact magping M: S =+ S on a complete N-spacc (S, F, min)
has a fixed point. -igp

Proof. We know that M(S) is compact. Hence, by Theorem 7, A = conv 2 (R))
is compact too, and

M) C M(S)C comv M(S) = 4.

Noting that M satisfies the assumption of Theorem 9, we end the proof.

4. In what follows the t-norm T will be always left continuous.
Definition 9. By the probabilistic distance vctween two nonempty sets A, B of a
M.spate (S, F, T) we mean the function dist 4 g(x) = sup sup Fpq(D).
t<xpeEA

QEB
We see that distA 8 EVAS.

Lemma 13. distjE = dis!AB.
Proof. First we will show that dist/rB = dislAB. Of course, distAB > distAB. Fix now
x>0, e > 0. Then there exist p €A, ¢ € B and ' < x for which

dist g 5 (x) < Fpq (1) + €/4.

Since the sct of points of continuity of Fq is dense in 61, then there exists ¢ < t':such
that Fp is continuous in ¢ and
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Fpq(f)<Fpq(t) + €/4.
Hence,
disty o (x) <Fpq(r) + €/2.
But p € 4, therefore there must exist p, = p as n = =, p, € 4. The point ¢ is a continuity
point of the function, and consequently Fp,q(t) = Fpq(f) as n + e, Obviously, there

exists a ng such that Fpq (1) —€/2 <Fp, o(9). Thus
(] .

dist; o (x) < F, H+e,
x>0 e>0 pp €4 t%x a5 pn,a(D* €
qEB

ie. dist I3 < dist 4B Moreover, we have
dnstz— —dxst 3 =dist§A =dist‘M =distAB .

In [1] it has been defined the probabilistic Hausdorff distance between two mmempty
bounded sets A, B of a M-space (S, F, T) in the following way

FT (x)= sup T(inf su Fpa(?), inf sup Fp,(2)).
48() t<px (pEA qepB 45 )qup'EpA pq())

It was proved that F”B € A* F‘” ¥V g 8nd that ft, 3” T) is again a Menger
space, where 7L denotes the class of all nonempty, closed and bounded sets. We will
prove now

Theorem 11. If (S, ¥, T) is a complete M-space, then (%, 2 T) is also a complete
M-space.
Proof. Suppose that for {A,., n> X}C ’ﬂvwe have

x>°l':4HnAm(x)-’lasm,n*°°.
We have to show that
v x)*>1asn—>oo,
Ae"nb x>0 “‘ )
NoticethatF:’A ~ H ag n — oo o=
AAn

T( inf sup F, x), inf su F, x)) =+ 1 asn =+ o0 =
;v;o (p,,EA,,pepA p"p()pEAp,,peA,, pap ()

A4 inf sup F x-*!asn-*“/\v inf su F, x)—>1asn-—+e=
x>0pp€Ay pep pp() x>0 p€EA pngA p,,p()
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= F, 1— 3
(|<Av< l,x>0 é_k NYHX’A pgA p?EA" pnp(x)> A A (l)

F ol e

0<Ml,x>0 %.,\ ,.\‘Z/,.,,A p,:‘éA,, p%A Pap(x)>1=X. (ii)
By the assumptions, we have

[';fmAn-»Hasm,n—booa

ok inf sup F, (x), inf sup F, (x))=>lasm, n—»>oo
x>0 PmEAm Pn€An e Pn€Anpm€Anm pmpn ()

— v inf sup F (x)~>1asn—+eoe=>
x>0pmeAm pneA" PmPn )

F, x)>1—A\. (iid
0<A<1,x>0 Ay A mn>nx A PmE€Anm p,,HEA,, PmPn() (iii)

DefineA= () \J Am.Thend =A. Note that pE 4 =

n=1 me=n
p= }‘im Png. Pny € Any, nk increases. Fix 0 <A <1, x > 0. Ad (i): Take 0 <\ <1
such that 7(1 — X', 1 —2") > 1 — X and next take pp, such that Fopp, (x/2)> 1 =X,

for ng > ny/2, A" Then we take py, for py, from (if) and we get

F, > T(F, 2),
0<N'<1,x>0 ng/y H\Z"x/z,x' pgA p:_,l.eA,, pup @) > T( preny /2

FpppG/D)>TA =N 1=X)> 1=,

Ad (ii): Define forj =1, 2, ., x?) = x/z/*l' x©)1=¢/a, T(1 — @), | — 20>
>1=NT1 =D, 1 =20y>1 -2V - 1) From (iii), we get

J VY T B 31000,

Ry Mg, @ >Ny PnEAn Pm, €Am,

and

' Fpm,pm, 1)) > 1200,

=
n,>n, my,m >n, P, €EAm, Pm, €EAm,

Take mg = ny and suppose that nj_,j =2, 2. ... is defined. Then
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] Vo' X Fp o (x9)> 120,
nj>nj.y my>nj pn/€An pgleAm/ PnjPm

Therefore, for every p, € A, n 2 ngy, there exists a sequence fp,,),_i> l}. nj increascs,
p,,’EA,,/ such that (

Fonon, &N >1 -2, x> 10D =2,

We see that {p,./, j> l} is a Cauchy scquence. Take now elo) < x, AVs = 1) <\ Then
: Y

' 0
levN /Y/, Fongpny o1 @2 Fonppny, | &) 2

> T Foppn,, KONZTL A=A > 12005 )

Therefore the sequence fp,,/,)> lJ converges  topEAF( .
We have to show yel that 4 is bounded. le 0<)\ <1,gESand take 0< A\, A" < 1
such that T(1 — X, 1 —X')> 11—\, T(1 — —A")>.1 — " . From (iii) we have

3 A \v/ \-/ Foopm@©>1—X",

0<e, A" <1 ng 2" M n>ne 2" Pn€EAn PmEAR

Fix now m 2 n,, A Then for an arbitrary p € A there exists p, E Ap, n 2 n, A such
that F,,p"(e)> 1 — X" . Since 4, is bounded, then

V l“' I>l—-"
0<a"< | §'>0 p,,,veA,,, Pma(x) Ar

Hence, forx = x' + 2¢

P\é 4 Fra®) 2 T(Fppy (€. T(Eppy py (). Fpp g M) 2

2T =X, TA=\"1=-A")>1-2
Now we prove that

Y.

Fpp, (x)>1 =2
0<X<Il,x>0 ny, n>n, pp€EAy ;&-:A pp,,()

We sce that

/yl s Fonp ) > TAEpypy AT, Fpppny CON),Ep, | px14).
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Since F,,n/, < l,,(e/4) ~ 1, then Fp,p () > T(Fpppy /4, Ty, Fpp py, | (x)y) .

S. Let mdenote the class of all compact sets different from @ and let’y, be the class
of all finite sets different from Q.

Theorem 12. If a Menger space is complete, then ﬁ-o =1in rf T.

Proof. Necessity: Take A€ETLand 1 > €, V0,1 > A, V0. Let A, C A4 be €, Ap-system
for 4. We note that

FH -+ H ag n =+ o0 = y F, x)> 1 —2\

AnA 0<Y<lx>083, n>n, Pnp ()

It follows from the definition of €, A-system by taking no such thate, <x, Ay, <X,
Sufficiency: Suppose that 4, €M, and F:" 4 > Hasn>o4 e"m. *Then

Fp ,(x)>1—2X
0<A<1,x>0 T, n>n, pcA p,,aeA,, Pnp()

Thus 4, ise, A-system for 4.

Definition 10. By the _noncompactncss measure of nonempty a bounded set 4 C S we
mean the function 1 (x) = dist’% M {43 x).

Lemma 14. u : MU= A*,

Proof. This fact follows from the properties of the distance.

Lemma 18. Mg =M,

Proof. It is enough to note that F; Z 5= F”
Lemma 16. 4, = dist}

Proof. By Theorem 127‘1.0 =7t and by Lemma 13 dnstAB = dlstlg which prove
_Lemma 16.
Lemma 17. 4 CB*uA >“B .

Proof. u,(x) = su su F =
’4() r<prpE'ﬁ A"A()

[ [
= su su inf  su F D>
r<px A pe’ﬁ,, PEA p,pEA. pp,()

2 su su inf  su F, ) =pu,(x).
r<px.4pe'ﬂ- PEB pcpeA, pps () “‘B()

Lemma 18.4 is compact ==u, =H.

Proof. AETL == A ET, = Fl 0)>1-2=
L]

0<Ax1, x>0 Ee’n,

H L0 S H W =
x\glo ,:‘:pe'no FAOA(X)— 1 dlst,n. {A} dist T'{‘l H.

Theorem 13. If the N-space (S, F . min) is complete then poony 4 =4 .
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Proof. We know, by Lemma 16, that ugonvg < tiq . Fix now x > 0, € > 0. We will
show that py (x) < Heonvg (x) + € . One has

Fy. x —€) >
0<e<x A,={p,-,l<i<k} €N, PEA pip)€EA, P Pl(p)( )

>pA(x)—c'.

But, by Theorem 3, conv A, is compact so that there exists €/2, A-system fw,-,
1< i<n}C conv Ao such that 1 —A>p, (x) — €', where

convAd =[p= i J\U)p;: )\U)>0,l£: )\U)=l, PIEA, r=1,2,...]
Jj=1 =1

Hoonv 4 (x) > inf sup Fp_ wix—el2)=
PENVA wE([w,, w,,., wp]
= min F ro . N r €/2)) =
( }'l A ('PJ' Pi (P” ) rf--], pl'wj)“w{( Ei'l AU)P{@J)( Ir ))
>mm(mm F} )\ x—e), Fer i e/2)>
-0y N E D Fel Oy €1

2 min iminf_l (F”/"_’i(p)(x —€), 1 —A)) > min (4, (x)—€, 1—1) =y, (x)—€.
J

Theorem 14. Let (S, F, T) be a complete M-space and {A mhe 1} C M a nonincrea-

sing sequence with u A +Hasn—>o, ThenA = n A, EM.
n=1
Proof. First we show that 4 # Q. Take 1 > € YOand 1> )\k v 0. We have

+Hasn»we= \/ ' \/ F (6,) >1—2
= \v4 g k k
0< X, <l,g >0 A:nk)eﬁa p(nk)eA("k) PnyPiny)

pﬁn
what implies that A‘(’"k) is GE' A;.-system for A"k' Take now a sequence {pﬁ?, k> l},
- 0 . oy R i (l) 1 f (o)
pnk € A"k' Since A('l y i finite, then there exists a subsequence {p“k , k=2 lj a Ep N
(0) 0 (1)

k>1j and (3, € 47, | such that {p k>1}CLP( } (€1, 0\1).
Suppose that they are defined {pg*' Dok > l} {p}”' D k> 1} and

E k

Py - i ) (I-1),k>1
P(,,,- % A(n' Y 1> 2. There exist a subsequence {P,,k k> l} = {pnk }
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=0 0 [ - i
and p("r) € A(n[) such that ‘Lp"k' k> 1} (€ Up(,nl)(el, )‘1)' We consider now the
sequence {P:(:? 12 l} . This a Cauchy scquence. Fix 0 <x, A < 1. We see that

IV ra-r1-2>1-2 2¢<x.

I, 11, i
Then

Fh U+p )2T(F (D= €), F- 1+7) (€
l\va-/!, /VI.z, P;(::P(l ;rj ()= T -”u,”znl)() P n, ”E.,‘l,.)( 2

T(1 —)\,, 1 —7\,)> 1—x.
Therefore [p’(!? 12 l} has the limit point p € S. Since t.p’('? 12 -l} is a subsequence of

{ k=11, €4 ,and A are closed, thenp € n A =4+ Q. Of course
'Lp"k _} p"k Mk ”D g ney "

A =A. It is also true that A is compact. Since , < My S..Sp, andp, -H
n n 1 n

*

asn oo then Ky =H From Lemma 18,4 €.

Theorem 15. Let (S,F , min) be a complete N-space. If C € T is convex and the
mapping M: C = C is continuous and

.
‘ M 2 k
ke (0,1) CDAGW,:‘;O“‘ (4)(") 'u,[(x/)|

then M has a fixed point. -
Proof. Define Co = C, Cn . = conv M(Cn), n=20,1,2,...0f course, C" € M are

convex. We are going to show that M(C") C Cn.

It is obvious that M(Co) C Co. Suppose that M(C" _)c Cn — Then M(Cn) =

1
= M(conv M(C, _)) C M(convC, _ 1) 3 M(C,_,)C convM(C, ) =C,. Therefore,
C,,, =convM(C )T MEC)CC,.

We show now that -+ H as n = o, Note that X)=U——r (X} =
8 dl “Cn x\z/O“Cnon() “convM((.")()

= M(C")(x) > ucn(x/k) > .2 He, (x/k" * Yy | as n = = since He, € A,

Therefore, Ca = F\ C_ €. This follows from facts C\‘, C e, Mo > flasn—>oe,
n n n n

n=a0
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and from Theorem 14. C.. is convex as C, are convex. Note that

Y M(C.)C M(Cr)C convM(Cp)=Cp, .

n=0,1, ..

Hence,

Mcyc () C= () Cp=C-
n=0

n=1

Thus we can apply here the Theorem 9, and this compietes the proof.
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STRESZCZENIE
Praca zawiera twierdzenia o punkcie statym dla ciagtych odwzorowan na przestrzeniach zupet-

nych, unormowanych wedtug prawdopodobienstwa. Uzyskane wyniki uogéliniajg pewne klasyczne
twierdzenia o punktach statych.

PE3IOME

PaGoTa conepu»MT TeopeMbl O HEMOJBHXHOA TOYKe [NA HenpepbBHHIX Npeobpa3oBaHMA Ha
MONHEIX, HOPMHPOBAHHLIX MO BEPOATHOCTH MNpOCTpAHCTBaxX. [lonyueHMmle pelynsTaThl 05obuianT
HEKOTOPpbIe KJIACCHYECKHE TEOPEMbI.



