ANNALES UNIVERSITATIS MARIAE CURIE.SKŁODOWSKA LUBLIN-POLONIA

VOL. XXXII, 9
SECTIO A 1978

Instytut Matematyki
Uniwersytet Marii Curie-Skłodowskicj

Wtadystaw ROMPAをA

Liftings of π-Conjugate Connections
Podniesienie Koneksji π-sprzężonych
Возведение л-сопряженных связностей
K. Yano and S. Isihara have investigated complete and horizontal lifts of geometric objects from a differential manifold M to the manifold $T M$ in [4].

In this paper we present some proporties of the pair of linear connections on $T M$ given by complete and horozontal lifts of the pair of π-conjugate connections on M. With the aid of metods given in [4] we transfer some results concerning π-conjugate connections and π-geodesics from M to $T M$.

The main results are contained in theorems (21) and (44). All our considerations are in the category $\mathrm{f}^{\prime \prime}$ ".

1. Introduction. Let (M, ∇) be a smooth n-dimensional manifold with a linear connection ∇. We denote by $T M$ the tangent bundle over the manifold M. Let p denote the natural projection $p: T M \rightarrow M$. On $T M$ there exists the natural structure of smooth $2 n$-dimensional differential manifold induced from M. (see e. g. [4] chapter 1. §1.)

We assume that indices h, i, j, \ldots vary over $[1 \ldots, n]$, indices $\bar{h}, \bar{i}, \bar{j}, \ldots$ vary over $[n+$ $+1, \ldots, 2 n]$ and indices H, I, J, \ldots vary over $[1, \ldots, n, n+1, \ldots, 2 n]$. The Einstein summation convention will be used with respect to these systems of indices. Let f_{*} denotes the tangent map of a given mapping f and cxp_{x} the exponential mapping with respect to the given linear connection ∇. The $e x p_{x}$ yields a diffeomorphism of a neighborhood U^{\prime} of 0 in $T_{x} M$ onto a neighborhood U of x in M, and t_{Z} denotes the automorphism of $T_{x} M$ given by $I_{Z}(Y)=Y-Z$ for $Y \in T_{X} M$. p_{*} being the tangent map of canonical projection $p: T M \rightarrow M$ and projection K is denoted as follows: for each $A \in T_{Z} T M$ and $x=p(Z)$ we set

$$
\begin{equation*}
K_{\mid Z}(A):=\left(\exp _{x} \cdot t_{Z} \cdot \tau\right)(A) \tag{1}
\end{equation*}
$$

where τ denotes the $C^{\prime \prime}$-map of $p^{-1}(U)$ into $T_{x} M$ which assings to every $Y \in p^{-1}(U)$ the
element $\tau(Y) \in T_{x} M$ which is obtained by a parallel transport of Y from $y=p(Y)$ to the point x along the unique geodesic arc in U joining x and y.

Let $R^{2 n}$ be the Euclidean space of dimension $2 n$, and let (U, x) be a local chart on M. We denote by $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ a holonomic field of frames on U determined by x. Let's define X :

$$
X: p^{-1}(U) \rightarrow R^{2 n} / Z \rightarrow\left(x^{1}, \ldots, x^{n}, Z^{1}, \ldots, Z^{n}\right)
$$

where $\left(Z^{1}, \ldots, Z^{n}\right)$ are components of $Z \in p^{-1}(U)$ with respect to the frame $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ and $\left(x^{1}, \ldots, x^{n}\right)$ are the coordinates of the point $x=p(Z)$ in (U, x). The pair $\left(p^{-1}(U), X\right)$ is called the natural lift of the chart (U, x). The natural lift of the local chart (U, x) is the local chart on $T M$. The field of holonomic frames with respect to the local hart ($p^{-1}(U)$, $X)$ is called the natural frame. We denote it by $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{x}_{n+1}, \ldots \mathbf{x}_{2 n}\right)$.

Let $(\underset{j k}{i})$ be local coefficients of the linear connection ∇ i. i. e. $\overline{\mathrm{V}}_{\mathrm{x} i} \mathrm{xj}^{j}=\sum_{k=1}^{n} \sum_{i j}^{k} \mathrm{x}_{k}$. Then there are defined [2] the two linear mappings of $T T M$ onto $T M . p_{*}$ is tangential to p. thus if Ψ maps a neighbourhood of 0 in R into $T M$ so that X is a corresponding 'velocity vector', then $p \cdot \Psi$ describes a curve of its foot points in M and $p_{*} X$ is just its velocity vektor. Another mapping, K, is defined locally as follows:

$$
\begin{equation*}
K(X)=\sum_{i=1}^{n}\left(X^{i+n}+\sum_{j k}^{i} X^{i} Z^{k}\right) \mathbf{x}_{i}, \text { where } X=\sum_{A=1}^{2 n} X^{A} \mathbf{x}_{A} . \tag{2}
\end{equation*}
$$

The projections p and K have the followingproperties:
a) for each $Z \in T M$

$$
p_{*} \mid T_{Z}(T M) \text { and } K \mid T_{Z}(T M)
$$

are linear mappings of rank $n n=\operatorname{dim} M$ with values in $T_{p(Z)} M$.
b) for arbitrary $Z \in T M$ there exists the following decomposition into a direct sum

$$
T_{Z} T M=\operatorname{ker}\left(p_{*} \mid T_{Z} T M\right) \oplus \operatorname{ker}\left(K \mid T_{Z} T M\right)
$$

where $\operatorname{dim} \operatorname{ker} p_{*}=\operatorname{dim} \operatorname{ker} K=n$
The definitions of horizontal, vertical and complete liftings used in thesequel are takenfrom [2] and [4].

A vector field ν^{H} on $T M$ is said to be the horizontal lift of the vector field v on M iff for every $Z \in T M$ with $x=p(Z)$ we have

$$
p_{*}\left(v^{H}(Z)\right)=v(x) \text { and } K\left(v^{H}(Z)\right)=0 .
$$

A vector field ν^{V} on $T M$ is said to be vertical lift of the vector field v on M. iff for all $Z \in T M$ we have

$$
p_{*}\left(\nu^{V}(Z)\right)=0 \text { and } K\left(\nu^{V}(Z)\right) \doteq \nu(x) .
$$

A vector field ν^{C} on $T M$ is called a complete lift of the vector field ν on M, iff we have

$$
p \cdot\left(v^{C}(Z)\right)=v(x) \text { and } K\left(\nu^{C}(Z)\right)=\left(\nabla_{Z} v\right)(x) .
$$

Let T TM denote a bundle which is cotangent with respect to the tangent bundle $T(T M)$. If there is given a frame $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{x}_{n+1}, \ldots, \mathbf{x}_{2 n}\right)$, then there exists a unique co-frame $d x^{1}, \ldots, d x^{n}, d x^{n+1}, \ldots, d x^{2 n}$, such that the value of $d x^{A} \mid Z$ on $\mathbf{x}_{B} \mid Z$ is eaqual to the Kronecker δ_{B}^{A}.

A covector field $\omega^{H}=\sum_{A=1}^{2 n} \omega_{A}^{H} d x^{A}$ on $T M$ is said to be the horizontal lift of the covector field ω on M iff for all $Z \in T M$ with $x=p(Z)$ and for each vector field v on M we have

$$
\omega^{H}\left(\nu^{H}\right) \mid Z=0 \text { and } \omega^{H}\left(\nu^{V}\right)|Z=\omega(\nu)|_{x} .
$$

A covector field ω^{V} on $T M$ is said to be the vertical lift the convector field ω on M iff

$$
\omega^{V}\left(\nu^{H}\right)|Z=\omega(\nu)| x \text { and } \dot{\omega}^{V}\left(\nu^{V}\right) \mid Z=0 .
$$

A covector field ω^{C} on $T M$ is said to be the complete lift of the covector field ω iff

$$
\begin{gathered}
\omega^{C}\left(\nu^{C}\right)\left|Z=\omega\left(\nabla_{Z} v\right)\right| x+\left(\nabla_{Z} \omega\right)(\nu) \mid x \\
\omega^{C}\left(\nu^{H}\right)\left|Z=\left(\nabla_{Z} \omega\right)(\nu)\right| x \\
\omega^{C}\left(\nu^{V}\right)|Z=\omega(\nu)| x
\end{gathered}
$$

Let f be a smooth real valued function on M. A function f^{V} on $T M$ defined by $f^{V}(\mathcal{Z})$: $:=f(p(Z))$, for arbitrary $Z \in T M$ is the vertical lift of the function f.

A function f^{C} on $T M$ defined on each $Z \in T M$ by the formula $f^{C}(Z)=\left.\sum_{k=1}^{n} Z^{k} f\right|_{k}$, is the complete lift of the function f.

Let (U, x) be a local chart on M and $\left(p^{-1}(U), X\right)$ a local chart on TM. Let $\left(v^{1}, \ldots, v^{n}\right)$ and $\left(\omega_{1}, \ldots, \omega_{n}\right)$ be local coordinates of the vector field v and the covector field ω on M respectively. The vector field ν^{C} on $T M$ has the coordinates

$$
\begin{equation*}
\left[v^{K}(Z)\right]:=\left(v^{1}, \ldots, v^{n}, \sum_{i=1}^{n} Z^{i} v_{\mid i}^{1}, \ldots, \sum_{i=1}^{n} Z^{i} v_{\mid i}^{n}\right) \tag{3}
\end{equation*}
$$

for any point Z of the local chart $\left(p^{-1}(U), X\right)$. Then the covector $\omega^{C}(Z)$ has local coordinates

$$
\left(\sum_{i=1}^{n} Z^{i} \omega_{1} \mid i, \ldots, \sum_{i=1}^{n} Z^{i} \omega_{n \mid i}, \omega_{1}, \ldots, \omega_{n}\right)
$$

Let f be a smooth real-valued function on M and v be a vector field on M. Thus the complete lift of the product $f v$ his the form

$$
(f v)^{C}(Z)=f^{C}(Z) v^{V}(Z)+f^{V}(Z) v^{C}(Z)
$$

Lemma. If $\left(x_{1}, \ldots, x_{n}\right)$ is the holonomic frame field on U, the set of $2 n$ vector fields $\left(x_{1}^{C}, \ldots, x_{n}^{C}, x_{n+1}^{V}, \ldots, x_{2 n}^{V}\right)$ on $p^{-1}(U)$, is a local field of frames on $T M$.

The matrix which transfers the linear bazis $\left(x_{A}\right)_{A=1, \ldots, 2 n}$ into the $\left(x_{1}^{C}, \ldots, x_{n}^{C}, x_{1}{ }^{K}, \ldots\right.$, , \ldots, \mathbf{x}) has the following form

$$
\left(\begin{array}{ll|ll}
1 & 0 & & \\
0 & 1 & & \\
\hline & & 1 & 0 \\
& & 0 & 1
\end{array}\right)
$$

This matrix is non-singular what comletes the proof of the lemma.
Remark. The module of local vector filds on $T M$ is generated by means of complete and vertical lifts of holonomic vector fields from M.

Let π be a symmetric non-singular tensor field on M of the type $(0,2)$. A symmetric non-singular tensor field π^{C} on $T M$ of the type $(0,2)$ is said to be the complete lift of the tensor field if the equalities

$$
\begin{gather*}
\left.\pi^{C}\left(v^{C}, u^{C}\right)\right|_{Z}=\left.\left(\nabla_{Z} \pi\right)(v, u)\right|_{x} \neq\left.\pi\left(\nabla_{2} v, u\right)\right|_{x}+\left.\pi(v, \nabla z u)\right|_{x} \tag{4.1}\\
\left.\pi^{C}\left(\nu^{C}, u^{V}\right)\right|_{Z}=\left.\pi\left(\nabla_{Z} v, u\right)\right|_{x} \tag{4.2}\\
\left.\pi^{C}\left(v^{V}, u^{C}\right)\right|_{Z}=\left.\pi\left(v, \nabla_{2} u\right)\right|_{x} \tag{4.3}\\
\left.\pi^{C}\left(\nu^{V}, u^{V}\right)\right|_{Z}=0, \tag{4.4}
\end{gather*}
$$

hold for arbitrary vector fields u, v on M and for each point $Z \in T M$ with $x=p(Z)$. Let ($\pi_{i j}$) be local coordinates of the tensor field π and $\left(\pi^{i j}\right.$) the local coordinates in a chart (u, x) of the inverse tensor field π^{-1}. The local coordinates of π^{C} in the local chart $\left(p^{-1}(U), X\right)$ are the following

$$
\left(\tilde{\pi}_{i j}\right)(Z):=\left(\begin{array}{ccc}
\sum_{k=1}^{n} Z^{k} \pi_{i j 1 k} & \pi_{i j} \\
\pi_{i j} & 0
\end{array}\right)
$$

The local coordinates of $\left(\pi^{-1}\right)^{C}$ are

$$
\left(\tilde{\pi}^{j}\right)(Z):=\left(\begin{array}{ll}
0 & \pi^{j j} \tag{6}\\
\pi^{i j} & \sum_{k=1}^{n} Z^{k} \pi_{i k}^{i j}
\end{array}\right)
$$

where we have $\pi_{i s} \pi^{s j}=\delta_{i}^{j}$.
2. Complete lift of π-conjugate linear connections. The following theorem is valid: (cf. [4]). If M is a differentiable manifold with a linear connection ∇, then there exists a unique linear connections on $T M$ which satisfies

$$
\begin{equation*}
\nabla_{\nu}^{C} c^{c} u^{c}=\left(\nabla_{v} u\right)^{C} \tag{7}
\end{equation*}
$$

for every vector fields v, u on M. If $\left(\Gamma_{j i}^{h}\right)$ are the local coefficiens of the connection $\bar{\nabla}$, then the coefficients of the connection ∇^{C} with respect to the local chart $\left(p^{-1}(U), X\right)$ are as follows

$$
\begin{gather*}
\tilde{\Gamma}_{j i}^{h}(Z)=\Gamma_{j i}^{h}(x), \tilde{\Gamma}_{j i}^{h}(Z)=0, \tilde{\Gamma}_{j i}^{h}(Z)=0, \tilde{\Gamma}_{j i}^{h}(Z)=0, \tag{8}\\
\tilde{\Gamma}_{j i}^{\bar{h}}(Z)=\sum_{k=1}^{n} Z^{k} \Gamma_{j i 1 k}^{h}, \tilde{\Gamma}_{\bar{j} i l}^{\bar{h}}(Z)=\Gamma_{j i}^{h}(x), \tilde{\Gamma}_{j i}^{\bar{h}}(Z)=\Gamma_{j i}^{h}(x), \tilde{\Gamma}_{j \bar{j}}^{\bar{h}}(Z)=0 .
\end{gather*}
$$

The connections ∇^{C} is called the complete lift of the linear connection ∇.
For any vector field v on M we define the covector field $\pi \wedge \nu:=\pi(-, \nu)$. Thus we have $\pi^{\prime} v(w)=\pi\left(u^{\prime}, v\right)$ for arbitrary vector field w on M. So $\pi \wedge$ denote izomorphism of the module of vector fields on M onto the module of covector fields on M. Let $\pi \backslash$ denote the mapping which is reciprocal to $\pi \wedge$. We define a mapping $\pi \vee$ as follows: if θ is a covector field on M then $\pi \vee \theta$ is such a vector field that it holds $\pi(\pi \vee \theta, v):=\theta(\nu)$ for any vector field. The composition $\pi \vee^{\prime} \pi \wedge$ is the identity map on the module of vector fields on M and the composition $\pi \wedge \cdot \pi \vee$ is the identity map on the module of covector fields on M. The map $\nabla_{(-)}(\pi \wedge \nu)$ denotes the linear mapping from the module of vector fields on M onto the module of covector fields: i. e.

$$
\nabla_{(\rightarrow)}(\pi \wedge v): u \rightarrow \nabla_{u}(\pi \wedge v)
$$

where $\nabla_{u}(\pi \wedge \nu)$ is the covector field on M.

The map $\nabla_{(-)}(\pi, \theta)$ denotes the linear mapping from the module off vector fields on M onto itself: i. e. for arbitrary vector fields $u, \nabla_{u}(\pi \nu \theta)$ is the vector field on M.

Let ∇ be the linear connection on M and let π be a non-singular tensor field of the type $(0,2)$ on M.

Definition. The connection ∇^{*} on M which is given by the formula

$$
\begin{equation*}
\nabla_{\nu} u:=\nabla_{\nu} u+\pi \vee\left(\nabla_{v}\left(\pi \wedge_{u}\right)\right), \tag{10}
\end{equation*}
$$

is said to be a π-conjugate connection with respect to the given connection ∇. In the local chart (U, x) the formula (10) takes the form

$$
\begin{equation*}
G_{k s}^{i} \nu^{k} u^{s}=\left(\pi^{p i} \nabla_{k} \pi_{p s}+{\underset{k k}{i}) v^{k} u^{s}, ~ ; ~}_{i}^{i}\right. \tag{11}
\end{equation*}
$$

where $\left(G_{k s}^{i}\right)$ are the local coefficients of the connection ∇^{*}.
We have the following.
Lemma. The following identity is valid

$$
\begin{equation*}
\left(\pi \vee\left(\nabla_{v}\left(\pi \wedge_{u}\right)\right)\right)^{C}=\pi_{\bigvee}^{C}\left(\nabla_{v}^{C} C\left(\pi^{C} \Lambda_{u}^{C}\right)\right) \tag{13}
\end{equation*}
$$

Proof. If the use the local frame $\left(x_{1}, \ldots, x_{n}\right)$ then we may write

$$
\left.\pi \vee\left(\nabla_{v} \pi^{\wedge} \wedge_{u}\right)\right|_{m}=\left.\sum_{h=1}^{n}\left(\pi^{h s} \nabla_{k} \pi_{s i} \nu^{k} u^{i}\right) \mathbf{x}_{h}\right|_{m}
$$

This follows by formula (3) in the left-hand member of (13):

$$
\begin{equation*}
\left(\pi \vee\left(\nabla_{\nu}\left(\pi^{\wedge} \wedge_{u}\right)\right)\right)_{\mid Z}^{C}=\sum_{h=1}^{n}\left(\pi^{s h} \nabla_{k} \pi_{s i} v^{k} u^{i}\right) x_{h}+\sum_{h=1}^{n} \partial_{2}\left(\pi^{s h} \nabla_{k} \pi_{s i} \nu^{k} u^{i}\right) x_{n+h} \tag{14}
\end{equation*}
$$ for each $Z \in p^{-1}(U)$ where $m=p(Z)$.

We have for the right-hand member of formula (13) the equality

$$
\begin{equation*}
\left.\pi_{\bigvee}^{C}\left(\nabla_{\nu}^{C} C\left(\pi^{C} \wedge_{u}^{c}\right)\right)\right|_{Z}=\sum_{H=1}^{2 n}\left(\tilde{\pi}^{H S} V^{K} \tilde{\pi}_{S J \mid K}-V^{K} \tilde{\Gamma}_{K S}^{T} \tilde{\pi}_{T J}-V^{K} \tilde{\Gamma}_{K J}^{T} \tilde{\pi}_{S T}\right) U^{J} \mathbf{x}_{H} \tag{15}
\end{equation*}
$$ where $\left(V^{K}\right)_{K^{\approx}} \equiv 1, \ldots, 2 n$ are the local components of the vector ν^{C} (see formula (3)), $\left(\pi_{H S}\right)$ and $\left(\pi^{\prime J}\right)$ are local components of the tensor π^{C} and $\left(\pi^{-1}\right)^{C}$ respectively. These are given by (5), (6) and the coefficients ($\tilde{\Gamma}_{I J}^{H}$) are given by (8). We decompose the right-hand member of the formula (15) into the form

$$
\left.\sum_{h=1}^{n}\left(\tilde{\pi}^{h s} \tilde{\nabla}_{K} \tilde{\pi}_{S J} U^{J} V^{K}\right)\right|_{Z} \mathbf{x}_{h}+\sum_{h=n+1}^{2 n}\left(\tilde{\pi}^{n} S \tilde{\nabla}_{K} \tilde{\pi}_{S J} U^{J} V^{K}\right) \mathbf{x}_{h}
$$

From direct calculations we have the following identities

$$
\begin{align*}
& \left.\left(\pi^{h s} \tilde{\nabla}_{K} \tilde{\pi}_{S J} U^{J} V^{K}\right)\right|_{Z}=\left.\left(\pi^{h s} \nabla_{k} \pi_{s j} u^{j} v^{k}\right)\right|_{Z} \tag{16}\\
& \left.\left(\pi^{\bar{h}} \tilde{\nabla}_{K} \tilde{\pi}_{S J} U^{J} V^{K}\right)\right|_{Z}=\left.\partial_{Z}\left(\pi^{h s} \nabla_{k} \pi_{s j} u^{j} v^{k}\right)\right|_{Z} \tag{17}
\end{align*}
$$

Proof of the formula (17):

$$
\begin{align*}
& \tilde{\pi}^{\bar{h} s} \tilde{\nabla}_{K} \tilde{\pi}_{S J} U^{j} V^{K}=\tilde{\pi}^{\bar{h} s}\left(\tilde{\nabla}_{K} \tilde{\pi}_{s J} V^{K} U^{J}\right)+\tilde{\pi}^{\overline{h s}}\left(\tilde{\nabla}_{K} \tilde{\pi}_{\bar{s} J} V^{K} U^{j}\right)= \tag{18}\\
= & \pi^{h s}\left(\tilde{\nabla}_{k} \tilde{\pi}_{s j} V^{k} U^{j}+\tilde{\nabla}_{\bar{k}} \tilde{\pi}_{s j} V^{\bar{k}} U^{j}+\tilde{\nabla}_{k} \tilde{\pi}_{s j} V^{k} U^{\bar{j}}+\tilde{\nabla}_{\bar{k}} \tilde{\pi}_{s j} V^{k} U^{\bar{j}}\right)+ \\
+ & Z^{r} \pi_{\mid r}^{h s}\left(\tilde{\nabla}_{k} \tilde{\pi}_{\bar{s} j} V^{k} U^{j}+\tilde{\nabla}_{\bar{k}} \tilde{\pi}_{\bar{s} j} V^{k} U^{j}+\tilde{\nabla}_{k} \tilde{\pi}_{\vec{s} j} V^{k} U^{\bar{f}}+\tilde{\nabla}_{\bar{k}} \tilde{\pi}_{\bar{s} j} V^{\bar{k}} U^{j}\right)
\end{align*}
$$

We have the obvious identities

$$
\begin{gather*}
\left.\left(\tilde{\nabla}_{k} \tilde{\pi}_{s i}\right)\right|_{Z}=\left.\sum_{p=1}^{n} Z_{-}^{p}\left(\nabla_{k} \pi_{s i}\right)\right|_{p} \tag{18.1}\\
\left.\left(\tilde{\nabla}_{\bar{k}} \tilde{\pi}_{s i}\right)\right|_{Z}=\nabla_{k} \pi_{s i} \tag{18.2}\\
\left.\left(\tilde{\nabla}_{k} \tilde{\pi}_{s i}\right)\right|_{Z}=\nabla_{k} \pi_{s i} \tag{18.3}\\
\left.\left(\tilde{\nabla}_{k} \tilde{\pi}_{\bar{s} i}\right)\right|_{Z}=\nabla_{k} \pi_{s i} \tag{18.4}
\end{gather*}
$$

and

$$
\begin{equation*}
-\left.(18.8)\left(\tilde{\nabla}_{\bar{k}} \tilde{\pi}_{s \bar{i}}\right)\right|_{Z}=\left.\left(\tilde{\nabla}_{\bar{k}} \tilde{\pi}_{\bar{s} i}\right)\right|_{Z}=\left.\left(\tilde{\nabla}_{k} \tilde{\pi}_{\bar{s} \bar{i}}\right)\right|_{Z}=\left.\left(\tilde{\nabla}_{\bar{k}} \tilde{\pi}_{\bar{s} \bar{i}}\right)\right|_{Z}=0 \tag{18.5}
\end{equation*}
$$

If we apply the above identities to the right-hand side of formula (18) then we obtain:

$$
\begin{gather*}
\pi^{h s}\left(\left.\nu^{k} u^{i} Z^{p}\left(\nabla_{k} \pi_{s i}\right)\right|_{p}+Z^{p} v_{\mid p}^{k} u^{i} \nabla_{k} \pi_{s i}+Z^{p} \nu^{k} u_{\mid p}^{i} \nabla_{k} \pi_{s i}\right)+ \tag{19}\\
+Z^{p} \pi_{\mid p}^{h s}\left(\nu^{k} u^{i} \nabla_{k} \pi_{s i}\right)
\end{gather*}
$$

for $h=1, \ldots, n$. The above expressions (19) are differentials of real functions ($\pi^{h s} \nabla_{k} \pi_{s i}$. $\left.\cdot u^{i} v^{k}\right)_{h=1, \ldots, n}$ with respect to the vector $Z \in p^{-1}(U)$. All functions $\left(\pi^{h s} \nabla_{k} \pi_{s l^{\prime}} u^{i} v^{k}\right)_{h=1, \ldots, n}$ are defined in a certain open subset of R^{n}. The expression (19) may be written in the form

$$
\begin{equation*}
\partial_{Z}\left(\pi^{h s} \nabla_{k} \pi_{s i} u^{i} v^{k}\right)_{h=1, \ldots, n} \tag{20}
\end{equation*}
$$

which completes proof of the formula (17). In order to get a proof of (16) it is sufficient to writte the left-hand member of these indentities in the explicit form.

Theorem. If the linear connections ∇^{*} and ∇ are π-conjugate in the sense of the formula (10) then the connections ∇^{C} and ∇^{C} are π^{C}-conjugate on $T M$.

Proof. The condition for π^{C}-conjugation has the following local form

$$
\begin{equation*}
\nabla_{p}{ }_{p} C^{\prime} c=\nabla_{\nu}^{c} c^{u^{c}}+\pi_{V}^{C}\left(\nabla_{\nu}^{c} c^{\left(\pi^{c} \wedge_{u} c\right)}\right), \tag{22}
\end{equation*}
$$

for arbitrary vector fields u, v on M. The complete lift of the formula (10) yields us

$$
\begin{equation*}
\nabla_{v} C^{C} u^{C}=\nabla_{\nu}^{C} C^{u}{ }^{C}+\left(\pi V\left(\nabla_{v}\left(\pi \wedge_{u}\right)\right)\right)^{C} \tag{23}
\end{equation*}
$$

We have

$$
\begin{equation*}
\nabla^{\circ}{ }_{\nu}^{C} u^{c}=\nabla_{v}^{C} c^{u^{C}}+{ }^{\pi}{ }_{V}^{C}\left(\nabla_{v}^{C}{ }^{c}\left(\pi^{c} \wedge U^{C}\right)\right) \tag{24}
\end{equation*}
$$

from the lemma (12) and the above formula. That completes the proof of theorem (21).
3. Corollaries concerning curves in $T M$ which are related to curves in M. Let (M, ∇, π) be a structure like one considerated in 2 . We assume that $\nabla \pi \neq 0$ every on M. Let's take consider the linear connection ∇^{*} defined ba the formula (10) on the manifold M with a so defined structure. Let $\gamma: R \supset I \rightarrow M$ be a parametrization of the curve k on M. The l jet of the map $\gamma, j_{1 / s}^{l} \gamma(t)=T_{\gamma(s)}$, is the tangent vector of the curve k at the point $\gamma(s)$. We say that curve k on M is a π-geodesic ([1], [3]) if

$$
\begin{equation*}
\left.\nabla_{T} T+\pi V^{\left(\nabla_{T}\right.}\left(\wedge_{T}\right)\right)=\lambda T \tag{25}
\end{equation*}
$$

λ being some real function.
We are going to consider a structure $\left(T M, \nabla^{C}, \pi^{C}\right)$ where ∇^{C} and π^{C} are complete lifts of ∇ and π respectively.

Lemma. If $\nabla_{\pi} \neq 0$ then $\nabla^{C} \pi^{C} \neq 0$. Moreover $\nabla^{C} \pi^{C}=0$ iff $\nabla \pi=0$.
Proof. In a local chart $\left(p^{-1}(U), X\right)$ formulas (18.1-18.8) imply

$$
\begin{gathered}
\left.\left(\nabla_{k}^{C} \pi_{s i}^{c}\right)\right|_{Z}=\left.\sum_{p=1}^{n} Z^{p}\left(\nabla_{k} \pi_{s i}\right)\right|_{p} \\
\left.\left(\nabla_{k}^{c} \pi_{s i}^{c}\right)\right|_{Z}=\nabla_{k} \pi_{s i}
\end{gathered}
$$

$$
\begin{gathered}
\left.\left(\nabla_{k}^{C} \pi_{s i}^{C}\right)\right|_{Z}=\nabla_{k} \pi_{s i} \\
\left.\left(\nabla_{k}^{C} \pi_{s i}^{C}\right)\right|_{Z}=\nabla_{k} \pi_{s i} \\
\left.\left(\nabla_{k}^{C} \pi_{s i}^{C}\right)\right|_{Z}=0 \\
\left.\left(\nabla_{\bar{k}}^{C} \pi_{\bar{s} T}^{C}\right)\right|_{Z}=0 \\
\left.\left(\nabla_{k}^{C} \pi_{\bar{s}-}^{C}\right)\right|_{Z}=0 \\
\left.\left(\nabla_{\bar{k}}^{C} \pi_{\overline{s i}}^{C}\right)\right|_{Z}=0
\end{gathered}
$$

We obtain from above identities the implication

$$
(\nabla \pi \neq 0) \Rightarrow\left(\nabla^{C} \pi^{C} \neq 0\right)
$$

If $\nabla^{C} \pi^{C}=0$ then all above identies are equal to zero. We have the equivalence

$$
\left(\nabla_{k} \pi_{s i} \equiv 0\right) \equiv\left(\nabla_{K}^{C} \pi_{S J}^{c} \equiv 0\right)
$$

from $\left.\left(\nabla_{k}^{C} \pi_{s i}^{C}\right)\right|_{Z}=\nabla_{k} \pi_{s i}=0$ which completes the proof of lemma (26).
Let the tensor field π on $(M . \nabla)$ satisfy the condition: $\nabla \pi \neq 0$ every where on M. Then the connection ∇^{*} defined by the formula (10) is different from the connection ∇.

Let $T M$ be a manifold with connection ∇^{C} and symetric non-singular tensor field π^{C} of the type $(0,2)$. We define the new connection $\nabla^{C^{*}}$ by putting

$$
\begin{equation*}
\nabla_{\nu}^{C} c^{u^{C}}=\nabla_{v}^{C}{ }^{C} u^{c}+\pi_{V}^{C}\left(\nabla_{\nu C}^{c}\left(\pi^{C \wedge}{ }_{u}^{C}\right)\right) \tag{27}
\end{equation*}
$$

for arbitrary vector fields v, u on M. The above defined connection $\nabla^{C^{*}}$ is cailed the π^{C}. conjugate with respect to the given connection ∇^{c}. We have

Theorem. The complete lift of the connection ∇^{*} given by the formula (10) ia identical to the π^{c}-conjugate connection ∇^{c} of the connection ∇^{c} which is given by the formula (27), i. e. $\left(\nabla^{*} C\right) \equiv \nabla^{C}$.

Proof. We have from the formulas (22) and (27)

$$
\nabla_{v C}^{*} C^{C} u^{C}={ }_{v}^{C} C^{*}{ }^{C}
$$

which gives us at once the statement of theorem (28).

Let $\gamma: I \rightarrow M / t \rightarrow \gamma(t)$ be the description of the curve k on M. The mapping $\gamma^{*}: I \rightarrow$ $\rightarrow T M / s \rightarrow j_{t / s}^{1} \gamma(t)$ paremetrizes the curve $k *$ on $T M$. This is a natural lift of the curve k. The natural lift k^{*} of the geodesic on (M, ∇) is the geodesic on $T M$ with respect to the connection ∇^{C}.

Example. Let k be π-geodesic on (M, V, π), i. e. k is a geodesic on M with respect to the connection ∇^{*}. The natural lift k^{*} is the π^{C}-geodesic on $\left(T M, \nabla^{C}\right)$ and it is a geodesic on $T M$ with respect to the connection $\nabla^{*} C$.

Let's consider the arbitrary \tilde{k} with the local parametrization $\tilde{\gamma}: I \rightarrow T M$ and $j^{1} \tilde{\gamma}=\tilde{T}$ which satisfies the equality

$$
\begin{equation*}
\nabla_{T}^{C} T+\pi_{\bigvee}^{C}\left(\nabla_{T}\left(\pi^{C} \bigwedge_{T}\right)\right)=\tilde{\lambda} \tilde{T} \tag{29}
\end{equation*}
$$

where $\tilde{\lambda}$ is a certain smooth real function on $T M$.
We have from the theorem (21).
Corollary. The curve \tilde{k} is a geodesic on $T M$ with respect to the connection ∇° defined by the formula (27).

Proof. Making use of the identity (22) to the left hand member of formula (29) we have

$$
\nabla_{\tilde{T}}^{*} C_{T}=\tilde{\lambda} \tilde{T}
$$

and by virtue of the theorem (28) we get

$$
\nabla_{\tilde{T}}^{C} \cdot \tilde{T}=\tilde{\lambda} \tilde{T}
$$

The last equation describes a geodesic on $T M$ with respect to the connection $\nabla^{C *}$ q.e.d.
Let M and $T M$ be manifolds with connections ∇ and ∇^{C} respectively. Let k be a curve on $T M$ which is parametrized by $\tilde{\gamma}=w \cdot \gamma: I \rightarrow T M$, where γ is a parametrization of k, k being a certain curve on M and w is some vector field on M. The curve \tilde{k} is geodesic on $T M$ with respect to the given connection if, and only if

1) γ parametrizes some geodesic k on (M, ∇)
2) $w \mid$ imr is a Jacobi vector field along the curve k (see [4] Prop. 9.1.)

There exists a unique connection on M which has a zero torsion and it has the same geodesics as the given connection ∇. Then we may take a torsion less connections ∇ for studying geodesics.

Let ∇ be a connection with zero torsion on M and γ be a parametrization of some geodesic k. A smooth vector field w on M is called a Jacobi field along k, if there holds along k

$$
\begin{equation*}
\nabla_{T} \nabla_{T} w=R_{T} w^{T} \tag{31}
\end{equation*}
$$

where $T=j^{1} 7$.
For the arbitrary vector fields u, v, w, on M

$$
\begin{equation*}
R_{u v} w=\nabla_{u} \nabla_{v} w-\nabla_{v} \nabla_{u} w-\nabla_{[u, v]} w \tag{32}
\end{equation*}
$$

Now we introduce some formulas for to determinate geodesic on $T M$. Let $\gamma: I \rightarrow M$ be a parametrization of a geodesic k on M and β be a fixed real number from $I \subset R,\left(e_{1}, \ldots\right.$, e_{n}) be a given basis in the vector space $T_{\gamma(\beta)} M$. The vector T is the tangent vector along the curve k. Let $\left(u_{1}, \ldots, u_{n}\right)$ denote the parallel transport of $\left(e_{1}, \ldots, e_{n}\right)$ along the geodesic k , then for each $t \in I$ the vectors $\left(u_{1}(t), \ldots, u_{n}(t)\right) \subset T_{\gamma(t)} M$ form a basis of $T_{\gamma(t)} M$. We assume that $T=u_{n}$. The Jacobi field w can be written uniquely in form $w=$ $=\sum_{i=1}^{n} w^{i} u_{i}$ where the $\left(w^{1}, \ldots, w^{n}\right)$ are real-valued functions defined on I. Because $\left(u_{i}\right)$ are vector fields which are transplate of $\left(e_{i}\right)$ along the geodesic k thus we have

$$
\begin{equation*}
\nabla_{T} u_{i}=0 \quad \text { for } i=1, \ldots, n \tag{33}
\end{equation*}
$$

We calculate covariant derivatives

$$
\begin{equation*}
\nabla_{T} w=\sum_{i=1}^{n}\left(w^{i}\right)^{\prime} u_{i} \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{T} \nabla_{T} w=\sum_{i=1}^{n}\left(w^{i}\right)^{\prime \prime} u_{i} \tag{35}
\end{equation*}
$$

From the formulas (31), (35) and from equation

$$
R_{u_{j} u_{k}} u_{i j}=R_{i j k}{ }^{\prime} u_{l}
$$

we have

$$
\begin{equation*}
\sum_{l=1}^{n}\left(w^{l}\right)^{n} u_{l}=\sum_{k, l=1}^{n}\left(R_{n n k} w^{k}\right) u_{l} \tag{36}
\end{equation*}
$$

We interprete formulas (36) as a system of linear equations of second order with coefficients $\left(R_{n n k}{ }^{l}\right) k l=1, \ldots, n$ and with the following initial conditions

$$
\begin{equation*}
w(\beta)=\mathbf{t} \quad \text { and }\left.\quad\left(\nabla_{T} w\right)\right|_{\beta}=\mathbf{k} \tag{37}
\end{equation*}
$$

where \mathbf{t}, \mathbf{k} are certain fixed vectors in $T_{\gamma(\beta)} M$. We deduce the existence and uniqueness of solution (w^{1}, \ldots, w^{n}) of system (36rom the theory of differential equations.

If we consider the solution w of (36) with initial conditions (37), and the curve k which is parametrized by $\gamma: I \rightarrow M$ then the composition

$$
w \cdot \gamma: I \rightarrow T M
$$

gives us parametrization of a certain geodesic on $\left(T M, \nabla^{C}\right)$. If $\left(R_{n n k}{ }^{1}\right) k l=1, \ldots, n$ are components of the curvante tensor of the connection ∇ then the composition $w \cdot \gamma$ parametrizes a certain geodesic on $\left(T M, \nabla^{C}\right)$. If $\left(R_{n n k}{ }^{1}\right) k l=1, \ldots, n$ are components of a curvante tensor of a connection ∇^{*} then the composition $\boldsymbol{w} \cdot \boldsymbol{\gamma}$ parametrizes a certain geodesic on $\left(T M, \nabla^{*} C\right)$. The latest statement is an example of π^{C}-geodesic on $\left(T M, \nabla^{C}\right.$, π^{C}).
4. The horizontal lifts of π-conjugate connections. Besides cosiderating complete lifts of geometric objects $(1,2)$ we take into consideration also the horizontal lift geometric objects (see [4], chapter II).

The linear connection ∇^{H} on $T M$ which is defined by the formulas

$$
\begin{equation*}
\nabla_{v}^{H} u^{V}=0, \quad \nabla_{v}^{H} u^{H}=0 \tag{38}
\end{equation*}
$$

$$
\nabla_{v H}^{H} u^{V}=\left(\nabla_{v} u\right)^{V}, \quad \nabla_{v H}^{H} u^{H}=\left(\nabla_{v} u\right)^{H}
$$

for any vector fields u, v on M, is called the horizontal lift of the linear connection ∇.
Remark. The vector field v^{H} defined as in 1 , satisfies the equality

$$
\nu^{H}(Z)=\nu^{C}(Z)-\left(\nabla_{Z} v\right)^{V} \quad \text { for each } Z \in T M \text { ([4] p. 87) }
$$

It follows from the above that the connection ∇^{H} is well defined on the module of vector fields on TM.

In the following part of our paper we will consider certain relations between the horizontal lifts of the π-conjugate connections. Our considerations will be performed in local coordinates of a chart ($\left.p^{-1}(U), X\right)$.

The local coefficients of the connection ∇^{H} are

$$
\begin{equation*}
\vec{\Gamma}_{j i}^{k}=\Gamma_{j i}^{k}, \bar{\Gamma}_{\bar{j} i}^{k}=0, \bar{\Gamma}_{j i}^{k}=0, \bar{\Gamma}_{j \bar{i}}^{k}=0=\bar{\Gamma}_{j \bar{j}}^{\bar{k}}, \tag{39}
\end{equation*}
$$

$$
\bar{\Gamma}_{j i}^{\bar{k}}=Z^{r} \Gamma_{j i}^{k}-Z^{r} R_{r j i}{ }^{k}=0, \quad \bar{\Gamma}_{j i i}^{\bar{k}}=\Gamma_{j i}^{k}, \quad \bar{\Gamma}_{j i}^{\bar{k}}=\Gamma_{j i}^{k}
$$

where $\left(\Gamma_{j i}^{k}\right)$ are the local coefficients of the connection $\nabla,\left(R_{r j i}{ }^{h}\right)$ are the coordinates of the curvante tensor of the connection ∇ and $\left(Z^{\prime}\right)$ are the coordinates of the vector $Z \in$ $\in p^{-1}(U)$ with respect to the frame $\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right)$.

Let A be a tensor field of the type $(0,2)$ on M. A tensor field A^{H} on $T M$ (of the type $(0,2)$) defined by formulas

$$
\begin{gather*}
\left.A^{H}\left(\nu^{C}, u^{C}\right)\right|_{Z}=A\left(\nabla_{Z} v, u\right)+A\left(v, \nabla_{Z} u\right) \\
\left.A^{H}\left(\nu^{C}, u^{V}\right)\right|_{Z}=A\left(\nabla_{Z} v, u\right) \tag{40}
\end{gather*}
$$

$$
\begin{gathered}
\left.A^{H}\left(v^{V}, u^{C}\right)\right|_{Z}=A\left(\nu, \nabla_{Z^{u}}\right) \\
\left.A^{H}\left(\nu^{V}, u^{V}\right)\right|_{Z}=0
\end{gathered}
$$

is called the horizontal lift of A. A vectors v, u are arbitrary vector fields on M.
Let B be a tensor field of the type $(2,0)$ on M. A tensor field B^{H} on $T M$, defined by the formulas

$$
\begin{gather*}
\left.B^{H}\left(\omega^{C}, \sigma^{C}\right)\right|_{Z}=B\left(\nabla_{Z} \omega, \sigma\right)+B\left(\omega, \nabla_{Z} \sigma\right) \\
\left.B^{H}\left(\omega^{C}, \sigma^{V}\right)\right|_{Z}=B\left(\nabla_{Z} \omega, \sigma\right) \tag{41}\\
\left.B^{H}\left(\omega^{V}, \sigma^{C}\right)\right|_{Z}=B\left(\omega, \nabla_{Z} \sigma\right) \\
\left.B^{H}\left(\omega^{V}, \sigma^{V}\right)\right|_{Z}=0
\end{gather*}
$$

is called a horizontal lift of the tensor field B. The tensor B^{H} is of the type $(2,0)$. A covectors ω, σ are arbitrary covectors fields on M.

Let π be a symmetric non-singular tensor field of the type (0,2) on M, and let ($\pi_{i j}$) be a matrix of a local components of π. The tensor field π^{H} which is a horizontal lifting of π and is defined by means of the formula (40) has the following matrix of local coordinates:

$$
\left(\bar{\pi}_{I J}\right)(Z):=\left(\begin{array}{rr}
Z^{\prime} \pi_{i j \mid r}-\nabla_{Z} \pi_{i j} & \pi_{i j} \tag{42}\\
& \pi_{i j} \\
& 0
\end{array}\right)
$$

The tensor field $\left(\pi^{-1}\right)^{H}$ defined by the formula (41) has the following local coordinates

$$
\left(\bar{\pi}^{i J}\right)(Z):=\left(\begin{array}{ll}
0, & \pi^{i j} \tag{43}\\
\pi^{i j}, & Z^{r} \pi_{\mid r}^{i j}-\nabla_{Z} \pi^{i j}
\end{array}\right)
$$

Let M be the smooth differential manifold with the connection ∇. There is given symmetric non-singular tensor field π of the type $(0,2)$ on M and the linear connection ∇^{*} which is defined the formula (10).

Theorem. The horizontal lifts of π-conjugate connections ∇^{*} and ∇ on M ia a pair of π^{C}-conjugate connections $\nabla^{*} H$ and ∇^{H} on $T M$.

Proof. Let $\left(G_{J I}^{K}\right)$ be local coefficients of $\nabla^{\bullet} H$ and $\left(\Gamma_{J I}^{K}\right)$ be local coefficients of connection ∇^{H} defined by (39). The coordinates $\left(\pi_{J I}\right)$ and $\left(\tilde{\pi}^{J I}\right)$ of the tensor fields π^{C} and $\left(\pi^{-1}\right)^{C}$ respectively are defined in (5) and (6).

$$
\begin{equation*}
\bar{G}_{J I}^{H}=\bar{\Gamma}_{J I}^{H}+\sum_{s=1}^{2 n} \tilde{\pi}^{S H}\left(\bar{\nabla}_{J} \tilde{\pi}_{S I}\right) \tag{45}
\end{equation*}
$$

After some simple calculations we get

$$
\begin{equation*}
\bar{G}_{j i}^{h}=\Gamma_{j i}^{h}+\pi^{s h}\left(\nabla_{j} \pi_{s i}\right) \tag{45.1}
\end{equation*}
$$

$$
\begin{equation*}
\bar{G}_{\bar{J}_{i}}^{h}=0 \tag{45.2}
\end{equation*}
$$

$$
\begin{equation*}
\bar{G}_{j \bar{i}}^{h}=0 \tag{45.3}
\end{equation*}
$$

$$
\begin{equation*}
\bar{G}_{\tilde{j} \bar{i}}^{h}=0 \tag{45.4}
\end{equation*}
$$

$$
\begin{equation*}
\bar{G}_{j i}^{\bar{h}}=\bar{\Gamma}_{j i}^{\bar{h}}+\tilde{\pi}^{\bar{s}}\left(\bar{\nabla}_{j} \tilde{\pi}_{s i}\right)+\tilde{\pi}^{-\bar{h}}\left(\bar{\nabla}_{j} \tilde{\pi}_{\bar{s} i}\right) \tag{45.5}
\end{equation*}
$$

$$
\begin{gather*}
\bar{G}_{\bar{j} i}^{\bar{h}}=\Gamma_{j i}^{h}+\pi^{s h}\left(\nabla_{j} \pi_{s i}\right) \tag{45.6}\\
\bar{G}_{j \bar{i}}^{\bar{h}}=\Gamma_{j i}^{h}+\pi^{s h}\left(\nabla_{j} \pi_{s i}\right) \tag{45.7}\\
\bar{G}_{\bar{j} \bar{i}}^{\bar{h}}=0
\end{gather*}
$$

In the local coordinates we have formula

$$
\begin{equation*}
G_{j i}^{h}=\Gamma_{j i}^{h}+\pi^{s h}\left(\nabla_{j} \pi_{s i}\right) \tag{46}
\end{equation*}
$$

Making use of the formulas (39) to the right-hand side of the formula (46) we get proofs of the equalities (45.1-45.4) and (45.6-45.8). Now it remains to prove (45.5). The formulas (39) and (46) imply

$$
\begin{equation*}
\bar{G}_{j i}^{\bar{h}}(Z):=\sum_{p=1}^{n}\left[\left.Z^{p}\left(\Gamma_{j i}^{h}+\pi^{h s}\left(\nabla_{j} \pi_{s i}\right)\right)\right|_{p}-Z^{p} B_{p / i}{ }^{h}\right] \tag{47}
\end{equation*}
$$

where B denotes the curvanture tensor of ∇^{*}. From the formulas (47) and (45.5) we have

$$
\begin{equation*}
\bar{G}_{j i}^{\bar{h}}(Z)=\left.\left(\bar{\Gamma}_{j i}^{\bar{h}}+\left(\bar{\nabla}_{j} \tilde{\pi}_{s i}\right) \tilde{\pi}^{\bar{n}}+\left(\bar{\nabla}_{j} \tilde{\pi}_{\bar{s} i}\right) \tilde{\pi}^{\bar{s} \bar{h}^{-}}\right)\right|_{2} \tag{48}
\end{equation*}
$$

where ∇_{j} is the operctor of the covariant differentiation with respect to the connection ∇, and $\bar{\nabla}_{J}$ is the operator of the covariant differentiation with respect to the given connection ∇^{H}. The right-hand side of the formula (48) is:

$$
\begin{gather*}
\bar{\Gamma}_{j i}^{\bar{h}}+\left(\bar{\nabla}_{j} \tilde{\pi}_{s i}\right) \tilde{\pi}^{s \bar{h}}-\left(\bar{\nabla}_{j} \tilde{\pi}_{s i}\right) \tilde{\pi}^{\bar{s}} \bar{h}^{\bar{h}}=\left(Z^{k} \pi_{s i \mid k}\right)_{1 j} \pi^{s h}- \tag{49}\\
-\Gamma_{j ;}^{r} Z^{k} \pi_{r i \mid k} \pi^{s h}-\left(Z^{k} \Gamma_{j s \mid k}^{r}-Z^{k} R_{k j s}{ }^{r}\right) \pi_{r i} \pi^{s h}- \\
-\Gamma_{j i}^{r} Z^{k} \pi_{s r \mid k} \pi^{s h}+\nabla_{j} \pi_{s i}\left(Z^{k} \pi_{\mid k}^{s h}\right)
\end{gather*}
$$

From the formulas
(A)

$$
\pi_{1 k}^{s h}=\nabla_{k} \pi^{s h}-\Gamma_{k t}^{h} n^{s t}-\Gamma_{k t}^{s} \pi^{t h}
$$

$$
\begin{equation*}
R_{k j i}^{h}=\Gamma_{j i \mid k}^{h}-\Gamma_{k i \mid j}^{h}+\Gamma_{k t}^{h} \mathrm{\Gamma}_{j i}^{t}-\mathrm{\Gamma}_{j t}^{h} \mathrm{\Gamma}_{k i}^{t} \tag{B}
\end{equation*}
$$

(C)

$$
\pi_{r i \backslash k}=\nabla_{k} \pi_{r i}+\Gamma_{k r}^{t} \pi_{r i}+\Gamma_{k i}^{t} \pi_{r t}
$$

and from the partial derivatives of the functions

$$
g_{s i}\left(x^{1}, \ldots, x^{n}, Z^{1}, \ldots, Z^{n}\right):=\sum_{k=1}^{n} Z^{k} \pi_{s i}\left(x^{1}, \ldots, x^{n}\right) \mid k
$$

with respect to the variables $\left(x^{1}, \ldots, x^{n}\right)$ for $s, i=1, \ldots, n$ the right-hand side of the formula (49) is of the form:

$$
\begin{gathered}
{\left[\left(Z^{k} \nabla_{k} \pi_{s i}\right)_{\mid j}+Z^{k} \Gamma_{k s \mid j} \pi_{r i}+Z^{k} \Gamma_{k s}^{v} \pi_{r i \mid j}+Z^{k} \Gamma_{k i \mid j}^{v} \pi_{s r}+Z^{k} \Gamma_{k i}^{v} \pi_{s r \mid j}\right] \pi^{s h}-} \\
-\Gamma_{j s}^{v} Z^{k}\left(\nabla_{k} \pi_{r i}+\Gamma_{k r}^{s} \pi_{t i}+\Gamma_{k i}^{f} \pi_{r t}\right) \pi^{s h}-Z^{k} \Gamma_{j s \mid k^{v}}^{\pi_{r i} \pi^{s h}+\left(Z^{k} \Gamma_{j s \mid k}^{v}-Z^{k} \Gamma_{k s \mid j}^{v}+\right.} \\
\left.+\Gamma_{k t}^{v} \Gamma_{j s}^{f}-\Gamma_{j t}^{v} \Gamma_{k s}^{t}\right) \pi_{r i} \pi^{s h}-\Gamma_{j i}^{r}\left(Z^{k} \nabla_{k} \pi_{s r}+Z^{k} \Gamma_{k s}^{f} \pi_{t r}+Z^{k} \Gamma_{k r}^{\prime} \pi_{s t}\right) \pi^{s h}+ \\
+Z^{k} \nabla_{j} \pi_{s i}\left(\nabla_{k} \pi^{s h}-\Gamma_{k t}^{h} \pi^{s t}-\Gamma_{k t}^{s} \pi^{t h}\right) .
\end{gathered}
$$

After some abbreviation,

$$
\begin{gather*}
Z^{k}\left(\nabla_{k} \pi_{s i}\right)_{\mid j} \pi^{s h}+Z^{k} \Gamma_{f i \mid k}^{h}-Z^{k} R_{k j i}^{h}+Z^{k} \Gamma_{k i} \nabla_{j} \pi_{s i} \pi^{s h}- \tag{50}\\
-Z^{k} \Gamma_{j s} \nabla_{k} \pi_{r i} \pi^{s h}-Z^{k} \Gamma_{j i}^{\sim} \nabla_{k} \pi_{s r} \pi^{s h}+Z^{k} \nabla_{j} \pi_{s i} \nabla_{k} \pi^{s h}-Z^{k} \Gamma_{k i}^{h} \nabla_{l} \pi_{s i} \pi^{s t}
\end{gather*}
$$

The left-hand side of the formula (48) takes the form
(51)

$$
\begin{aligned}
& Z^{k} G_{k i \mid j}^{h}-Z^{k} G_{k t}^{h} G_{j i}^{t}-Z^{k} G_{j t}^{h} G_{k i}^{\ell}=Z^{k} \Gamma_{k i \mid j}^{h}+Z^{k}\left(\nabla_{k} \pi_{s i}\right)_{\mid j} \pi^{s h}+Z^{k} \nabla_{k} \pi_{s i} \pi_{i j}^{s h}- \\
& -Z^{i} \Gamma_{k t}^{h} \Gamma_{j i}^{\ell}-Z^{k} \Gamma_{k t}^{h} \nabla_{f} \pi_{r i} \pi^{t t}-Z^{k} \nabla_{k} \pi_{s t} \pi^{s h} \Gamma_{j i}^{\ell}-Z^{k} \nabla_{k} \pi_{s t} \pi^{s h} \nabla_{j} \pi_{r i} \pi^{r t}+ \\
& \quad+Z^{k} \Gamma_{j t}^{h} \Gamma_{k i}^{l}+Z^{k} \Gamma_{j t}^{h} \nabla_{k} \pi_{r i} \pi^{t}+Z^{k} \nabla_{f} \pi_{q t} \pi^{q h} \Gamma_{k i}^{l}+Z^{k} \nabla_{j} \pi_{q t} \pi^{q h} \nabla_{k} \pi_{r i} \pi^{r t}
\end{aligned}
$$

Let π be non-singular tensor field on M. By a covariant derivating of the identity $\pi_{r l} \pi^{h h}=\delta_{1}^{h}$ we get

$$
\pi^{s l}\left(\nabla_{j} \pi_{r l}\right) \pi^{r h}=-\nabla_{j} \pi^{s h}
$$

Consequently

$$
\begin{equation*}
\nabla_{k} \pi_{s i} \nabla_{j} \pi^{s h}=-\left(\pi^{s t} \nabla_{k} \pi_{s i}\right)\left(\pi^{h h} \nabla_{j} \pi_{r t}\right) \tag{D}
\end{equation*}
$$

with respect to any local chart (U, x) on M.
From the identity (A), (B) and (D) in (51) we have

$$
\begin{gather*}
\bar{G}_{j i}^{\bar{h}}(Z):=Z^{k} \Gamma_{j i}^{h}-Z^{k} R_{k j i}^{h}+Z^{k}\left(\nabla_{k} \pi_{s i}\right)_{1 j} \pi^{s h}- \tag{52}\\
-Z^{k} \nabla_{k} \pi_{s i} \Gamma_{j t}^{s} \pi^{s h}-Z^{k} \Gamma_{\dot{k t}}^{h} \nabla_{j} \pi_{s i} \pi^{s t}-Z^{k} \Gamma_{j i}^{t} \nabla_{k} \pi_{s t} \pi^{s h}- \\
-Z^{k} \nabla_{k} \pi_{s t} \pi^{s h} \nabla_{j} \pi_{r i} \pi^{h t}+Z^{k} \Gamma_{k i}^{\prime} \nabla_{j} \pi_{s t} \pi^{s h}
\end{gather*}
$$

By means of the idensity (D) it is easy to see: the equality of the right-hand member of (50) and (52) holds. We obtain the equality

$$
Z^{k} G_{j i \mid k}^{h}-Z^{k} B_{k j i}^{h}=\left(\bar{\Gamma}_{j i}^{\bar{h}}+\left(\bar{\nabla}_{j} \tilde{\pi}_{s i}\right) \tilde{\pi}^{\bar{h}}+\left(\bar{\nabla}_{j} \tilde{\pi}_{s i}\right) \tilde{\pi}^{\bar{s} \bar{h}_{1 Z}}\right)_{\mid Z}
$$

What finishes the proof of the theorem (44).
Let $\nabla \pi \neq 0$ on M and let π^{H} be the horizontal lift of the tensor field π.
Remark. Connections $\nabla^{*} H$ and ∇^{H} on $T M$ are not necessarily the π^{H}-conjugate connections on TM.

Proof. Suppose that connections ∇^{H} and ∇^{H} are π^{H}-conjugate. That would imply

$$
\bar{G}_{J I}^{K}=\bar{\Gamma}_{J I}^{K}+\sum_{S=1}^{2 n} \bar{\pi}^{S H}\left(\bar{\nabla}_{J} \bar{\pi}_{S J}\right)
$$

in an arbitrary local chart $\left(p^{-1}(U), X\right)$ on $T M$. The last term of the formula (53^{\prime}) may be written in the form of the sum of the 8 terms as in (45.1-45.8). We take one term of this sum, e.g.

$$
\begin{equation*}
\bar{G}_{\bar{j} i}^{\bar{h}}(Z)=\left(\bar{\Gamma}_{\bar{j} i}^{\bar{h}}+\bar{\pi}^{s \bar{h}}\left(\overline{\bar{\nabla}}_{\bar{j}} \bar{\pi}_{s i}\right)+\bar{\pi}^{\bar{s} \bar{h}}\left(\bar{\nabla}_{\bar{j}} \bar{\pi}_{s i}\right)\right)_{\mid Z} \tag{54}
\end{equation*}
$$

A simple calculation yields

$$
\begin{aligned}
& \left(\bar{\nabla}_{\bar{f}} \bar{\pi}_{s i}\right) i_{Z}=\left.\left(Z^{k} \pi_{s i \mid k}-\nabla_{Z} \pi_{s i}\right)\right|_{\bar{j}}-\bar{\Gamma}_{j_{s}}^{v} \overline{\bar{n}}_{r i}-\bar{\Gamma}_{\bar{j}_{s}}^{\bar{j}} \bar{\pi}_{\overrightarrow{r i}}- \\
& -\bar{\Gamma}_{\bar{j} i}^{r} \bar{\pi}_{s r}-\bar{\Gamma}_{\bar{j} i}^{\bar{r}} \overline{\bar{m}}_{s \bar{r}}=\pi_{s i \mid j}-\nabla_{j} \pi_{s i}-\Gamma_{i s}^{r} \pi_{r i}-\Gamma_{j i}^{r} \pi_{s r}=0 .
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\bar{\nabla}_{\bar{j}} \overline{\bar{u}}_{s i}=0 \tag{55}
\end{equation*}
$$

and analoguously

$$
\begin{equation*}
\bar{\nabla}_{\bar{j}} \bar{\Pi}_{s i}=0 . \tag{56}
\end{equation*}
$$

We obtain from formulas (54-56)

$$
\begin{equation*}
\bar{G}_{\bar{j} i}^{\bar{h}}=\bar{\Gamma}_{\bar{j} i}^{\bar{h}}=I_{j i}^{h} . \tag{57}
\end{equation*}
$$

On the other hand the application of formulas (39) to the connection given by formula (46) yields

$$
\begin{equation*}
\bar{G}_{\overline{j i}}^{\bar{h}}=\Gamma_{j i}^{h}+\pi^{h s}\left(\nabla_{f} \pi_{s i}\right) . \tag{58}
\end{equation*}
$$

From the formulas (57) and (58) we obtain an inequality

$$
\begin{equation*}
\therefore \quad \Gamma_{h i}^{h}+\pi^{h s}\left(\nabla_{f} \pi_{s i}\right) \neq \Gamma_{j l}^{h} \tag{59}
\end{equation*}
$$

because of $\nabla_{j} \pi_{s i} \neq 0$. This inequaiity gives a contradiction, what completes the proof of the remark (53).

Let $\left(T M, \nabla^{H}, \pi^{H}\right)$ be the horizontal lift of the structure (M, ∇, π) i.e. the horizental lift with respect to the given linear connection on M. In view of theorem (44) and of remark (53) we conclude that $\nabla^{\bullet} H$ and ∇^{H} are π^{C}-conjugate always, while $\nabla^{\bullet} H$ and ∇^{H} are $\bar{\pi}^{\boldsymbol{H}}$-conjugate iff $\nabla_{\pi}=0$ on M.

BIBLIOGRAPHY

[1]Bucki, A. and Miernowski, A., Geometric interpretation of the π-geodesics, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 26 (1972), 5-15.
[2]Dombrowski, P., On the geomerry of the tangent bundle, J. Reine. Angew. Math., 210 (1962), 73-88.
[3] Radziszewski, K., π-geodesics and lines of shadow, Colloq. Math., 26 (1972), 157-163.
[4] Yano, K., and Isihara, S., Tangent and cotangent bundles, Marcel Dekker. Inc. New York 1973.

STRESZCZENIE

K. Yano i S. Isihara wprowadzili zupełne i horyzontalne podnoszenie obiektów geometrycznych z rozmaitości różniczkowej M na rozmaitość $T M$ [4].

W tej pracy przedstawiono pewne własności par koneksji liniowych na $T M$ danych poprzez zupełne oraz horyzontalne podniesienie par koneksji π-sprzężonych \mathbf{z} rozmaitości M. Za pomoca metod danych w [4] zostały podniesione i zbadane pewne koneksje oraz π-geodezyjne na rozmaitości $T M$.

Wyniki tej pracy zawarte sq w twierdzeniach (21) i (44). Wszystkie rozważania prowadzone sa w kategorii C^{*}.

P Е З Ю M E

К. Яно и С. Ишихара ввели совершеннье и горизонтальньле поднятия геометрических объектов из дифференциального разнообразия M на многообразие TM [4ј.

В этой работе представляется некоторые свойства пар линейной связности на ТМ данных через совєршенные и горизонтальные поднятия пар Π - спряженных связности с $М$. При помоши методов представленнър в [4] переносится некоторые результаты касаюшњеся П связности и П геодезийныгх из M на ТМ.

Результаты этой работы содержатся в утверждениях [21] и [44] и все рассуждения ведутся в категории C^{∞}.

