ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN-POLONIA

VOL. XXXIV, 4

SECTIO A

1980

Koordinierungsstelle fur Feldversuchswesen Bad Lauchstadt, DDR Instytut Matematyki Uniwersytet Marii Curie-Skłodowskiej

Martin FRANKE, Dominik SZYNAL

Fixed Point Theorems for Continuous Mappings on Complete, Normed in Probability Spaces

Twierdzenia o punkcie stałym dla ciągłych odwzorowań na przestrzeniach zupełnych, unormowanych według prawdopodobieństwa

Теоремы о неподвижной точке для непрерывных преобразований на полных, нормированных по вероятностей пространствах

1. Let Δ^* denote the set of the all distribution functions F with F(0) = 0. The $H \in \Delta^*$ is defined by

$$H(x) = \begin{cases} 0, & \text{if } x \le 0 \\ 1, & \text{if } x > 0 \end{cases}$$

By a t-norm we mean a function T: $(0, 1) \times (0, 1) \rightarrow (0, 1)$ defined as follows.

Definition 1. T: $(0, 1) \times (0, 1) \rightarrow (0, 1)$ and satisfies the following conditions:

1. T(a, b) = T(b, a) for all $a, b \in (0, 1)$

2. T(a, T(b, c)) = T(T(a, b), c) for all $a, b, c \in (0, 1)$

3. $(a \leq c \land b \leq d) \Rightarrow T(a, b) \leq T(c, d)$ for all $a, b, c, d \in (0, 1)$

- 4. T(a, 1) = a for every $a \in (0, 1)$
- 5. $\sup_{a \le 1} T(a, a) = 1$.

Definition 2. By a Menger space (shortly a *M*-space) we mean an ordered triple (S, \mathcal{F}, T) , where S is an abstract set, \mathcal{F} is a function defined on $S \times S$ such that $\mathcal{F}: S \times S \to \Delta^*$ with $\mathcal{F}(p, q) = F_{pq}$ and the functions F_{pq} are assumed to satisfy the following conditions:

I. $F_{pq} = H$ if and only if p = q,

II. $F_{pq} = F_{qp}$ for all $p, q \in S$,

III. $F_{pq}(x + y) \ge T(F_{pr}(x), F_{rq}(y))$

for all triples p, q and r in S and all x > 0 and y > 0, and T is a t-norm.

Definition 3. An ordered triple (S, \mathcal{F}, T) is called a space normed in probability (shortly a N-space), if S is a vector space (on \mathcal{R}), \mathcal{F} is a function defined on S such that $\mathcal{F}: S \to \Delta^*$ with $\mathcal{F}(p) = F_p$ and the functions F_p are assumed to satisfy the following conditions

(1) $F_p = H$ if and only if p = 0

- (II) $F_{\alpha p}(x) = F_p(x/|\alpha|)$ for every $p \in S$, x > 0, and $0 \neq \alpha \in \mathcal{R}$,
- (III) $F_{p+q}(x+y) \ge T(F_p(x), F_q(y))$ for all $p, q \in S, x > 0$ and y > 0, and T is a t-norm.

N-spaces have been introduced in [3]. It can be shown that (S, \mathcal{F}, T) is a M-space if (S, \mathcal{F}, T) is a N-space and $\mathcal{F}^* : S \times S \to \Delta^*$ with $\mathcal{F}^*(p, q) = F_{p-q}$. Let $U \subset 2^{S \times S}$ be the class of sets defined as follows:

$$\mathcal{U} = \left\{ U(\epsilon, \lambda), \ \epsilon > 0, \ 0 < \lambda < 1 \right\} = \left\{ \left[(p, q) : F_{pq}(\epsilon) > 1 - \lambda \right] : \ \epsilon > 0, \ 0 < \lambda < 1 \right\}$$

It has been shown in [2] that U is a base of neighbourhoods of a Hausdorff uniform structure. This uniform structure generates a metrizable topology $\tau_{e,\lambda}$ on S [2]. Then

$$p_n \xrightarrow{\tau_{\epsilon,\lambda}} p \iff \bigvee_{0 < \epsilon, \lambda < 1} \quad \exists_{n_{\epsilon,\lambda}} \quad \bigvee_{n > n_{\epsilon,\lambda}} F_{p_n p}(\epsilon) > 1 - \lambda \,.$$

For uniform structures it can be introduced the concept of completeness. Note that: a) A sequence $\{p_n, n \ge 1\}$ of a *M*-space is a Cauchy sequence if and only if for any $0 < \epsilon, \lambda < 1$, there exists a $n_{\epsilon,\lambda}$ such that for all $m, n \ge n_{\epsilon,\lambda} F_{pmpn}(\epsilon) > 1 - \lambda$.

b) A M-space (S, \mathcal{F}, T) is complete if and only if every Cauchy sequence converges in S.

It has been shown in [2] that if T is left continuous, then

$$(p_n \xrightarrow{\tau_{e,\lambda}} p \land q_n \xrightarrow{\tau_{e,\lambda}} q) \Rightarrow \bigvee_{x \in \mathcal{R}} F_{p_n q_n}(x) \xrightarrow{\tau_{e,\lambda}} F_{p_q}(x)$$

continuous in x.

2. Let $A \subseteq \mathfrak{X}$ be a compact convex set in a Banach space $(\mathfrak{X}, \| \|)$ and let $M : A \to A$ be a continuous mapping. It is known that M has a fixed point.

We will need yet the Brouwer theorem. Let $A \subseteq \mathbb{R}^n$ be a closed, bounded and convex set in a normed space $(\mathbb{R}^n, \| \|)$ and let $M : A \to A$ be a continuous mapping. Then M has a fixed point.

Now let (S, \mathcal{F}, T) be a complete N-space and $A \subseteq S$ be a compact (in $\tau_{e,\lambda}$) convex set.

We are searching for conditions under which a continuous in $\tau_{e,\lambda}$ mapping $M: A \rightarrow A$ has a fixed point. We shall see that they depend on the *t*-norm T.

Definition 4. A set $A \subseteq S$ is called bounded in the *M*-space (S, \mathcal{F}, T) if

$$\bigvee_{\substack{0 < \lambda < 1}} \exists \qquad \forall \qquad F_{pq}(\epsilon) > 1 - \lambda$$

Lemma 1. Let (S, \mathcal{F}, T) be a M-space. A set $A \subseteq S$ is bounded if and only if

Proof. Fix $0 < \lambda < 1$. Necessity: This is obvious. Sufficiency:

$$\bigvee_{p, q \in A} F_{pq}(\epsilon) \ge T(F_{pp_0}(\epsilon'), F_{p_0q}(\epsilon')) \ge T(1-\lambda', 1-\lambda') > 1-\lambda$$

if $T(1-\lambda', 1-\lambda') > 1-\lambda$, $F_{pp_0}(\epsilon/2) > 1-\lambda'$ for all $p \in S$.

Lemma 2.

$$\begin{bmatrix} \forall \\ p \in S & 0 < \lambda < 1 & e > 0 & q \in A \end{bmatrix} \begin{bmatrix} \forall \\ p_q(e) > 1 - \lambda \end{bmatrix} \Leftrightarrow$$
$$\Leftrightarrow \begin{bmatrix} \forall \\ p_q \in S & 0 < \lambda < 1 & e > 0 & q \in A \end{bmatrix} \begin{bmatrix} \forall \\ p_q(e) > 1 - \lambda \end{bmatrix}$$

The proof is obvious.

The probabilistic diameter of $A \subset S$, $A \neq \emptyset$ in the *M*-space (S, \mathcal{F}, T) has been introduced in [4] as

$$D_A(x) = \sup_{t < x} \inf_{p, q \in A} F_{pq}(t)$$

There was shown that $D_A(0) = 0$, D_A is left continuous and non-decreasing. It is obvious that

A is bounded]
$$\Rightarrow [D_A \in \Delta^*]$$

If the *t*-norm is left continuous then $D_A = D_{\overline{A}}$.

29

100 ALC: 100

(a) it is antimized in 1.2-4.

Definition 5. A set $\{p_i, 1 \le i \le n\} \subset S$ is called a ϵ , λ -system, $0 \le \epsilon$, $\lambda \le 1$, for the set $A \subset S$ in the *M*-space (S, \mathcal{F}, T) iff

$$\bigvee_{p \in A} \exists_{i(p) \in [1, 2, ..., n]} F_{pp_{i(p)}}(\epsilon) > 1 - \lambda.$$

Lemma 3. In a M-space A is bounded if and only if A is bounded.

Proof, Necessity: is obvious.

Sufficiency: Fix $p_0 \in S$, $0 < \lambda < 1$, and take such λ' , $0 < \lambda' < 1$, that $T(1 - \lambda', 1 - \lambda') > 1 - \lambda$. Take $p \in A$. Then, for x > 0 there exists $p'(p) \in A$ that $F_{pp'(p)}(x) > 1 - \lambda'$. For this λ' there exists e' > 0 so that

$$\bigvee_{p' \in A} F_{p_{\theta}p'(p)}(\epsilon') > 1 - \lambda'$$

Then putting $\epsilon = x + \epsilon'$ we get

$$\bigvee_{p \in \mathcal{A}} F_{pp_0}(\epsilon) \ge T(F_{pp'(p)}(x), F_{p'(p)p_0}(\epsilon')) \ge T(1-\lambda', 1-\lambda') \ge 1-\lambda.$$

Lemma 4. In a M-space (S, \mathcal{F}, T) a set $A \subset S$ has for every $0 < \epsilon$, $\lambda < 1$ a ϵ , λ -system iff A has for every $0 < \epsilon$, $\lambda < 1$ a ϵ , λ -system.

Proof. The part (sufficiency) is obvious since $A \subset \overline{A}$.

Necessity: suppose that $p_k \rightarrow p$ as $k \rightarrow \infty$, where $p_k \in A$ and A has for every $0 < \epsilon$. $\lambda < 1$ a ϵ , λ -system. Let us choose λ' , $0 < \lambda' < 1$ so that $T(1 - \lambda', 1 - \lambda') > 1 - \lambda$. If $\{p_i, n \ge i \ge 1\}$ is a $\epsilon/2$, λ' -system for A, then there exists $p_k \in A$ so that $F_{pp_k}(\epsilon/2 > > 1 - \lambda'$. Therefore,

$$F_{pp_i(p_k)}(\epsilon) \ge T(F_{pp_k}(\epsilon/2), F_{p_kp_i(p_k)}(\epsilon/2)) \ge T(1-\lambda', 1-\lambda') > 1-\lambda,$$

which completes the proof.

Theorem 1. Let (S, \mathcal{F}, T) be a M-space. A compact set $A \subset S$ has for every $0 < \epsilon$, $\lambda < 1$ a ϵ , λ -system in A.

Proof. Obviously $A \subseteq \bigcup_{p \in A} U_p(\epsilon, \lambda)$, where $U_p(\epsilon, \lambda)$ is a neighbourhood of p. Since

 $A \subseteq S$ is compact, so there must be $A \subseteq \bigcup_{i=1}^{n} U_{p_i}(\epsilon, \lambda), p_i \in A, i = 1, 2, ..., n$.

Theorem 2. Let (S, \mathcal{F}, T) be a complete M-space. Then $\overline{A} \subseteq S$ is compact, if for every $0 < \epsilon, \lambda < 1$ A has a ϵ, λ -system.

Proof. It is enough to show that every sequence $[p_n, n \ge 1] \subset A$ contains a convergent subsequence to a point of A ($\tau_{e, \lambda}$ is metrizable).

Take $\epsilon_n \neq 0, 1 > \lambda_n \neq 0$ as $n \rightarrow \infty$.

For n = 1 there exists a ϵ_1 , λ_1 -system $\{p_{i1}, 1 \le i \le k_1\}$ for $\{p_n, n \ge 1\}$ such that a subsequence $\{p_{n1}, n \ge 1\} \subset \{p_n, n \ge 1\}$ belongs to a set $U_{p_{i_1}}(\epsilon_1, \lambda_1)$. Suppose that a sequence $\{p_{n(l-1)}, n \ge 1\}$ is defined. We see that for n = 1 there exists a ϵ_l , λ_l -system, $\{p_{il}, 1 \le i \le k_l\}$ for $\{p_n, n \ge 1\}$ such that a subsequence $\{p_{nl}, n \ge 1\} \subset \{p_{n(l-1)}, n \ge 1\}$ belongs to a set $U_{p_{i,l}}(\epsilon_l, \lambda_l)$.

We now show that $\{p_{ll}, l \ge 1\} \subset \{p_n, n \ge 1\} \subset A$ is a Cauchy sequence. Let $x > 0, 0 < \lambda < 1$ be arbitrary numbers. Note that there exists $n_{x, \lambda}$ such that for all $l \ge n_{x, \lambda}, 2\epsilon_l \le x$ and $T(1 - \lambda_l, 1 - \lambda_l) > 1 - \lambda$. Suppose that $m \ge l \ge n_{x, \lambda}$. Then $\{p_n, m, n \ge 1\} \subset \{p_{nl}, n \ge 1\} \subset \{p_{nn_{x, \lambda}}, n \ge 1\} \subset U_{p_{l_0}n_{x, \lambda}}(\epsilon_{n_{x, \lambda}}, \lambda_{n_{x, \lambda}})$. Therefore, for all $l, m \ge n_{x, \lambda}$

$$F_{p_{ll}p_{mm}}(x) \ge F_{p_{ll}p_{mm}}(2\epsilon_{n_{X,\lambda}}) \ge T(F_{p_{ll}p_{i_0}n_{X,\lambda}}(\epsilon_{n_{X,\lambda}}), F_{p_{i_0}n_{X,\lambda}}p_{mm}(\epsilon_{n_{X,\lambda}})) \ge T(1-\lambda_{n_{X,\lambda}}, 1-\lambda_{n_{X,\lambda}}) \ge 1-\lambda.$$

Taking into account that (S, F, T) is complete, we see that there exists a $p \in A$ so that $p_{ll} \rightarrow p$ as $l \rightarrow \infty$.

Lemma 5. Let (S, \mathcal{F}, T) be a M-space. A compact set $A \subset S$ is closed and bounded. Proof. The fact that A is closed is obvious.

We now fix $0 < \lambda < 1$ and choose $0 < \lambda', \lambda'' < 1$ for that $T(1 - \lambda', 1 - \lambda') > 1 - \lambda$ and $T(1 - \lambda'', 1 - \lambda'') > 1 - \lambda'$. By Theorem 1 there exists a ϵ, λ'' -system $\{p_i, 1 \le i \le n\}$ for $A, \epsilon > 0$. Take x' > 0 so that inf $F_{p_i p_j}(x') > 1 - \lambda'$. Then for all $p, q \in A$

$$F_{pq}(x'+2\epsilon) \ge T(T(F_{pp_{i(p)}}(\epsilon), F_{p_{i(q)}q}(\epsilon)), F_{p_{i(p)}p_{i(q)}}(x')) \ge$$
$$\ge T(T(1-\lambda'', 1-\lambda''), 1-\lambda') \ge 1-\lambda,$$

what ends the proof.

Remark. Note that in a *M*-space (S, \mathcal{F}, T) :

1. $A \subset S$ is closed if and only if $[(p_n \rightarrow p \land p_n \in A) \Rightarrow p \in A]$,

2. $A \subset S$ is open if and only if $\bigvee_{p \in A} \quad \bigcup_{q \in A} U_p(\epsilon, \lambda) \subset A$,

3. $A \subset S$ is compact if and only if

$$\bigvee_{\left[p_{n,n}>1\right]} \subset A \quad \left\{\overrightarrow{p_{n_k}}, k > 1\right\}, p \in A \quad p_{n_k} \to p \text{ as } k \to \infty.$$

3. Now let $(S, \mathcal{F}, \mathcal{T})$ be a N-space with dim $S = n < \infty$. One can immediately show that such a space is isometric to a N-space of the type $(\mathcal{R}^n, \mathcal{F}, T)$. It is enough to fix a base

 ${b_i, 1 \leq i \leq n} \subset S$, define to isomorfizm $h: S \to \mathbb{R}^n$, $p = \sum_{i=1}^n \lambda^i(p) b_i \to (\lambda^1, ..., \lambda^n)$, and define $\mathcal{F}: \mathbb{R}^n \to \Delta^*$ by

31

$$(\lambda^1,..,\lambda^n) \to F_{(\lambda^1},..,\lambda^n) = F_{h^{-1}(\lambda^1}^{\bullet},..,\lambda^n).$$

In [3] it is shown that $(\mathfrak{L}, \tau_{e,\lambda})$ is a metrizable topological vector space in the case when $(\mathfrak{L}, \mathfrak{F}, T)$ is a N-space. By this assertion two N-spaces have equivalent topologies $\tau_{e,\lambda}$ if and only if the convergences to zero are equivalent on these spaces.

Lemma 6. In a N-spaces $(\mathbb{R}^n, \mathcal{F}, T)$ there exists a base $\{B_k, k \ge 1\}$ at zero such that $B_k = \overline{B}_k, B_{k+1} \subset B_k, B_k, k \ge 1$, are convex.

Proof. Let $\epsilon_k \neq 0, 1 > \lambda_k \neq 0$. Then $\{U_0(\epsilon_k, \lambda_k), k \ge 1\}$ is a base at zero. $\tau_{\epsilon, \lambda}$ is metrizable so $\{\overline{U_0(\epsilon_k, \lambda_k), k \ge 1}\}$ is also a base at zero. Put $\epsilon'_k = \epsilon_k/n$ and choose λ'_k , $0 < \lambda'_k < 1$ so that $T_{j=1}^n (1 - \lambda'_k) > 1 - \lambda_k$. If $p \in \operatorname{conv} U_0(\epsilon'_k, \lambda'_k)$, where conv $U_0(\epsilon'_k, \lambda'_k) = 0$

$$= [p = \sum_{j=1}^{n} \lambda^{(j)} p_j : \sum_{j=1}^{n} \lambda^{(j)} = 1; \lambda^{(j)} \ge 0, p_j \in U_0(\epsilon'_k, \lambda'_k) \text{ for } j = 1, ..., n] \text{ then}$$

$$F_{p}(\epsilon_{k}) = F_{\sum_{j=1}^{n} \lambda}(j)_{p_{j}}(\epsilon_{k}) \ge T_{j=1}^{n}(F_{p_{j}}(\epsilon_{k}')) \ge T_{j=1}^{n}(1-\lambda_{k}') > 1-\lambda_{k}$$

Therefore, conv $U_{\alpha}(\epsilon'_k, \lambda'_k) \subset U_0(\epsilon_k, \lambda_k)$. We conclude that $[\overline{\operatorname{conv} U_0(\epsilon_k, \lambda_k)}]_{k=1}^{-1}$ is a base at zero. Because the intersection of convex sets is a convex set, then putting

$$B_1 = \overline{\operatorname{conv} U_0(\epsilon_1, \lambda_1)}, \quad B_k = \overline{\operatorname{conv} U_0(\epsilon_k, \lambda_k)} \cap B_{k-1}$$

we obtain the required base at zero.

Theorem 3. The topology generated by an arbitrary norm || || on \mathbb{R}^n and $\tau_{e,\lambda}$ in a N-space $(\mathbb{R}^n, \mathcal{F}, T)$ are equivalent.

Proof. First we show that $\tau_{e,\lambda}$ is not stronger than the topology generated by the norm $\| \|$. It is enough to show that

$$p_k \xrightarrow{\parallel \parallel} 0 \text{ as } k \to \infty \Rightarrow p_k \xrightarrow{\tau_{\epsilon,\lambda}} 0 \text{ as } k \to \infty.$$

Take the base $[e_i, 1 \le i \le n] \subset \mathbb{R}^n$, where $e_i = [\delta_{ij}]_{1 \le j \le n}$. Of course, $p_k =$

$$= \sum_{i=1}^{n} \lambda_{k}^{(i)} e_{i} \xrightarrow{\parallel \parallel} 0 \text{ as } n \to \infty \iff \bigvee_{i=1, 2, ..., n} \lambda_{k}^{(i)} \to 0 \text{ as } k \to \infty. \text{ Then}$$

$$\bigvee_{x > 0} F_{\sum_{i=1}^{n} \lambda_{k}^{(i)} e_{i}}(x) \ge T_{i=1}^{n} (F_{\lambda_{k}^{(i)} e_{i}}(x/n)) = T_{i=1}^{n} (F_{e_{i}}(\frac{x}{n \mid \lambda_{k}^{(i)} \mid})) \to 1 \text{ as } k \to \infty,$$

since
$$\bigvee_{i=1,2,..,n} \frac{x}{n \mid \lambda_{k}^{(i)} \mid} \rightarrow \infty$$
, as $k \rightarrow \infty$, $F_{e_i} \in \Delta^*$ and $\sup_{a < 1} T(a, a) = 1$.

We now prove that the topology generated by the norm || || is not stronger than $\tau_{e, \lambda}$. We will show that every ball $K_{|| ||}(0, r)$ convtains a set of the base $\{B_k, k \ge 1\}$ which has appeared in the Lemma 6.

Suppose that

Because $B_k = \overline{B}_k$ in $\tau_{t,\lambda}$, moreover, $\tau_{t,\lambda}$ is not stronger than the topology generated by $\| \|$, therefore $C_k = \overline{C}_k$ in the norm. Obviously, $C_{k+1} \subset C_k$. But the sets B_k are convex, so that

Of course, $D_k = \overline{D}_k$ and D_k are bounded in $(\mathbb{R}^n, \| \|)$, $D_{k+1} \subset D_k$. We see that $\{D_k, k \ge 1\}$ is a nonincreasing sequence of nonempty compact sets, so that $\emptyset \ne$ $\neq \bigcap_{k=1}^{\infty} D_k \subset \bigcap_{k=1}^{\infty} B_k$ and $0 \notin \bigcap_{k=1}^{\infty} D_k$ as $0 \notin \mathbb{R}^n \setminus K_{\| \|}(0, r)$. Thus

 $\bigcap_{k=1} B_k \text{ contains at least two points, but this is a contradiction to the fact that <math>\tau_{e, \lambda}$ is

metrizable.

Lemma 7. In a N-space $(\mathbb{R}^n, \mathcal{F}, T)$:

$$[K_{\parallel} \mid (0,r) \underset{(\supset)}{\subset} U_0(\epsilon,\lambda)] \iff [\ \bigvee_{\alpha>0} K_{\parallel} \mid (0,\alpha r) \underset{(\supset)}{\subset} U_0(\alpha\epsilon,\lambda)].$$

Proof. Sufficiency: putting $\alpha = 1$. Necressity: suppose that $\{p: || p || < r\} \subset \{p: F_p(\epsilon) > 1 - \lambda\}$. Then $\{p: || p || < \epsilon < \alpha r\} = \{p' = p/\alpha : || p || < r\} \subset \{p' = p/\alpha : F_p(\epsilon) > 1 - \lambda\} = \{p: F_p(\alpha\epsilon) > 1 - \lambda\}$. Lemma 8. $A \subset \mathbb{R}^n$ is bounded in $\tau_{\epsilon, \lambda} \iff A$ is bounded in a norm $|| || on \ \mathbb{R}$.

Lemma 8. $A \subseteq 60^{\circ}$ is bounded in $\tau_{e, \lambda} \hookrightarrow A$ is bounded in a norm || || on 60. **Proof**, Necessity: Suppose that

$$\bigvee_{\lambda < 1} \exists \qquad \forall p \in U_0(\epsilon, \lambda).$$

Since the topology generated by the norm || || and $\tau_{\epsilon, \lambda}$ are equivalent, then for a ball $K_{|| ||}(0, r)$ there exists $U_0(\epsilon', \lambda')$ such that $K_{|| ||}(0, r) \supset U_0(\epsilon', \lambda')$. Moreover, there exists $\epsilon > 0$ for which $A \subset U_0(\epsilon, \lambda')$. For $\alpha \epsilon' = \epsilon$, by Lemma 7, we have

 $A \subset U_0(\epsilon, \lambda') \subset K_{\mathbb{H},\mathbb{H}}(0, r\alpha)$

Therefore, A is bounded in $(\mathbb{R}^n, || ||)$.

Sufficiency: Suppose that $A \subseteq K_{\parallel \parallel}(0, r)$. For $0 < \lambda < 1$ and $\epsilon > 0$ there exists $\alpha > 0$ such that $K_{\parallel \parallel}(0, \alpha r) \subseteq U_0(\epsilon, \lambda)$, as the considered topologies are equivalent. Hence, by Lemma 7, we get

 $A \subset K_{\parallel \parallel}(0,r) \subset U_0(\epsilon/\alpha,\lambda).$

Thus A is bounded in $(\mathbb{R}^n, \mathcal{F}, T)$. Lemma 9. In a N-space $(\mathbb{R}^n, \mathcal{F}, T)$:

 $A \subseteq \mathbb{R}^n$ is compact in $\tau_{e, \lambda} \iff A$ is closed and bounded.

Proof. The assertion of Lemma 9 is true in $(\mathbb{R}^n, || ||)$. But the topologies $\tau_{e, \lambda}$ and || || are equivalent, therefore, by Lemma 8, we have the equivalence of Lemma 9.

Theorem 4. If $A \subseteq \mathbb{R}^n$ is convex, closed and bounded in a N-space $(\mathbb{R}^n, \mathcal{F}, T)$, and $f: A \to A$ is continuous in $\tau_{e,\lambda}$, then f has a fixed point.

Proof. The statement of Theorem 4 is true in $(\mathcal{R}^n, || ||)$. Knowing that the topologies $\tau_{e, \lambda}$ and || || are equivalent, and using lemmas 8 and 9, we get the assertion of Theorem 4. Lemma 10. Every Cauchy sequence on a M-space is bounded.

Proof. Fix $0 < \lambda < 1$, and next take x > 0 and $0 < \lambda' < 1$, such that $T(1 - \lambda', 1 - \lambda') > 1 - \lambda$. Since $\{p_n, n \ge 1\}$ is a Cauchy sequence, then

$$\exists_{n_{x,\lambda'}} \qquad \forall \qquad F_{p_m p_{n_{x,\lambda'}}}(x) > 1 - \lambda',$$

and, of course

$$= \bigvee_{m=1, 2, \dots, n_{x, \lambda'}} F_{p_m p_{n_{x, \lambda'}}}(\epsilon') > 1 - \lambda' .$$

Putting $\epsilon = 2\epsilon'$

$$\bigvee_{m, n=1, 2, \dots} F_{p_m p_n}(\epsilon) \ge T(F_{p_m p_{n_{x, \lambda'}}}(\epsilon'), F_{p_{n_{x, \lambda'}} p_n}(\epsilon')) \ge$$

$$> T(1-\lambda', 1-\lambda') > 1-\lambda$$
.

techo Strikee

One can immediately state that:

(i) a convergent sequence is a Cauchy sequence,

(ii) a Cauchy sequence with a convergent subsequence converges.

Theorem 5. A N-space $(\mathbb{R}^n, \mathcal{F}, T)$ is complete.

J Proof. Let $\{p_n, n \ge 1\} \subset \mathbb{R}^n$ be a Cauchy sequence. Then by Lemma 10 $\{p_n, n \ge 1\}$ is bounded. Therefore $\{p_n, n \ge 1\}$ is compact. From (ii) we conclude that $\{p_n, n \ge 1\}$ has a limit $p \in \mathbb{R}^n$.

Definition 6. A mapping $M: S \to S$ on a *M*-space (S, \mathcal{F}, T) is said to be compact iff *M* is continuous and $\overline{M(S)}$ is compact.

Definition 7. A mapping $M: S \rightarrow S$ is said to be bounded on a *M*-space (S, \mathcal{F}, T) iff M(S) is bounded.

Definition 8. A mapping $M: S \to S$ is said to be finite dimensional on a N-space (S, \mathcal{F}, T) iff dim $M(S) < \infty$.

Notice that in a *M*-space (S, \mathcal{F}, T) :

1.
$$M_n \to M$$
, $n \to \infty \iff \bigvee_{p \in S} \qquad \bigvee_{0 < \epsilon, \lambda < 1} \qquad \exists \qquad \bigvee_{n_{\epsilon, \lambda}} \qquad \bigvee_{n \ge n_{\epsilon, \lambda}} F_{M_n p M p}(\epsilon) > 1 - \lambda$,

2.
$$M_n \rightrightarrows M, n \rightarrow \infty \iff \bigvee_{\substack{0 < e, \lambda < 1}} \exists_{n_{e, \lambda}} \qquad \bigvee_{\substack{n > n_{e, \lambda}}} \bigvee_{\substack{p \neq S}} F_{M_n p M p}(\epsilon) > 1 - \lambda$$
,

3. M is continuous 👄

$$\bigvee_{p \in S} \qquad \bigvee_{0 < e, \lambda < 1} \qquad \exists \qquad \forall_{q \in S} (F_{pq}(\delta) > 1 - \tau \Rightarrow F_{MpMq}(\epsilon) > 1 - \lambda),$$

4. M is uniformly continuous 🖚

$$\bigvee_{0 < \epsilon, \lambda < 1} \qquad \bigcup_{0 < \epsilon, \tau < 1} \qquad \bigvee_{p, q \in S} (F_{pq}(\delta) > 1 - \tau \Rightarrow F_{MpMq}(\epsilon) > 1 - \lambda),$$

5. M being continuous on a compact set is uniformly continuous.

Lemma 11. If $M_n \rightrightarrows M$ as $n \rightarrow \infty$ on a M-space (S, \mathcal{F}, T) and M_n are continuous, then M is continuous.

Proof. Suppose that $p_k \to p$ as $k \to \infty$ and fix $0 < \epsilon$, $\lambda < 1$. Take $0 < \lambda'$, $\lambda'' < 1$ such that $T(1 - \lambda', 1 - \lambda') > 1 - \lambda$, and $T(1 - \lambda'', 1 - \lambda'') > 1 - \lambda'$. Since $M_n \rightrightarrows M$ as $n \to \infty$, then there exists M_{n_n} such that

$$\bigvee_{p \in S} F_{MpMn_0p}(\epsilon/3) > 1 - \lambda''$$

 $M_{n_{o}}$ is continuous, therefore

Thus for $k \ge k_0$

$$\begin{split} F_{Mp_kMp}(\epsilon) &\geq T(T(F_{Mp_kM_{n_0}p_k}(\epsilon/3), F_{M_{n_0}p_Mp}(\epsilon/3)), F_{M_{n_0}p_kM_{n_0}p}(\epsilon/3)) \geq \\ &\geq T(T(1-\lambda'', 1-\lambda''), 1-\lambda') \geq 1-\lambda \,. \end{split}$$

It means that $M_{pk} \rightarrow Mp$ as $k \rightarrow \infty$.

Theorem 6. Let (S, \mathcal{F}, T) be a complete M-space and $M_n: S \rightarrow S$ be a sequence of compact mappings. If $M_n \rightrightarrows M$ as $n \rightarrow \infty$, then M is also compact.

Proof. By Lemma 11 *M* is continuous. Hence, using Lemma 4 and Theorem 2, it is enough to show that M(S) has for every $0 < \epsilon$, $\lambda < 1 \epsilon$, λ -system. Take now $0 < \lambda' < 1$ such that $T(1 - \lambda', 1 - \lambda') > 1 - \lambda$. Since $M_n \rightrightarrows M$ as $n \rightarrow \infty$ and M_n are compact, then

$$\bigcup_{p \in S} F_{\mathcal{M}_{n_e} p \, \mathcal{M}_p}(\epsilon/2) > 1 - \lambda' .$$

Let $\{p_i, n \ge i \ge 1\}$ be $a_n \epsilon/2$, λ' -system for $M_{n_0}(S)$. Then $\{p_i, n \ge i \ge 1\}$ is $a_n \epsilon$, λ -system for M(S):

 $F_{Mpp_i(M_{n_o}p)}(\epsilon) \ge T(F_{MpM_{n_o}p}(\epsilon/2), F_{M_{n_o}pp_i(M_{n_o}p)}(\epsilon/2)) \ge T(1-\lambda', 1-\lambda') > 1-\lambda.$

Theorem 7. Let (S, \overline{F}, \min) be a complete N-space. Then A is compact if and only if $\operatorname{conv} \overline{A}$ is compact.

Proof. Sufficiency: This implication is obvious as $A \subset \text{conv } \overline{A}$.

Necessity: fix $0 < \epsilon$, $\lambda < 1$. Let $[p_i, 1 \le i \le k] \subseteq A$ be a $\epsilon/2$, $\lambda/2$ -system for A. We note that conv $[p_1, p_2, ..., p_k]$ is compact. This follows from the fact that it is compact in a norm, and by Theorem 3.

Let $\{w_i, 1 \le i \le n\} \subset \operatorname{conv}[p_1, p_2, ..., p_n]$ be $\epsilon/2, \lambda/2$ -sytem for this set. We show now that $w_i, 1 \le i \le n \subseteq \operatorname{conv} A$, where

conv
$$\overline{A} = [p = \sum_{j=1}^{r} \lambda^{(j)} p_j : p_j \in \overline{A}, \sum_{j=1}^{r} \lambda^{(j)} = 1, \lambda^{(j)} \ge 0; r = 1, 2, ...],$$

is ϵ , λ -system for conv A. For

$$w_{i(p)} = w_{i(\Sigma_{i-1}^{r}, \lambda^{(j)})}, p \in \operatorname{conv} \overline{A},$$

we get

$$F_{p-w_{i}(p)}(\epsilon) = F_{\Sigma_{j=1}^{r} \lambda^{(j)} p_{j}-w_{i}(p)}(\epsilon) \ge$$

$$\geq \min \left(F_{\Sigma_{j=1}^{r} \lambda^{(j)} (p_{j}-p_{i}(p_{j}))}(\epsilon/2), F_{\Sigma_{j=1}^{r} \lambda^{(j)} p_{i}(p_{j})-w_{i}(p)}(\epsilon/2)\right) \ge$$

$$\geq \min(\min_{i=1}^{r} (F_{\lambda}(i)_{(n_i-n_{i(n_i)})} (\epsilon \lambda^{(j)}/2)), F_{\Sigma_{i=1}^{r}} \lambda^{(j)}_{p_{i(n_i)}-w_{i(n_i)}} (\epsilon/2)) \geq$$

$$\geq \min\left(\min_{j=1}^{r} \left(F_{p_j - p_j(p_j)}(\epsilon/2)\right), 1 - \lambda/2\right) \geq \min\left(1 - \lambda/2, 1 - \lambda/2\right) > 1 - \lambda.$$

Lemma 12. Let (S, \mathcal{F}, \min) be a M-space. Define for $0 < \lambda < 1$ the function $f_{\lambda}: S \times S \to \mathfrak{K}^{\circ}_{0}$ ($\mathfrak{K}^{\circ}_{0} = \mathfrak{K}^{\circ} \cup \{0\}$), $(p, q) \to \inf [x: F_{pq}(x) > 1 - \lambda]$. Then

1. $f_{\lambda}(p,q) < \epsilon \iff F_{pq}(\epsilon) > 1 - \lambda$

2. f_{λ} is continuous.

Proof. ad. 1 Sufficiency: F_{pq} is left continuous, therefore $F_{pq} > 1 - \lambda$ on an interval $(\epsilon - \epsilon', \epsilon)$.

Necessity: it follows immediately from the definition. ad. 2. Suppose that $p_n \rightarrow p$, and $q_n \rightarrow q$ as $n \rightarrow \infty$. Note that

$$f_{\lambda}(p,q) = \inf [x: F_{pq}(x) > 1 - \lambda \text{ and } F_{pq} \text{ is continuous in } x].$$

By the definition of inf

$$\bigvee_{e'>0} \exists x'-e'/2 < f_{\lambda}(p,q).$$

Since the set of all points of continuity of F_{pq} is dense in \mathbf{a} , then

$$\exists x' > x > f_{\lambda}(p, q) \quad x - \epsilon' < f_{\lambda}(p, q) \text{ and } F_{pq} \text{ is continuous in } x.$$

From 1, we have $F_{pq}(x') > 1 - \lambda < F_{pq}(x)$. Therefore,

$$f_{\lambda}(p,q) \ge \inf [x: F_{pq}(x) \ge 1 - \lambda \text{ and } F_{pq} \text{ is continuous in } x].$$

By the reason we will consider only points of continuity of F_{pq} . But min is continuous, hence in these points $[F_{p_nq_n}, n \ge 1]$ converges to F_{pq} .

Now we are going to prove:

a) $\lim_{n \to \infty} \sup f_{\lambda}(p_n, q_n) \le f_{\lambda}(p, q)$: Take $x \ge f_{\lambda}(p, q)$. Since $F_{pq}(x) \ge 1 - \lambda$, then

there exists an interger N such that $F_{p_nq_n}(x) > 1 - \lambda$, n > N. Therefore, by 1., lim sup $f_{\lambda}(p_n, q_n) \leq x$. But it was assumed that $x > f_{\lambda}(p, q)$, so we have $n \rightarrow \infty$

 $\lim_{n \to \infty} \sup f_{\lambda}(p_n, q_n) \leq f_{\lambda}(p, q).$

b) $\lim_{n \to \infty} \inf f_{\lambda}(p_n, q_n) \ge f_{\lambda}(p, q)$: Assume that for some sequences $\{p_n, n \ge 1\}$ and $\{q_n, n \ge 1\}$ such that $p_n \to p$, and $q_n \to q$ as $n \to \infty$ $\lim_{n \to \infty} f_{\lambda}(p_n, q_n) < f_{\lambda}(p, q)$. Let us

consider now the following carses:

(i) F_{pq} takes at most at one point the value $1 - \lambda$. Then there exists x > 0 such that $\lim_{n \to \infty} f_{\lambda}(p_n, q_n) < x < f_{\lambda}(p, q)$ and $1 - \lambda > F_{pq}(x) = \lim_{n \to \infty} F_{p_n q_n}(x) \ge 1 - \lambda$.

(ii) $F_{pq} \equiv 1 - \lambda$ on an interval. Then, there exist x, y > 0 such that

$$\exists_{N_1} \quad \bigvee_{n > N_1} f_{\lambda}(p_n, q_n) < y < x < f_{\lambda}(p, q), \text{ and } F_{pq}(y) = F_{pq}(x) = 1 - \lambda.$$

But $F_{pp_n}((x - y)/2) \rightarrow 1$, $F_{qq_n}((x - y)/2) \rightarrow 1$, and $F_{p_nq_n}(y) \rightarrow F_{pq}(y) = 1 - \lambda$ as $n \rightarrow \infty$, then there exists $N_2 \ge N_1$ such that

$$\bigvee_{n > N_{1}} \min(F_{pp_{n}}((x-y)/2), F_{qq_{n}}((x-y)/2), F_{p_{n}q_{n}}(y)) = F_{p_{n}q_{n}}(y) .$$

Hence, for $n \ge N_2$, $1 - \lambda = F_{pq}(x) \ge \min(F_{pp_n}((x-y)/2), F_{qq_n}((x-y)/2), F_{p_nq_n}(y)) = 0$

= $F_{p_n q_n}(y) > 1 - \lambda$. Thus in both cases we have a contradiction, what completes the proof of Lemma 12.

Theorem 8. Let $\emptyset \neq A \subset S$ be a compact convex set in a N-space (S, \mathcal{F} , min). Then

 $\begin{array}{c} \bigvee\\ M: A \rightarrow A \\ M \text{ is continuous} \end{array} \xrightarrow{0 < e, \lambda < 1} \qquad \begin{array}{c} \exists\\ M_{e,\lambda}: A \rightarrow A \\ M_{e,\lambda}: s \text{ continuous and} \\ finite \ dimensional \end{array} \xrightarrow{p \in A} F_{Mp-M_{e,\lambda}p}(\epsilon) > 1-\lambda \ .$

Proof. Let $[y_i, 1 \le i \le k] \subseteq A$ be $\epsilon, \lambda/2$ -system for A. We define for i = 1, 2, ..., k, $\mu_i: A \to \mathcal{R}_0, p \to \max[0, \epsilon - f_{\lambda/2}(Mp - y_i)]$. By 1 from Lemma 11, we have

$$\mu_i(p) > 0 \Longleftrightarrow f_{\lambda/2}(Mp - y_i) < \epsilon \Longleftrightarrow F_{Mp - y_i}(\epsilon) > 1 - \lambda/2.$$

From the definition of $\{y_i, 1 \le i \le k\}$ we have

$$\bigvee_{p \in A} \quad \exists_{i(p) \in [1, 2, ..., k]} \quad \mu_{i(p)}(p) > 0$$

Since M is continuous, then the functions μ_i are continuous. Therefore, for $i \in [1, 2, ..., k]$ the functions

$$\lambda_i: A \to \langle 0, 1 \rangle, p \to \mu_i(p) / \Sigma_{i=1}^k \mu_i(p)$$

are also continuous and $\sum_{i=1}^{k} \lambda_i(p) = 1$. Define now $M_{e,\lambda}p = \sum_{i=1}^{k} \lambda_i(p) y_i$. Of course,

 $M_{e,\lambda}$ is finite dimensional and $M_{e,\lambda}(A) \subset \operatorname{conv}[y_1, ..., y_k] \subset A$, hence $M_{e,\lambda}: A \to A$. $M_{e,\lambda}$ is continuous as it is continuous in a norm $\| \| \|$ and $\tau_{e,\lambda}$ is equivalent to the topology generated by the norm. Take now $p \in A$. Then, using above facts on λ and F, we have

$$F_{M_{e,\lambda}p - Mp}(\epsilon) = F_{\Sigma_{i=1}^{k} \lambda_{i}(p) y_{i} - Mp}(\epsilon) = F_{\Sigma_{g=1}^{r} \lambda_{i_{g}}(p) y_{i_{g}} - Mp}(\epsilon) =$$

$$= F_{\Sigma_{g=1}^{r} \lambda_{i_{g}}(p) (y_{i_{g}} - Mp)(\epsilon)} \ge \min_{g=1}^{r} (F_{\lambda_{i_{g}}(p) (y_{i_{g}} - Mp)(\lambda_{i_{g}}e)}) =$$

$$= \min_{g=1}^{r} (F_{y_{i_{g}} - Mp}(\epsilon)) \ge \min_{g=1}^{r} (1 - \lambda/2) > 1 - \lambda,$$

where $\lambda_{l_{p}}(p) > 0$.

Theorem 9. Let $\emptyset \neq A \subset S$ be a convex compact set in a M-space (S, \mathcal{F} , min). Then every continuous mapping $M: A \rightarrow A$ has a fixed point.

Proof. Take $1 > \epsilon_n \ge 0$, $1 > \lambda_n \ge 0$. By Theorem 8 there exists a mapping $M_n : A \to A$ which is continuous and finite dimensional, and moreover,

$$\bigvee_{p \in \mathcal{A}} F_{Mp-M_np}(\epsilon_n) > 1 - \lambda_n .$$

Define $D_n = \operatorname{conv} M_n(A) \subset A$. Since A is convex, then $M_n(D_n) = M_n(\operatorname{conv} M_n(A)) \subset M_n(A) \subset \operatorname{conv} M_n(A) = D_n$. Hence, $M_n : D_n \to D_n$, where D_n is compact and convex in a finite dimensional N-space.

Now, by Theorem 4, we get $\bigvee_{n \in \mathbb{N}} = \prod_{p_n \in A} M_n p_n = p_n$. But A is compact, therefore there exists a convergent subsequence $p_{n_k} \to p \in A$ as $k \to \infty$. Fix now x > 0. If $2\epsilon_{n_{k_n}} \leq x$, then

$$\bigvee_{k > k_{0}} F_{Mp-p}(x) \ge \min(F_{Mp-M_{n_{k}}p_{n_{k}}}(\epsilon_{n_{k}}), F_{p_{n_{k}}-p}(x/2)) \ge \min(1-\lambda_{n_{k}}, F_{p_{n_{k}}-p}(x/2)).$$

It is obvious that $1 - \lambda_{n_k} \to 1$ as $k \to \infty$ and $F_{p_{n_k}-p}(x/2) \to 1, k \to \infty$, so that

$$\bigvee_{x > 0} F_{Mp-p}(x) = 1 \Longleftrightarrow Mp = p \; .$$

Theorem 10. Every compact mapping $M: S \rightarrow S$ on a complete N-space (S, \mathcal{F}, \min) has a fixed point.

Proof. We know that $\overline{M(S)}$ is compact. Hence, by Theorem 7, $A = \overline{\operatorname{conv} M(S)}$ is compact too, and

 $\overline{M(A)} \subset \overline{M(S)} \subset \operatorname{conv} \overline{M(S)} = A$.

Noting that M satisfies the assumption of Theorem 9, we end the proof.

4. In what follows the *t*-norm T will be always left continuous.

Definition 9. By the probabilistic distance between two nonempty sets A, B of a M-space (S, \mathcal{F}, T) we mean the function $\operatorname{dist}_{AB}(x) = \sup_{\substack{t < x \ p \in A}} \sup_{p \in A} F_{pq}(t)$.

 $q \in B$

We see that dist $_{AB} \in \Delta^*$.

Lemma 13. dist $\overline{AB} = \text{dist}_{AB}$.

Proof. First we will show that $\operatorname{dist}_{\overline{A}B} = \operatorname{dist}_{AB}$. Of course, $\operatorname{dist}_{\overline{A}B} \ge \operatorname{dist}_{AB}$. Fix now $x > 0, \epsilon > 0$. Then there exist $p \in \overline{A}, q \in B$ and t' < x for which

list
$$\prod_{n}(x) < F_{pq}(t') + \epsilon/4$$
.

Since the set of points of continuity of F_{pq} is dense in \mathcal{R} , then there exists $t \leq t'$ such that F_{pq} is continuous in t and

 $F_{pq}(t) < F_{pq}(t) + \epsilon/4$.

Hence,

dist $_{IR}(x) < F_{pq}(t) + \epsilon/2$.

But $p \in A$, therefore there must exist $p_n \to p$ as $n \to \infty$, $p_n \in A$. The point t is a continuity point of the function, and consequently $F_{p_nq}(t) \to F_{pq}(t)$ as $n \to \infty$. Obviously, there exists a n_0 such that $F_{pq}(t) - \epsilon/2 < F_{p_nq}(t)$. Thus

$$\bigvee_{x > 0} \quad \bigvee_{e > 0} \quad \exists_{p_{n_e} \in A} \quad t < x \quad \text{dist}_{\overline{A}B}(x) < F_{p_{n_e}q}(t) + \epsilon,$$

i.e. dist $A_R \leq dist_{AR}$. Moreover, we have

$$\operatorname{dist}_{\overline{A}\overline{B}} = \operatorname{dist}_{\overline{A}\overline{B}} = \operatorname{dist}_{\overline{B}A} = \operatorname{dist}_{BA} = \operatorname{dist}_{AB}$$

In [1] it has been defined the probabilistic Hausdorff distance between two nonempty bounded sets A, B of a M-space (S, \mathcal{F}, T) in the following way

$$F_{AB}^{H}(x) = \sup_{t < x} T(\inf_{p \in A} \sup_{q \in B} F_{pq}(t), \inf_{q \in B} \sup_{p \in A} F_{pq}(t)).$$

It was proved that $F_{AB}^H \in \Delta^*$, $F_{\overline{AB}}^H = F_{AB}^H$, and that $(\mathcal{T}, \mathcal{F}^H, T)$ is again a Menger space, where \mathcal{T} denotes the class of all nonempty, closed and bounded sets. We will prove now

Theorem 11. If (S, \mathcal{F}, T) is a complete M-space, then $(\mathcal{T}, \mathcal{F}^H, T)$ is also a complete M-space.

Proof. Suppose that for $\{A_n, n \ge 1\} \subset \mathcal{W}$ we have

$$\bigvee_{n \to 0} F^{H}_{A_n A_m}(x) \to 1 \text{ as } m, n \to \infty$$

We have to show that

1

$$\exists_{A \in \mathcal{M}} \quad \forall_{x > 0} F^{H}_{AA_{n}}(x) \to 1 \text{ as } n \to \infty$$

Notice that $F_{AA}^H \rightarrow H$ as $n \rightarrow \infty$

$$\bigvee_{k>0} T(\inf_{p_n \in A_n} \sup_{p \in A} F_{p_n p}(x), \inf_{p \in A} \sup_{p_n \in A_n} F_{p_n p}(x)) \to 1 \text{ as } n \to \infty \iff$$

 $\bigvee_{x > 0} \inf_{p_n \in A_n} \sup_{p \in A} F_{p_n p}(x) \to 1 \text{ as } n \to \infty \land \bigvee_{x > 0} \inf_{p_n \in A} \sup_{p_n \in A_n} F_{p_n p}(x) \to 1 \text{ as } n \to \infty$

$$\Rightarrow \qquad \qquad \forall \qquad \exists \qquad \forall \qquad \forall \qquad \forall \qquad p \in A \quad p_n \in A_n \quad F_{p_n p}(x) > 1 - \lambda \quad (i)$$

$$\bigvee_{0 < \lambda < 1, x > 0} \exists_{n_{x, \lambda}} \bigvee_{n \ge n_{x, \lambda}} \bigvee_{p_n \in A_n} \exists_{p \in A} F_{p_n p}(x) > 1 - \lambda.$$
(ii)

By the assumptions, we have

-

$$F_{A_mA_n}^{H} \to H \text{ as } m, n \to \infty \iff$$

$$\bigvee T(\inf_{p_m \in A_m} \sup_{p_n \in A_n} F_{p_m p_n}(x), \inf_{p_n \in A_n} \sup_{p_m \in A_m} F_{p_m p_n}(x)) \to 1 \text{ as } m, n \to \infty$$

$$\iff \bigvee_{x > 0} \inf_{p_m \in A_m} \sup_{p_n \in A_n} F_{p_m p_n}(x) \to 1 \text{ as } n \to \infty \iff$$

$$\bigvee_{0 < \lambda < 1, x > 0} \exists_{x_{x,\lambda}} \bigvee_{m,n > n_{x,\lambda}} \bigvee_{p_m \in A_m} F_{p_m p_n}(x) \to 1 \text{ as } n \to \infty \iff$$

$$\bigvee_{0 < \lambda < 1, x > 0} \exists_{x_{x,\lambda}} \bigvee_{m,n > n_{x,\lambda}} \bigvee_{p_m \in A_m} f_{p_m p_n}(x) \to 1 \text{ as } n \to \infty \iff$$

$$\bigvee_{0 < \lambda < 1, x > 0} \exists_{x_{x,\lambda}} \bigvee_{m,n > n_{x,\lambda}} \bigvee_{p_m \in A_m} f_{p_m p_n}(x) > 1 - \lambda. \text{ (iii)}$$
Define $A = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$. Then $\overline{A} = A$. Note that $p \in A \iff$

$$p = \lim_{k \to \infty} p_{n_k}, p_{n_k} \in A_{n_k}, n_k \text{ increases. Fix } 0 < \lambda < 1, x > 0$$
. Ad (i): Take $0 < \lambda' < 1$
such that $T(1 - \lambda', 1 - \lambda') > 1 - \lambda$ and next take p_{n_k} such that $F_{pp_{n_k}}(x/2) > 1 - \lambda'$,
for $n_k \ge n_{x/2,\lambda'}$. Then we take p_n for p_{n_k} from (iii) and we get
$$\bigvee_{0 < \lambda' < 1, x > 0} \exists_{n_{x/2,\lambda'}} \bigvee_{n \ge n_{x/2,\lambda'}} \bigvee_{p \in A} \exists_{p_n \in A_n} F_{p_n p(x)} > T(F_{p_n p_{n_k}}(x/2)),$$

$$F_{p_{n,k}p}(x/2)) \ge T(1-\lambda';1-\lambda') \ge 1-\lambda$$

Ad (ii): Define for $j = 1, 2, ..., x^{(j)} = x/2^{j+1}, x^{(0)}! = \epsilon/4, T(1 - \lambda^{(0)}, 1 - \lambda^{(0)}) > 1 - \lambda^{(j-1)}$. From (iii), we get

$$= \bigvee_{n_0, n > n_0} \bigvee_{p_n \in A_n} = \sum_{p_{m_0} \in A_m} F_{p_{m_0} p_n}(x^{(0)}) > 1 - \lambda^{(0)},$$

and

$$= \bigvee_{n_1 > n_0} \bigvee_{m_0, m_1 > n_1} \bigvee_{p_{m_0} \in A_{m_0}} = \int_{p_{m_1} \in A_{m_1}} F_{p_{m_0} p_{m_1}}(x^{(1)}) > 1 - \lambda^{(1)}$$

Take $m_0 = n_1$ and suppose that n_{j-1} , j = 2, 3, ... is defined. Then

Therefore, for every $p_n \in A_n$, $n \ge n_0$, there exists a sequence $\{p_{n_j}, j \ge 1\}$, n_j increases, $p_{n_j} \in A_{n_j}$ such that

$$F_{p_n p_{H_i}}(x^{(0)}) > 1 - \lambda^{(0)}, F_{p_{n_j} p_{n_{j+1}}}(x^{(j)}) > 1 - \lambda^{(j)}, j = 1, 2, \dots$$

We see that $\{p_{n_j}, j \ge 1\}$ is a Cauchy sequence. Take now $e^{(j_0)} \le x, \lambda^{(j_0-1)} < \lambda$. Then $\bigvee_{l \in \mathbb{N}} \qquad \bigvee_{j \ge j_0} F_{p_{n_j}p_{n_j+l}}(x) \ge F_{p_{n_j}p_{n_{j+l}}}(x^{(j)}) \ge$ $\ge T_{i+l-1}^{j+l-1}(F_{p_n,p_n}, (x^{(s)})) \ge T_{i+l-1}^{j+l-1}(1-\lambda^{(s)}) \ge 1-\lambda^{(j-1)} \ge 1-\lambda$.

$$\geq T_{s=j}^{n+1-1}(F_{p_{\pi_{s}}p_{\pi_{s+1}}}(x^{(s)})) \geq T_{s=j}^{n+1-1}(1-\lambda^{(s)}) \geq 1-\lambda^{(s+1)} \geq$$

Therefore the sequence $[p_{n_i}, j \ge 1]$ converges to $p \in A \neq \emptyset$.

We have to show yet that A is bounded. Fix $0 < \lambda < 1$, $q \in S$ and take $0 < \lambda'$, $\lambda'' < 1$ such that $T(1 - \lambda', 1 - \lambda') > 1 - \lambda$, $T(1 - \lambda'', 1 - \lambda'') > 1 - \lambda'$. From (iii) we have

Fix now $m \ge n_{e,\lambda''}$. Then for an arbitrary $p \in A$ there exists $p_n \in A_n$, $n \ge n_{e,\lambda''}$ such that $F_{pp_n}(e) > 1 - \lambda''$. Since A_m is bounded, then

Hence, for x = x' + 2e

$$\bigvee_{p \in A} F_{pq}(x) \ge T(F_{pp_n}(\epsilon), T(F_{p_m p_n}(\epsilon), F_{p_m q}(x'))) \ge$$

$$> T(1-\lambda', T(1-\lambda'', 1-\lambda'')) > 1-\lambda$$
.

Now we prove that

$$\bigvee_{0 < \lambda < 1, x > 0} \exists n_{0} \quad n > n_{0} \quad \forall p_{n} \in A_{n} \quad \overrightarrow{p} \in A \quad F_{pp_{n}}(x) > 1 - \lambda$$

We see that

$$\bigvee_{j=1,2,...} F_{p_n p}(x) \ge T(T(F_{p_n p_{n_j}}(x/4), T_{s=.1}^j(F_{p_{n_s} p_{n_{s+1}}}(x^{(s)}))), F_{p_{n_{j+1}} p}(x/4)).$$

Since $F_{p_{n_{j+1}}}p(\epsilon/4) \to 1$, then $F_{p_n p}(x) \ge T(F_{p_n p_{m_1}}(x/4), T_{s=1}^{\circ}(F_{p_{n_s} p_{n_{s+1}}}(x^{(s)})))$.

5. Let η_L denote the class of all compact sets different from \emptyset and let γ_{L_0} be the class of all finite sets different from \emptyset .

Theorem 12. If a Menger space is complete, then $\eta_0 = \eta_0 in \tau_{0,\lambda}^H$.

Proof. Necessity: Take $A \in \mathcal{T}$ and $1 > \epsilon_n \ge 0, 1 > \lambda_n \ge 0$. Let $A_n \subset A$ be ϵ_n, λ_n -system for A. We note that

$$F_{A_nA}^H \to H \text{ as } n \to \infty \iff \bigcup_{0 < \lambda < 1, x > 0} \quad \exists \quad n \ge n_0 \quad p \in A \quad F_{p_n p}(x) > 1 - \lambda \, .$$

It follows from the definition of ϵ , λ -system by taking n_0 such that $\epsilon_n \leq x$, $\lambda_{n_0} \leq \lambda$. Sufficiency: Suppose that $A_n \in \mathcal{N}_0$ and $F_{A_nA}^H \to H$ as $n \to \infty, A \in \mathcal{M}$. Then

$$\bigvee_{0 < \lambda < 1, x > 0} \exists_{n_0} \quad \forall_{n > n_0} \quad \forall_{p \in A} \quad \exists_{p_n \in A_n} F_{p_n p}(x) > 1 - \lambda.$$

Thus $A_{n_{\alpha}}$ is ϵ , λ -system for A.

Definition 10. By the noncompactness measure of nonempty a bounded set $A \subset S$ we mean the function $\mu_A(x) = \text{dist}_{\Pi_0}^H (x)$.

Lemma 14. $\mu : \mathcal{M} \to \Delta^*$.

Proof. This fact follows from the properties of the distance.

Lemma 15. $\mu_{\overline{A}} = \mu_{A}$.

Proof. It is enough to note that $F_{\overline{A}\overline{B}}^{H} = F_{\overline{A}\overline{B}}^{H}$.

Lemma 16. $\mu_A = \text{dist}^H \eta_A$.

Proof. By Theorem 12 $n_0 = n$ and by Lemma 13 dist_{AB} = dist_{AB} which prove Lemma 16.

Lemma 17. $A \subseteq B \Rightarrow \mu_A \ge \mu_B$. Proof. $\mu_A(x) = \sup_{t < x} \sup_{A_0 \in \mathcal{N}_0} F^H_{A_0A}(t) =$ $= \sup_{t < x} \sup_{A_0 \in \mathcal{N}_0} \inf_{p \in A} \sup_{p_0 \in A_0} F_{pp_0}(t) \ge$ $\ge \sup_{t < x} \sup_{A_0 \in \mathcal{N}_0} \inf_{p \in B} \sup_{p_0 \in A_0} F_{pp_0}(t) = \mu_B(x)$.

Lemma 18. A is compact $\iff \mu_A = H$.

Proof. $A \in \mathcal{T} \Leftrightarrow A \in \mathcal{T}_0 \Leftrightarrow \bigvee_{0 < \lambda < 1, x > 0} \qquad \overrightarrow{A}_0 \in \mathcal{T}_0 \qquad F_{A_0 A}^H(x) > 1 - \lambda \Leftrightarrow$

$$\bigvee_{x > 0} \sup_{A_0 \in \mathcal{N}_0} F_{A_0 A}^H(x) = 1 \iff \operatorname{dist}^H_{\mathcal{N}_0} \{A\} = \operatorname{dist}^H_{\mathcal{N}_0} = H.$$

Theorem 13. If the N-space (S, \mathcal{F}, \min) is complete then $\mu_{\text{conv}A} = \mu_A$.

Proof. We know, by Lemma 16, that $\mu_{convA} \leq \mu_A$. Fix now x > 0, $\epsilon' > 0$. We will show that $\mu_A(x) \leq \mu_{convA}(x) + \epsilon'$. One has

But, by Theorem 3, conv A_0 is compact so that there exists $\epsilon/2$, λ -system $\begin{cases} w_i, \\ 1 \le i \le n \end{cases} \subset \operatorname{conv} A_0$ such that $1 - \lambda > \mu_A(x) - \epsilon'$, where

conv
$$A = [p = \sum_{j=1}^{r} \lambda^{(j)} p_j : \lambda^{(j)} \ge 0, \sum_{j=1}^{r} \lambda^{(j)} = 1, p_j \in A; r = 1, 2, ...]$$

 $\mu_{\operatorname{conv} A}(x) \ge \inf_{p \in \operatorname{conv} A} \sup_{w \in \{w_1, w_2, ..., w_n\}} F_{p - w}(x - \epsilon/2) =$

$$= \min \left(F_{\Sigma_{j=1}^{r} \lambda^{(j)}(p_{j} - p_{i}(p_{j}))}(x - \epsilon), F_{\Sigma_{j=1}^{r} \lambda^{(j)}p_{i}(p_{j})} - w_{i}(\Sigma_{j=1}^{r} \lambda^{(j)}p_{i}(p_{j})}(\epsilon/2) \right) \ge$$

$$\geq \min\left(\min_{j=1}^{r} \left(F_{\lambda}^{j} (p_{j}^{-p} i(p_{j}))\right)^{\lambda^{j}} (x-\epsilon)\right), F_{\Sigma_{j=1}^{r} \lambda^{(j)} p_{i}(p_{j})^{-w_{j}(p)}(\epsilon/2)\right) \geq \sum_{j=1}^{r} \sum_{j=1}^{$$

 $\geq \min(\min_{j=1}^{r} (F_{p_{j}} - \bar{p}_{i}(p_{j})}(x - \epsilon), 1 - \lambda)) \geq \min(\mu_{A}(x) - \epsilon', 1 - \lambda) = \mu_{A}(x) - \epsilon'.$ Theorem 14. Let (S, \mathcal{F}, T) be a complete M-space and $\{A_{n}, n \geq 1\} \subset \mathcal{M}$ a nonincreasing sequence with $\mu_{A_{n}} \rightarrow H$ as $n \rightarrow \infty$. Then $A = \bigcap_{n=1}^{\infty} A_{n} \in \mathcal{N}$.

Proof. First we show that $A \neq \emptyset$. Take $1 > \epsilon_k \ge 0$ and $1 > \lambda_k \ge 0$. We have

$$\mu_{A_n} \to H \text{ as } n \to \infty \iff \bigvee_{0 < \lambda_k < 1, e_k > 0} A_{(n_k)}^{\circ} \in \mathcal{X}_{\circ} \quad p_{(n_k)} \in A_{(n_k)} F_{p_{n_k} p_{(n_k)}^{\circ}}(e_k) > 1 - \lambda_k,$$

what implies that $A_{(n_k)}^0$ is ϵ_k , λ_k -system for A_{n_k} . Take now a sequence $\left[p_{n_k}^{(0)}, k \ge 1\right]$, $p_{n_k} \in A_{n_k}$. Since $A_{(n_1)}^0$ is finite, then there exists a subsequence $\left[p_{n_k}^{(1)}, k \ge 1\right] \subset \left[p_{n_k}^{(0)}, k \ge 1\right] \subset \left[p_{n_k}^{(l-1)}, k \ge 1\right] \subset \left[p_{n_k}^{(l-2)}, k \ge 1\right]$ and Suppose that they are defined $\left\{p_{n_k}^{(l-1)}, k \ge 1\right\} \subset \left[p_{n_k}^{(l-2)}, k \ge 1\right]$ and $\overline{p}_{(n_{l-1})}^0 \in A_{(n_{l-1})}^0, l \ge 2$. There exist a subsequence $\left[p_{n_k}^{(l)}, k \ge 1\right] \subset \left[p_{n_k}^{(l-1)}, k \ge 1\right]$

and $\overline{p}_{(n_l)}^0 \in A_{(n_l)}^0$ such that $\left\{p_{n_k}, k \ge 1\right\} \subset U_{\overline{p}_{(n_l)}^0}(\epsilon_l, \lambda_l)$. We consider now the sequence $\left\{ p_{n_{j}}^{(l)}, l \ge 1 \right\}$. This a Cauchy sequence. Fix $0 < x, \lambda < 1$. We see that $\exists \quad \bigvee_{l_{\phi}} \quad T(1-\lambda_{l}, 1-\lambda_{l}) > 1-\lambda, \quad 2\epsilon_{l} \leq x.$

Then

$$\bigvee_{l \ge l_{\bullet}} \bigvee_{j=1,2,\dots} F_{p_{n_{j}}(l)} p_{l+j}^{(l+j)}(x) \ge T(F_{p_{n_{l}}(l)} \bar{p}_{n_{l}}^{\circ}(n_{l})}(\epsilon), F_{\bar{p}}_{(n_{l})}^{\circ} p_{n_{l+j}}^{(l+j)}(\epsilon))$$

$$T(l-1) = 1 \ge l \ge l-1 \ge l$$

Therefore $\{p_{n_1}^{(l)}, l \ge 1\}$ has the limit point $p \in S$. Since $\{p_{n_1}^{(l)}, l \ge 1\}$ is a subsequence of $\left\{p_{n_k}, k \ge 1\right\}, p_{n_k} \in A_{n_k}, \text{ and } A_{n_k}$ are closed, then $p \in \bigcap_{n=1}^{\infty} A_n = A \neq \emptyset$. Of course $A = \overline{A}$. It is also true that A is compact. Since $\mu_{A_n} \leq \mu_{A_{n+1}} \leq \dots \leq \mu_A$ and $\mu_{A_n} \rightarrow H$ as $n \to \infty$, then $\mu_A = H$. From Lemma 18, $A \in \mathcal{R}$.

Theorem 15. Let (S, \mathcal{F}, \min) be a complete N-space. If $C \in \mathfrak{M}$ is convex and the mapping $M: C \rightarrow C$ is continuous and

$$\exists_{k \in \{0, 1\}} \quad \bigvee_{C \supset A \in \mathcal{W}} \bigvee_{x > 0} \mu_{M(A)}(x) \ge \mu_{A}(x/k) ,$$

then M has a fixed point.

Proof. Define $C_0 = C$, $C_{n+1} = \overline{\operatorname{conv} M(C_n)}$, $n = 0, 1, 2, \dots$. Of course, $C_n \in \mathfrak{M}$ are

convex. We are going to show that $\mathcal{M}(C_n) \subseteq C_n$. It is obvious that $\mathcal{M}(C_0) \subseteq C_0$. Suppose that $\mathcal{M}(C_{n-1}) \subseteq C_{n-1}$. Then $\mathcal{M}(C_n) =$

$$= M(\operatorname{conv} M(C_{n-1})) \subset M(\operatorname{conv} C_{n-1}) \Rightarrow M(C_{n-1}) \subset \operatorname{conv} M(C_{n-1}) = C_n. \text{ Therefore,}$$

$$C_{n+1} = \operatorname{conv} M(C_n) \subset M(C_n) \subset C_n.$$

We show now that $\mu_{C_n} \to H$ as $n \to \infty$. Note that $\bigvee_{x \to 0} \mu_{C_{n+1}}(x) = \mu_{\overline{\text{conv}} M(\overline{C_n})}(x) =$ $= \mu_{\operatorname{conv}} \mathcal{M}(C_n)(x) \ge \mu_{C_n}(x/k) \ge \dots \ge \mu_{C_0}(x/k^{n+1}) \to 1 \text{ as } n \to \infty, \text{ since } \mu_{C_0} \in \Delta^*.$

Therefore, $C_{\infty} = \bigcap_{n \in \mathbb{N}} C_n \in \mathbb{N}$. This follows from facts C_n , $C_n \in \mathbb{N}$, $\mu_{C_n} \to H$ as $n \to \infty$,

and from Theorem 14. C_{∞} is convex as C_n are convex. Note that

$$\bigvee_{n=0, 1, \dots} M(C_n) \subset M(C_n) \subset \operatorname{conv} M(C_n) = C_{n+1}$$

Hence,

$$M(C_{\infty}) \subset \bigcap_{n=1}^{\infty} C_n = \bigcap_{n=0}^{\infty} C_n = C_{\infty}.$$

Thus we can apply here the Theorem 9, and this completes the proof.

REFERENCES

- Egbert, R. J., Products and quotients of probabilistic metric spaces, Pacyfic J. Math., 1968, vol. 24, nr 3, 437-457.
- [2] Schweizer, B., Sklar, A., Statistical metric spaces, Pacyfic J. Math., 1960, vol. 10. 313-333.
- [3] Serstnev, A. N., On the concept of a random normed space, Dokl. Akad. Nauk SSSR, 1963, vol. 149, 280-283.
- [4] Sherwood, H., Complete probabilistic metric spaces, Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete, 1971, vol. 20, nr 2, 117-128.

STRESZCZENIE

Praca zawiera twierdzenia o punkcie stałym dla ciągłych odwzorowań na przestrzeniach zupełnych, unormowanych według prawdopodobieństwa. Uzyskane wyniki uogólniają pewne klasyczne twierdzenia o punktach stałych.

РЕЗЮМЕ

Работа содержит теоремы о неподвижной точке для непрерывных преобразований на полных, нормированных по вероятности пространствах. Полученные результаты бобщают некоторые классические теоремы.