ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA

LUBLIN-POLONIA

VOL. XXXII, 12

SECTIO A

1978

Instytut Matematyki Uniwersytet Marii Curie-Skłodowskiej

Józef ZAJĄC

The Ahlfors class N and its connection with Teichmüller quasiconformal mappings of an annulus

Klasa N Ahlforsa i jej związek z odwzorcowaniami Quasikonforemnymi Teichmüllera w pierścieniu

Класс N Альфорса и его связь с квазиконформными отображениями Тейхмюллера в круговом кольце

Ahlfors [1] investigated the class N of complex-valued L^{∞} functions ν in the unit disc for which the antilinear part of variation of quasiconformal mappings vanishes, where the mappings are generated by dilatation of the form $t\nu$, t being a real parameter. He gave two important characterizations of the class N.

Reich and Strobel proved (1968) that the class N contains functions of the form $\overline{\phi}/|\phi|$, where ϕ is holomorphic in the unit disc. The present author obtains analogues of these results in the case of annuli.

Introduction and preliminaires. Let μ be a complex – valued measurable function in an annulus $\Delta_r = [z : r \le |z| \le 1], 0 \le r \le 1$, which satisfies

$$\|\mu\|_{\mathcal{L}} = \inf_{E} \sup_{z \in \Delta_{F} \setminus E} |\mu(z)| < 1$$

where the infimum is taken over all sets E with the plane measure zero.

It is well known that there exists exactly one number R, 0 < R < 1, and one Q-quasiconformal mapping f of the annulus Δ_r onto Δ_R which satisfies the Beltrami equation

(1)
$$f_{\overline{z}} = \mu f_{z}$$

with f(1) = 1, where $Q = (1 + ||\mu||_{\infty})/(1 - ||\mu||_{\infty})$.

Here by a normalized quasiconformal mapping we mean any quasiconformal mapping $f: \Delta_P \to \Delta_R$ which satisfies f(1) = 1.

Suppose that $\mu = \mu(t)$ depends analytically on a real parameter t when regarded as an element of $L^{-}(\Delta_{r})$. It has been proved [1] that f depends analytically on t for every fixed z and also that $\partial/\partial t$ commutes almost everywhere with $\partial/\partial z$ and $\partial/\partial z$.

We confine corselves to the case $\mu(t) = t\nu$, where $\|\nu\|_{\infty} < +\infty$, $0 \le t \le 1$, and denote explicitly the dependence of f on $\nu : f(z, t) = f[\nu](z, t), r \le |z| \le 1$. Let

(2)
$$f[\nu](z) = \lim_{t \to 0} 1/t [f[\nu](z, t) - z]$$

This expression is well defined and depends linearly on v[1]. From $f[v]_{\overline{z}} = tvf[v]_{z}$ it follows that

(3)
$$f[\nu]_{\overline{z}} = \nu.$$

It is well known that (3) is satisfied only if

(4)
$$f[\nu](\zeta) = 1/\pi \iint_{\Delta_r} \frac{\nu(z)}{\zeta - z} dx dy + F(\zeta)$$

with holomorphic *F*, where $\iint_{\Delta_F} = \lim_{\epsilon \to 0} \iint_{\Delta_F \setminus \delta \epsilon(\zeta)} \text{ and } \Delta^{\epsilon}(\zeta) = [z : |\zeta - z| \leq \epsilon].$ Thus we have ([4], p. 33):

(5)
$$\dot{f}[\nu](\zeta) = \frac{\zeta}{2\pi} \iint_{\Delta_{r}k=-\infty}^{\infty} \left[\frac{\nu(z)}{z^{2}} \left(\frac{\zeta + r^{2k}z}{\zeta - r^{2k}z} - \frac{1 + r^{2k}z}{1 - r^{2k}z} \right) - \frac{\overline{\nu(z)}}{\overline{z}^{2}} \left(\frac{1 + r^{2k}\zeta \overline{z}}{1 - r^{2k}\zeta \overline{z}} - \frac{1 + r^{2k}\zeta \overline{z}}{1 - r^{2k}\zeta \overline{z}} \right) - \frac{1 + r^{2k}\zeta \overline{z}}{1 - r^{2k}\zeta \overline{z}} + \frac{1 + r^{$$

where the notation $\dots + a_{-1} + a_0 + a_1 + \dots$ is applied instead of $a_0 + (a_1 + a_1) + \dots$ provided that the last series converges.

We see that f is a continuous linear operator which maps every $\nu \in L^{\infty}(\Delta_r)$ on a function $f[\nu]$. In addition, the relations $|f[\nu](z, t)| = 1$ for |z| = 1 and $|f[\nu](z, t)| = R[\nu](t)$ for |z| = r yield

(6) Re
$$[\bar{z}f[\nu](z)] = \frac{1}{2} \lim_{t \to 0} \frac{[f[\nu](z, t) - z]^2}{tzf[\nu](z, t)} = 0$$
 for $|z| = 1$
and

$$\operatorname{Re}\left[\left[\overline{z}f\left[\nu\right](z)\right]\right] = r\operatorname{Re}\lim_{t\to 0}\frac{r}{tz} \quad \frac{f\left[\nu\right](z,t)}{R\left[\nu\right](t)} - \frac{z}{r} \quad +\lim_{t\to 0}\frac{1}{t}\left[\left[R\left[\nu\right](t) - r\right]\right] = r\rho$$

for |z| = r,

where $\rho = \lim_{t \to 0} 1/t [R[\nu](t) - r]$. In analogy to the above we verify that

(8)
$$\operatorname{Re}\left[\overline{zf}\left[i\nu\right](z)\right] = 0 \quad \text{for } |z| = 1$$

and

(9)
$$\operatorname{Re}[\overrightarrow{zf}[i\nu](z)] = r\rho^* \quad \text{for } |z| = r$$

where $\rho^* = \lim_{t \to 0} 1/t [R[i\nu](t) - r].$

Finally we need the following result due to Ławrynowicz [3]:

(10)
$$\rho = \frac{r}{2\pi} \iint_{\Delta_r} \left[\frac{\nu(z)}{z^2} + \frac{\overline{\nu(z)}}{\overline{z^2}} \right] dx dy,$$

which yields

(11)
$$\rho^* = \frac{ir}{2\pi} \int_{\Delta_r} \left[\frac{v(z)}{z^2} - \frac{\overline{v(z)}}{\overline{z^2}} \right] dx dy.$$

By a Teichmüller mapping of Δ_r onto Δ_R we mean any quasiconformal mapping f whose complex dilatation μ has a.e. (= almost everywhere) the form $t\overline{\phi}/|\phi|$, where $0 \le t < 1$, and ϕ is a function meromorphic in $\operatorname{int} \Delta_r$, whose only singularities may be poles of the first order. By a normalized Teichmüller mapping we mean any Teichmüller mapping f which satisfies the condition f(1) = 1.

We prove first.

Theorem 1. Let f be a teichmüller mapping in Δ_r . Then

(12)
$$r \log r^2 \leq \rho \leq r \log r^{-2},$$

where the equality is attained for $f_1(z) = e^{i\theta} z |z|^{-2t/(1+t)}$, $z \in \Delta_r$, on the left – hand side and for $f_2(z) = e^{i\theta} z^{2t/(1-t)}$, $z \in \Delta_r$, on the right – hand side, where θ is a real parameter.

Proof. From the geometric definition of quasiconformal mappings (cf. e.g. [2], p. 31) it follows that

$$\frac{1-t}{1+t} \le \log R(t) / \log t \le \frac{1+t}{1-t}$$

where $R(t) = R\left(\frac{1}{6} / \frac{1}{6}\right)(t)$

Since $0 \le r \le 1$, then

$$\frac{1+t}{\log r \ 1-t} \le \log R(t) \le \log r \ \frac{1-t}{1+t}$$

i.e.

$$\frac{\frac{1+t}{r^{1-t}-r}}{t} < \frac{R(t)-r}{t} < \frac{r^{\frac{1-t}{1+t}}-r}{t}$$

But $\frac{d}{dt} r^{\frac{1+t}{1-t}} \bigg|_{t=0} = -\frac{d}{dt} r^{\frac{1-t}{1+t}} \bigg|_{t=0} = 2r \log r$. Therefore (12) follows.

1. The Ahlfors class N for an annulus Δ_r . Now we shall define the Ahlfors class N_r for an annulus Δ_r and study some properties of this class. To this end let us decompose the variation $f[\nu]$ defined by (2) as follows:

(13)
$$\dot{f}[\nu] = 1/2[f[\nu] + if[i\nu]] + 1/2[f[\nu] - if[i\nu]],$$

where the first part is antilinear and the second part is linear with respect to the complex multipliers. By the definition of $f[\nu]$ and (3) we see that $[f[\nu] + if[i\nu]]_{\overline{z}} = 0$ i.e.

(14)
$$\Phi[\nu] = \hat{f}[\nu] + i\hat{f}[i\nu]$$

is always a holomorphic function. The antilinearity is expressed by $\Phi[i\nu] = -i\Phi[\nu]$. We denote by N_r the subspace of $L^{\infty}(\Delta_r)$ which is formed by all ν with $\Phi[\nu] = 0$. It is a complex linear subspace of $L^{\infty}(\Delta_r)$.

The following characterization of N_r is important.

Lemma 1. An element v of $L^{\infty}(\Delta_r)$ belongs to N_r if and only if $\tilde{f}[v]$ satisfies the condition

(15) $\dot{f}[\nu](z) = \begin{bmatrix} 0 & \text{for } |z| = 1 \\ \frac{z}{\pi} \iint_{\Delta \dot{r}} \frac{\nu(\zeta)}{\zeta^2} d\zeta d\eta & \text{for } |z| = r \end{bmatrix}$

where $\zeta = \zeta + i\eta$.

Proof. By (14) we have

$$\operatorname{Re}[\overline{z} \Phi[\nu](z)] = \operatorname{Re}[\overline{z}f[\nu](z)] - \operatorname{Im}[\overline{z}f[i\nu](z)],$$

and, analogously,

$$\operatorname{Im}[\overline{z} \Phi[\nu](z)] = \operatorname{Im}[\overline{z}f[\nu](z)] + \operatorname{Re}[\overline{z}f[i\nu](z)].$$

By (6) and (7) this yields

$$\operatorname{Re}\left[\left[\overline{z}\phi[\nu](z)\right]\right] = \begin{bmatrix} -\operatorname{Im}\left[\left[\overline{z}\,\widehat{f}\left[i\nu\right](z)\right]\right] & \text{for } |z| = 1,\\ r\rho - \operatorname{Im}\left[\left[\overline{z}\,\widehat{f}\left[i\nu\right](z)\right]\right] & \text{for } |z| = r, \end{bmatrix}$$

and, by (9),

$$\operatorname{Im}\left[\!\left[\overline{z}\phi[\nu](z)\right]\!\right] = \begin{bmatrix} \operatorname{Im}\left[\!\left[\overline{z}f[\nu](z)\right]\!\right] & \text{for } |z| = 1 \\ r\rho^* + \operatorname{Im}\left[\!\left[\overline{z}f[\nu](z)\right]\!\right] & \text{for } |z| = r. \end{cases}$$

Hence

(16)
$$\overline{z}f^{*}[\nu](z) = \begin{bmatrix} i \operatorname{Im} \left[\overline{z} \phi[\nu](z) \right] & \text{for } |z| = 1, \\ r(\rho - i\rho^{*}) + i \operatorname{Im} \left[\overline{z} \phi[\nu](z) \right] & \text{for } |z| = r. \end{bmatrix}$$

Therefore $\Phi = 0$ implies (15) by virture of (10) and (11).

Conversely, if $f[\nu]$ satisfies (15), we see that the function $z \to \overline{z} \Phi[\nu](z)$ has real values on $\partial \Delta_r$. Since $\overline{z}\Phi[\nu](z) = |z|^2 z^{-1} \Phi[\nu](z)$, then the holomorphic function $z \to z^{-1} \Phi[\nu] \cdot (z)$ has real values on $\partial \Delta_r$ as well and it is continuous on Δ_r . It can easily be seen that this function must be constant beign real in Δ_r . But $\Phi[\nu](1) = 0$, whence $\Phi[\nu](z) = 0$ in Δ_r . This completes the proof.

As an immediate consequence of this Lemma we obtain.

Theorem 2. If v belongs to N_r , then

(17)
$$\iint_{\Delta_r} \nu(z) g(z) dx dy = \frac{\iota}{2} \iint_{\Delta_r} \frac{\nu(\zeta)}{\zeta^2} d\xi d\eta \cdot \iint_{|z|=r} zg(z) dz$$

for all g holomorphic in int Δ_r with $\iint_{\Delta_r} |g(z)| dx dy < +\infty$, where $\zeta = \xi + i\eta$.

Proof. Suppose that g is a holomorphic function in $\text{int } \Delta_r$ with finite L^1 -norm in Δ_r . Since $\|\nu\|_{\infty} < +\infty$ then, by (3), and by Green's formulae in the generalized form (see [2], p. 148) we have

$$\iint_{\Delta_{r}} y(z)g(z)dxdy = -i/2 \iint_{|z|=1} f[v](z)g(z)dz + i/2 \iint_{|z|=k} f[v](z)g(z)dz$$

which, by (15) yields (17) and this completes the proof. In the case R = r we may show, using the technique of Ahlfors [1], that the condition (17) is also sufficient.

2. Relationship between the Ahlfors class N_r and Teichm Jer mappings of an annulus. Recall that in the case of the unit disc the Ahlfors class N is defined like in the case of the annulus Δ_r (see [1]). Suppose that f is a Teichmüller mappinggenerated by the complex dilatation of the form $t\overline{\phi}/|\phi|$, where ϕ is holomorphic in Δ and $0 \le t \le 1$. If we assume in addition, that f keeps the boundary points fixed for a sequence of values t tending to zero, then $\overline{\phi}/|\phi| \in N$. This result has been obtained by Reich adn Strebel [5].

In the case of an annulus we are going to prove.

Theorem 3. Suppose that:

(i) f is a Teichmüller mapping generated by the complex dilatation of the form $t\overline{\phi}/|\phi|$, where ϕ is holomorphic in Δ_r and $0 \le t \le 1$.

(ii) f maps Δ_r onto $\Delta_{R(t)}$ and satisfies: $f(e^{i\theta}, t) = e^{i\theta}$, $f(re^{i\theta}, t) = R(t)e^{i\theta}(r, t)$, $0 \le t < 1, -\pi < \theta \le \pi$ with $\theta(r, t) = \arg f(re^{i\theta}, t)$,

(iii) we have

(18)
$$\theta_t(r,0) = \frac{1}{2\pi^i} \iint_{\Delta_r} \left[\frac{\overline{\phi(\zeta)}}{|\phi(\zeta)|} \frac{1}{\zeta^2} - \frac{\phi(\zeta)}{|\phi(\zeta)|} \frac{1}{\zeta^2} \right] d\xi d\eta$$

Then $\overline{\phi}/|\phi| \in N_r$.

Proof. Suppose that f is a mapping which satisfies the hypotheses of the theorem. Then f keeps the points of [z : |z| = 1] fixed for every $0 \le t < 1$ and we see that $f[\overline{\phi}/|\phi|](z) = 0$ for |z| = 1, so we arrive at the first condition in (15). In order to verify the second condition in (15) let us note that

(19)
$$f[\overline{\phi}/|\phi|](z) = z[\rho/r + i\theta_t(r, 0)] \text{ for } |z| = r$$

Therefore, by (10) and (18), we obtain

$$f[\overline{\phi}/|\phi|](z) = z/\pi \iint_{\Delta_r} \frac{\overline{\phi(\zeta)}}{|\phi(\zeta)|} \frac{d\xi d\eta}{\zeta^2} \quad \text{for } |z| = r$$

By Lemma 1 this complete the proof.

3. Corollary. First we give.

Corollary 1. If in Theorem 2 we additionally assume that g has holomorphic extension to $[z:|z| \le 1]$, then

(20)
$$\int \int v(z) g(z) dx dy = 0$$

Proof. By a well known Cauchy's theorem the relation-ship (17) reduces to (20) because

$$\int_{|z|=r} z \cdot g(z) \, dz = 0$$

and this suffices to conclude the proof.

The relationship mentioned in (20) is the so called relation of orthogonality in the weak sense (see[6], p. 5). It plays an important role in the parametrical method for quasiconformal mapping of the unit disc.

Corollary 2. Let f be a Teichmüller mapping generated by the complex dilatation of the form $t\phi/|\phi|$, where ϕ is holomorphic and $0 \le t \le 1$, which maps Δ_r onto $\Delta_R(t)$ and satisfies: $f(e^{i\theta}, t) = e^{i\theta}$, $f(re^{i\theta}, t) = R(t)e^{i\theta}$, $0 \le t \le 1, -\pi \le \theta \le \pi$. Then $\phi/|\phi| \le N_r$.

Proof. Suppose that f is a mapping which satisfies the hypotheses of the Corollary. By Theorem 3 we obtain the first condition in (15). The second condition in (15) is even simpler because in this case $\theta_t(r, 0) = 0$ and this, by Lemma 2, completes the proof.

As an immediate consequence of (5) we shall give.

Corollary 3. An element v of $L^{\infty}(\Delta_r)$ belongs to N_r if and only if

(21)
$$f'[\nu](\zeta) = \frac{\zeta}{2\pi} \int \int \sum_{k=-\infty}^{+\infty} \frac{\nu(z)}{z^2} \left(\frac{\zeta + r^{2k} z}{\zeta - r^{2k} z} - \frac{1 + r^{2k} z}{1 - r^{2k} z} \right) dxdy$$

for $r \leq |\zeta| \leq 1$.

These results have natural analogues in the case r = 0, i.e. for the mapping in Δ with an additional invariant point 0.

REFERENCES

- [1] Ahlfors, L. V., Some remarks on Teichmüller space of Riemann surface, Ann. of Math. 74 (1961), 171-191.
- [2] Lehto, O. and Virtanen, K. I., Quasiconformal mappings in the plane, Berlin-Heidelberg-New York 1973.
- [3] Ławrynowicz, J., On the parametrization of quasiconformal mappings with invariant boundary points in the unit disc, Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys., 9 (1973), 739-741.
- [4] Ławrynowicz, J., On the parametrization of quasiconformal mappings in an annulus, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, 18 (1964), 23-52.

[5] Reich, E. and Strebel, K., On quasiconformal mappings which keep the boundary points fixed, Trans. Amer. Math. Soc., 138 (1969), 211-222.

[6] Reich, E. und Strebel, K., Einige Klassen Teichmüllerscher Abbildungen, die die Randpunkte - festhalten, Ann. Acad. Sci. Fenn. Ser. A I, 457 (1970), 19.

STRESZCZENIE

Autor rozważa klasę N_r Ahlforsa w pierścieniu, podaje jej charakteryzacje oraz związek z odwzorowaniami quasikonforemnymi Teichmüllera.

РЕЗЮМЕ

Автор рассматривает класс *Nт* Альфорса в круговом кольце, представляет его характеристику и связь с квазиконформными отображениями Тейхмюллера.