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It is the purpose of the present paper to describe a class of sets which have a fixed
point property for nonexpansive compact set valued mappings. We shall use asymptotic
center technique [4].

Let X be a Banach space witch a norm || || and let X be a nonempty subset of X. We
choose an arbitrary boundet sequence {x;] in X and a point x. A number

rix, [x;D = lim!sup llx — x¢ll

is called an asymptotic radius of [x;] at x and a number

A1) = inf r(x[xi])

is an asymptotic radius of [x;] with respect to X (or in K). The set
AK, [xi]) =[x EKer(x, [x;) =rg (xi ]}

is called an asymptotic center of [x;] in K. It is obvious that if [x;, ] is a subsequence of
[%{] then 7k (Ixi,)) < rx (Ix;]). We will call the sequence [x;] regular with respect to K

(shortly regular) if all its subsequences have the same asymptotic radius in K and almost
Convergent with respect to K (shortly almost convergent) if all its subsequences have the
sa’Pe asymptotic center consisting of exactly one point x. Then we will write x=Ax —
‘hf.nx i- In [9] K. Goebel proved the following very useful theorem.
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Theorem 1. Any bounded sequence [x;] contains a regular (with respect to K) sub-
sequence.

The almost convergence and regularity of sequences have the following properties
which we will collect in a few lemmas.

Lemma 1. a) [19])If x; =x for every iand x €K, then Ax —limx; =x.
]
b) [19)If Ag — li;nx,- =x, then for every subsequence [x; ] Ax —limx;, =x.
n

¢) [19] If [x;] does not almost converge to x €K, then there exists a subsequence of
which every sequence does not almost converge to x.

- d)If [xj] is regular in K, then every subsequence [x;, ] is also regular in K and A (K,
[xiD CAK, [xi,D-

e)If [x;) is regular with respect to K and x € A(K, [x;]) then there exists lim |Ix —
i
- xjlland li}n lIx — xill = r(x, [x;]) = rg ([x;]).

f)If [x;)is regularin K and x = Ag — lifnx,, then for eack y € K\[x] we have.
rx ({xiD =rex. [x;D <lim inf [ly - x; |l
!

Lemma 2. Let x belong to K. If for each regular subsequence [x,n] of the sequence [x;]
there exists subsequence [x,-nk] which has [x]as its asymptotic center, then x=A g —limx;.
1

In some Banach spaces we may say something more about almost convergent sequenc-
es. We call a Banach space X an Opial space with respect to a weak (weak —*) converg-
ence, if for every sequence [x;] in X, which converges weakly (weakly—*) to x € X and
for all y #x we have lim!sup fly = x;ll> lim‘sup llx — x;ll Z. Opial introduced this condi-

tion in [20]. For connections between the Opial’s condition and other important pro-
perties of normed spaces cf. [11], [14], [17]. We say that X is uniformly convex in every
direction (u.c.e.d.) if for all 0 < e <2 and z € X with ||lz|l =1 we have

x+y
8(e,z)=inf[l—'!T|

HxlI<1, lyli<l, lx—yli2e,

\ /
V x—y=12]>0
rER

(see [11.12].181 123V),



An Almost Convergence and its Applications 81

Lemma 3. Let X be an Opial space with respect to a weak (weak—*) convergence and
9 # K T X weak (sequentially weak—*) compact. Then a sequence [x;) € k¥ isalmost
comvergent iff it is weak (weak—*) convergent.

Lemma 4. X is an u.c.e.d. Banach space and § # K C X is convex. Then each regular
sequence w th nonempty its asymptotic center is almost convergent in K.

Corollary 1°[9) If X is an uniformly convex Banach space and K is a nonempty closed
convex subset of X, then each regular (in K) sequence is almost convergent in K.

The next lemma answers the following question: are asymptotic centers of sequences
are ‘similar’?

Lemma 5. Let X be a Banach space, § ¥ K C X, |x;] — bounded and x € A (K, [x;]).
For a sequence of nonnegative real numbers [0y} we define y; = ay x;+ (1 —a) x (i = 1,
2, ...). Then the following statements are fulfiled:

a)If a; = a for each i and 0 K a < 1, then org ([x;]) =rx (Vi) and x EAK, [yi]) C
CA (K, [xi].

b)Ifx=Ag — l}mxi and lim‘sup a; <1, thenx =Ag — l}myi..
cHfx=Ag — l}mx,-, 1< lim' sup a; < + oand K is convex, thenx = Ax — l}my,.
The last properties of asymptotic centers are related to an notion of ‘inwardness’ ({12]).

Let X be a Banach space, § # K C X and x €K. Then we define the inward set of x rela-
tive to X, denoted /g (x), as follows

Ix(x)=[(1 —a)x +av:y €K, o> 0].

Lemma 6. For X, K as above and for a bounded sequence [x;] such that [x)=A (K, [x;].
we have rg ([x;])<r(y, [x,-])=lim‘sup|| y—x;ll for each yElg (x)\[x].

Leroma 7. If X isu.c.e.d., K is a nonemty convex subset of X, [x;] is bounded and [x}=
SA (K, [x;]), then for every yEIg (x)\[x] we have rg ([x;))<r, [xiD.

Now we may introduce a new topology in a nonempty subset K of a Banach space X.

Definition 1. A subset M of K is said to be Ax — closed if for each bounded sequence
[x] of its elements, which is almost convergent tox in K, have x€M. A family of all Ay —
closed subsets of K is a closed sets family of a new topology in K, that we will call an
4_4!: ~ topology. K .will be called sequentially 4-compact iff from each sequence [x;] of
Its elements we may choose an almost convergent in K subsequence [x; ].
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Theorem 2. A sequence [x;] of elements of set K is convergent to x in an Ax — topo-
logy iff x=Ag —lim x;
1

Proof. It follows from well known facts relative to $* — spaces and L* — spaces (see

[5), [15]).

Remark 1. We notice that if ¥; CK, then an Ax¢ — topology in K, may be different
from an Ag — topology relativized to K, (examples may be constructed in the same way
as in [10], see also examples which are shown later in this paper).

Remark 2. If X, and K, are sequentially 4 — compact and K=K, NK, #, then K
needn’t to be sequentially 4 — compact.

Remark 3. If X is sequentially A — compact, then X is bounded and closed in (X, [ I[).

Remark 4. It may happen, that an Ay — topology is a topology induced by a norm to-
pology of X even, if K is not compact.

Remark 5. It is known, that X is sequentially 4 — compact if:

a) K is compact,

b) K is weakly compact and X is an Opial space with respect to a weak convergence
(then the Ax — topology is the weak — topology relativized to K),

¢) K is weakly — » compact, X is a Banach space that is adjoint to a separable Banach
space and X is an Opial space with respect to a weak — # convergence (then the Ay — to-
pology is the weak — » topology relativized to K),

d)K is a bounded convex closed subset of an uniformly convex Banach space X.

Remark 6. In many cases Ax — topologies are not the relativized weak or weak — » to-
pologies in K. For example see a unit ball in L”(0,1) for p>1 and p#2 ([20]). It isn’t
even known whether an Ax — topology is a T, — topology (Hausdorff topology).

In this part of the paper we shall give some fixed point theorems for nonexpansive
mappings.

Theorem 3. Ler K be a nonempty sequentia ly A — compact subset of a Banach space

X and let T:K—>m be a nonexpansive mapping, where © denotes the family of nonempty

compact subsets of X, equipped w th the Hausdorff metric. If T is an inward mapping, i.e.

IxClgx for x€K, and there exists a sequence [x,-]EKN such that dist (x;, Tx;)~>0, then
]

FixT=[x€K:xETx)#@ If addditionally X is u.c.e.d. the condition ‘Tx CIxx for each
xEK’may be replaced by the condition ‘Tx Clg (x) for each xEK".

This result may be proved by an approach due to K. Goebel [9] (see also [3], [17],
[18], [19)).
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Exemple 1. Suppose [4;], [b;] are bounded sequence of positive numbers, infa;>0 and
i

a;<b; for i=1,2,... . Chose two points fi=ag;e;, gi=bj¢; in each ‘axis’ and define K=
=conv[f;gilie n- This K is not weak —» compact. Simply calculations show that for weak
—e convergent [x;] tox

A(K,[x;])=Projy x where Proij=[y€K=||y—xll=ian lz—x1l1
ze

Then Projgx consists of exactly one point iff there exists exactly one index j, such that
&

Choosing properly four sequences [g;], [a:-], [bi), [b7] such that ¢;<a}<b;<b; (i=1,2,...),
we may construct, in a similar way, two sets K', K that K'CK and K’ is sequentially A —
compact, while X is not or vice versa. It explains statements given in remark 1, 2, 4. Re-
peated this constructions infinitely many times we may also construct the sequence of
sets [K;]([L;]) with the following properties:

a) each K;(L;) is nonempty closed and convex,

b) K;C Ky (LiD Liyy) fori=1,2,...,

) OKi=K (NLi=L#9),
1

d) K;(L;) has a fixed point property for nonexpansive mappings (f.p.p.) fori=1,3,5,...,
and K;(L;) has not f.p.p. fori=2,4,...,

e) for each €>0 there exists and such that H (K, K;)<e (H(L, L;)<e), where H denotes
the Hausdorff metric,

f) K(L) has f.p.p. (the point f/ may be replaced by f'/ K(L) has not f.p.p.).

Definition 2 |21]. Let K be a nonempty subset of a Banach space X and T:K—>K.The
mapping T is called asymptotically regular if

limlI T x — Tix||=0
]
for each x€K.

Theorem 4. If K is a nonempty sequentially A —compact subset of a Banach space X
and T:K—K is a nonexpansive asymptotically regular mapping, then for each x [T'x) al-
most converges to some fixed point.

Corollary 2. If K is a nonempty convex sequentially A —compact subset of a Banach
Space X and T:K—K is nonexpansive, then for each 0<a<1,and each xEK asequence
[5%x) (Sa=aT +(1—0)I1d) is almost convergent to a fixed poin: of T.

Proof. S, is nonexpansive and asymptotically regular [13].
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Example 2. Let X=I', K=[x=[#;]E!*: le||<1 £ >0 for k=1,2,...} Tx=T([&])=
=10,%,,&,...] and Sm —l/2(T+Id) Then [Sm €] is w—s convergent to 0 and
IS{ e 1= lfou 1,2,.

Example 3. Let X=I', a>0, f,=e, f;i=(1+a)¢; for i>2 and K=conv[f)]. If Tx=
=T(&D=[%.0.%2,83, ... ) forx€K and S, ;5 =1/2(T+1d), then (S1,2/2 Jalmost convergens
to f; and |IS{,2/; ll=1+a for each i

Remark 7. In theorem 4 the assumption ‘X is sequentially 4 —compact’ may be replac-
ed by the following assumptions: [T'x] is bounded for some xEK and from each bound-
ed sequence [x;] in K we may choose an almost convergent in K’ subsequence [x;,]. Some

other generalizations are related to so called normal Mann iteration process for T (see [6],
(71, [13), [16], [20], [21], [22]).

Finally we will be concerned with methods of constructions of some sequentially 4 —
compact sets. If we have a countably family of Banach spaces [(X}|lll))] and p>1,
IP(X;)=X will signify a Banach space of all sequences x=(x!) such that x/ belongs to X;
for each / and

I I =[§.l (I 1)PYPP <+,

Let K; be a nonempty subset of x; (I=1,2, ...). We define K =El K;jNX and we always
1

assume that K # 0. Let [x;] = [(x{)] be a bounded sequence in X. Then we can obtain the
following lemma.

Lemma 8. [x;] is almost convergent in K iff each [xf],'e N is almost convergent in K.

A proof depends upon two facts:

1) if each [xf];e;v is almost convergent to x! in K’, thenx = (x’) EX,

2) if each of [x;] ey =1,2,..) and[x;] is regular in K; or K (respectively),y = (Y")E
€K \[x] and there exist the following limits: llm llx—xl, hm Ily—x;li, lu'n x!=xh,,
hm Iy =xfli 1=1,2,..) and

2 : i — i — =18 P (y! y

lim £ (xh 1) (k=1,2,...), then limlly =xN=[Z (¥, [x;];en)*,
Gl 1y \py/p 5 1,0

+ lim l:m’?k(lle"l)] >IE PO Ix)ien)t

. - 1p
+1im tim 2 (fx!1,)?1" =limyx—x, .
m Bym (1= ) im | x —x, |
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Corollary 3. K is sequentially A —compact iff every K| is sequentially A —compact and
E (diam Kj)P < + =,
1

Let us choose a function G : R[" = R, (R, = [t ER : ¢ > 0]) such that

/\ /\

1. U.’m‘,m)eR:n[G(tl'_...r"')=001‘“m:f=0]
2. «ER, (P\...,tM)ERM Gat',...,at™)y=aG(t, ..., ™)

4
¥ 1

3. @ :m)exm[(" <th ..., <M)=G(, ..., TG, ..., t™)]

(s',...,smM)ERM

4. (,,'_f.',m)éR:,, GE +1, ..., + M) QGE, ..., M)+ G, ..., ™)

(s',....sM)eRm

Then in a product of a Banach spaces (Xj, |l ll;), ... , (X, || ;) we may introduce
a new norm

lixlig =G(lix* lly, ..., Ix™ llm)
forx=(x*,..., x™)EX = fi xl.
=1

*

Lemma 9. If each K; (I =1,...,m) is a nonempty subset of X) and each sequence
M],-EN (1=1,..., m) is regular in K}, then a sequence [x;) = [(x}, ..., x]")} is regular in

K=1 KC X, @)= GOk, (Do T (D) and B AGK:, (D C ACK. )

If in place of 3 there is a condition
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/\

3 (... tmyERM (G <t ..., s"<EMHYAGE, ..., s™ =@, ..., t™)]=

s'....,sM)erm

“EGt .., MLGCE, ... ™)
m
then Il A ¥ = AK, [xi]
=1
If G satisfies conditions 2, 3', 4, then we have the following corollaries.

Corollary 4. A sequence [x;] is almost convergent to x =(x', ..., x™) in K iff each

[xf.]ieN is almost convergent to x' in K; (=12...,m).

Corollary S. K is sequentially A —compact iff K} is sequentially A —compact for 1, 2,
e, m

Using the last corollary we may construct an example of a sequentially A —compact
set K with nonempty its interior in a Banach space X, which is neither u.c.e.d. nor Opial
space with respect to weak —* convergence.

Example 4. Let X =LP(0,1) X I'(p > 1,p # 2) with the nom li(x,y)ll =(||x||zp +
+ 1yl )*2. Let K=K, p X K1, where K, p, K are closed unit balls in LP(0,1) and I'
respectively. Then K is sequentially 4 —compact.
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STRESZCZENIE

W pracy zdefiniowano nowg rodzing zbioréw majacych wtasnos¢ punktu statego dla
Wielowartosciowych operacji nieoddalajacych.
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PE3IOME

B pabore ompefiesleHO HOBOE CEME/ICTBO MHOXKECTB MMeIoMMX MPWHIMI
HeTOIBMIKHOI TOYKM AJA MHOTO3HaYHbIX CJaaboCIKMMaloLmX 0ToBpaKeHNit.



