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1. Introduction. The Binomial-Poisson distribution is the distribution of the sum Sjy = 
= X0 +A"i + X2 + ... + XN, where Xo = 0, a, e, andXj, X2, ... are independent random 
variables having the same Poisson distribution with parameter X, and TV is a binomial 
variate with parameter«, p, distributed independently of.Y\, X2,.... It is well know that 
the distribution of S# is given by

(1)

where 0 <p < l,X>0.

This distribution was introduced by Khatri and Patel [2] as a special case of the distri
bution of ‘Type B’. Johnson and Katz [1] investigated the first four moments of this dis
tribution. The above distribution has useful applications in life insurance lapsation phe
nomena.

2. Certain types of distributions. The distribution (1) can be considered as a member 
of the class of discrete distributions which are distributions of a random sum of indepen
dent random variables. This follows from Lemma 1 given further on.

Let [-V/, /GT], T = N U [0]. N - [1,2,... ], be a sequence of i. i. d. random variables 
which have a power series distribution (PSD), i. e.

’» ••• >

where f(0) = £ a(k)Qkt a(k) > 0, and there exists a natural number k such that fl(&)>0.
к* о
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We consider also a random variable N having a PSD, and independent of [Xy, / G 7]. 
Let us denote

b(j) /(3) P[A=/J = -^z</G7.
*(*)

where, of course, g(z) = Z b(j)2^, b(j) > 0, and there exists a natural number / such 
/er

that b (/') >0.

Lemma 1. If [Xj, j G 7] are i. i. d. variates with distribution (2) such that Xo = 0 a. s.. 
and N is a random variable with the probability function (3) and independent of [Xj, 
j&T\ then the distribution of the sum S yv = Xt + X2 + ... + Xyy has the form

(4)
a(^(x )b(j)

P[SN=x] = 0x Z -------
/er f,(6)g(z)

J x = 0,1,2,...,

where a(^(x) is the coefficient of 0X in the j-th convolution of f(0).

Putting in (4) 7 = [0, 1,2,..., nJ, f(0) = e9, 0 = A and#(z) = (1 + z)", z =p/l -p, we 
obtain (1).

Recently interest has arisen in the so-called inflated power series distribution (IPSD) 
see e. g. Singh [3] and [4]. It is easy to show that if A' has an inflated binomal distribu
tion, i. e.

?I7V=/] =
/J + aQp'G / = /,

aCpp'd-p)"-7. 7 = 0...... /-1,7-2, ,n.

where a+0=l,O<a<l, then the distribution of Syy is given by

A* n
(5) 7[Syv = x] = a — Z (" )/x [pe”x/(1 -/>)"•' +

x! /-0 '

(A/)*
+ 3-----— <x/,x = 0,l,2,....

x!

The distribution (5) belongs to the class of discrete distribution defined in the following.

Lemma 2. If [Ay, y G 7] are i. i. d. variates with distribution (2) such that Xo *= 0 a. s. 
and N is a random variable, independent of [Xj, j G 7], with probability function
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,*A.

g(z) 
b(f) ,

a——z/, /er, and/#/ 
L g(z)

where a + 0= l,O<a<l, then the distribution of the sum has the form

(6)
r au\x)b(j) , Ya(0(x)

PlSN = xl = a0x 2 ------ zi + ^0x----—.
/6T /,(0)g(z) /,(0)

Obviously, putting a = 1 in (6) we get (4). Similarly putting in (6) T = [0,1,2,..., n ], 
/(0) = e9, 0 = \g(z) = (1 + z)", z=p!\ -p,0<p < l,we obtain (5).

3. Recurrence relations for the ordinary and the central moments. Varde [5] gave re
currence relations for the ordinary and the central moments of the distribution (1) in terms 
of derivative with respect to p and X. Here we derive recurrence relations of a different 
kind, which are in some cases helpful, because they are combinations of moments of the 
Poisson distribution.

a) Recurrence relations for the ordinary moments. Let mr denote the ordinary mo
ment of order r of the distribution (1) and a* the ordinary moment of order k of the Po
isson distribution with parameter X.

Theorem l.IfSj/ has the distribution defined in (1), then for an arbitrary r equation

(7) znr+, == p[\nmr + 's* f )[Xwn/
/»o ' k-o

defines a relation between the first r + 1 moments.

Proof. Let <f>sN(t) denote the characteristic function of Sjy. It is easy to show that

W0 = [p^('<r-'1)+<?]n-

Using the relation between the ordinary moments and the characteristic function, we 
have

2
y-o

£
7

where 0 = it.
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(8)

we get

Differentiating the above relation with respect to 0, we obtain

=\npe^fe-'^ e <t>s(3)
/-07!

Expanding the expressions containing 0 as power series and using the relation

- - gi+l - gl i .
E 2 — = E — 2 ('),

/-o/'-o /!/! /“0 7! /*o '

- O' i , <• gj
P 2 — E G)m/+1 a,_,+<7 £ — w/+, =

««0 /! /-0 > 7-o /!

= \np E — E ( £ (^)a*
/»0 1! /» 0 ' k « 0

Equating coefficients of 8r complets the proof.
Puttingr = 0 in (7) givesmx = Xnp. Similarly,forr = 1, wehavem2 = Xnp[(n — l)Xp + 

+ X + 11.

Theorem 2. Equation

(9)
Ътг r-i . „ ■ Э/л/~^= E Qa'-'^-p—4 
Эр /-о 7 op

defines a relation between the first r ordinary moments and their derivatives.

Proof. Using the relation between the ordinary moments and the characteristic func
tion, we have

E — m,= [р(ек(-ев'^ - 1) + 1]"
7-o/! }

Differentiating with respect to p, and using the fact that 9m0 / Эр = 0, we obtain

jpeX(^-l)+<7] f j =„ [ex«r« -i) _ j] £
/■ о (j +1) ! bp 7- о у !
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Expanding eKe° in power series, and using (8)we have 

dm~ 0‘ i , dm/ - 0l dtrij
p E— £ (J)---- Lai.i + q £----------- -

i”i f! /»I 1 dp /! dp

0’
= n E

- 0* i
E — E E —mi.

i-o i! /«o' ' ' /-o /! ’

Equating coefficients of 0T completes the proof.
Putting r = 1 in (9) we have dm^ /dp = Xn. Similarly, for r = 2, we have

dm2

dp
= X2n[2p(n — 1) + 1] + Xn.

b) Recurrence relations for the central moments. Let pr denote the central moment of 
order r of the random variable The following two theorems give the relations between 
the central moments of Syy.

Theorem 3. Equation

(10) pr+1 =\np[ E (Ç)p/[ E7^)«*-par_/]-qpr] +
/-o ' k-o

r-J 
+ P

j~Q z

defines relations between the first r + 1 central moments.

Proof. We introduce the random variable

I'.V = - ffii .

The characteristic function of Yfj has the form

= e~e Knp[pel(e6 ~ + <?]"

where 0 = it.

As in the proceeding theorems, differentiating the equation

£ —M, = e-ex"p[pex(e<’-1)+qf 
«n /• '
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with respect to 6, we obtain

- D + f —phi =\npe^e6~1>+eil,YN^ + 
ho /!

+ \np[pex(e9~V +q]<t>YN^ •

Expanding the expression containing 9 as power series, we get

- 01 / . «■ 0^
P 2 — 2 (J)M/+i <*/-/ +? 2 —M/*i =

/■o i! /«o 7 /*07!

- O' I . , - o1
= \np[ 2 — 2('.)m/ 2 (y)a*.-<7 .2 —M/*i +

Z=o j! /«o 7 it-o * ho /!

- e‘ i .
+ P .2 — 2 (pM/a,./]. 

j=o j! /«o 7

Equating coefficient of 6r completes the proof.
In the special case r = 0 and r = 1, we have Mi = 0 and M2 = \np(kq + 1).

Theorem 4. Equation

(11) -7^-= 21 M/[»(y)ar-/-Xrnp(';)ar_/., +
dp ho 7 7

_ 9m/
+ P(y) — a,./] - XnqrMr-i

defines a relation between the first r central moments and their derivatives.

Proof. The proof is similar to that of Theorem 2.
In the case r = 1, we have 9mi/dp = 0, and in the case r = 2, dp^/dp - \2nq + X(n + 1). 
If we asumme that in the sequence [Ay j & 7], Xo =# 0, then (1) takes the form

X* n
PJSJV=x]f=—e’x 2 (£)(*+ l)x[pe~x]*(l -p)""* 

x! Jt«o *

Then the recurrence relations for the ordinary and central moments are given, respec
tively, as follows:
(7') mr+i =X 2 0)my[p(n+ 1) 2V/)«/+ <7] “P 2* (S)my+1 «r-/

j»q J * /“0 *



On Properties of Some Classes of Discrete Distributions 105

(9')

(10')

bmr r-i . bm/
— = S Qar.^nmf -p —-*-] ,

dp /-o ' bp

Mr+i = X £ (S)[<7M/ - P(1 + np)p/ar./ + 
/■0 '

+ p(l+n)p/ SV;7)«»/]-? T C)g/+1«r-/ + 
/■0 /-0 '

+ X?(1 + np)pr ,

(ll') r̂ 0^nQttr-i -^PCj^r-f-i -pCj)~-ar-/] + ><nqrpr.l .

c) Recurrence relations for the moments of the distribution (5).
We now gove equation for the ordinary and the central moments of the distribution (5). 
As in a), mr denotes the ordinary moment of the order r.

Theorem S.If Spj has the distribution defined in (5), then for arbitrary r the equation

(12) mr+1 = X [ + pnm, + (1 -p) + (l-np)pk,]
dX dp

“ r (X0* x i 
where ki = £ s'--—- e~x/,

I x-o x!

defines a recurrence relation for the ordinary moments of Sff. 

Proof. Using (5), we have

mr = a £ (7)PZ(1-P)"'7 £xr-^—e_x/ + 0 £xr-~-e"xz. 
/-o ’ x-o x! x-o x!

Differentiating the above equation with respect to X and p respectively, we have 

bmr = viX_1mr+, —atr—ipki,(13)

and

dX

(14)
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where tr- 2 jp\\ -p)n~^kj. 
ho

The theorem then follows from (13) and (14).
We now denote the central moments of order r by pr.

Theorem 6. The following equation defines the recurrence relation for the central mo
ment of (5).

(15) pr+1 = X[-^- + 0(np + OMr+i +p[arn((l + X)(1 -p) +
O A

+ fifl] pr.t + (1 -p) ] + (3(7 - np)M,],
?>p

where

2 (x-m,/ 
x*o

Proof, We have

Mr = a 2 (")p>{\ -p)n-f 2 (x - mrf -^-e  ̂+ (x - mJ' e~Kl.
i“0 ' x=o x! x!

Putting mt = \(anp + (37) and differentiating with respect to X and p, we obtain

(16) -^L = X'1[pr+, + \(anp +pr)pr]-r(anp+pr)pr_l +aWr-piM,,
o A

and

(17) — = (1 — p)-1 [p_1 - npr] — Xanrgf-i + n(l-p)_103/,.
°P

where

K/r= 2/(})p/(i-p)"-^, 
j-o

Comparsion of equations (16) and (17) completes the proof.
Putting a = 1 in (12) and (15), we obtain the recurrence relations for the oridinary mo

ments and the central moments given by Varde [3].



On Properties of Some Classes of Discrete Distributions 107

d) A limiting case. Letting n -* 00 and p -*■ 0 in (12) and (15) in such a way that np = 
= a (a - is a constant), we have

„ 'dmr dmr
mr = X I —- + a[mr + —— ] + (/ - a)Pk, J 

3X da

and

Mmi =Х[-^- + 0(д+/)Дг+1 +a[ar(l+X + r/d)]Mr-! + + M - a)M, J.
ЭХ da
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STRESZCZENIE

W pracy rozważano rozkład dwumianowo-poissonowski jako szczególny przypadek 
szerszej klasy rozkładów złożonych. Podano także wzory rekurencyjne na momenty 
zwykłe i centralne tego rozkładu.

РЕЗЮМЕ

В настоящей работе изучается биномиально-пуассоновское распре
деление как частный случай класса сложных распределений. Приво
дится также рекуррентные формулы на момент.




