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An Almost Convergence and its Applications

O prawie zbieżności i jej zastosowaniach

Об законе сходимости и ее приложениях

It is the purpose of the present paper to describe a class of sets which have a fixed 
point property for nonexpansive compact set valued mappings. We shall use asymptotic 
center technique [4].

Let X be a Banach space witch a norm || I! and let A" be a nonempty subset of X. We 
choose an arbitrary boundet sequence [x,] inX and a point x. A number

r(x, [x/]) = lim sup ||x - X/H

is called an asymptotic radius of [x, ] at x and a number

a([x/]) = inf r(x, [x, ])
* x e K

is an asymptotic radius of [x, J with respect to K (or in K). The set 

A (K, [x,]) = [x eK :r(x, [x,]) = rjcflx,])}

ls called an asymptotic center of [x,] in K. It is obvious that if [x,n] is a subsequence of 
] then ([■*/„]) < rK (fxi ])• We will call the sequence [x,] regular with respect to K

(shortly regular) if all its subsequences have the same asymptotic radius in A' and almost 
convergent with respect to K (shortly almost convergent) if all its subsequences have the 
same asymptotic center consisting of exactly one point x. Then we will write x=Ak~ 
-lirnx,-. In [9] K. Goebel proved the following very useful theorem.
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Theorem 1. Any bounded sequence [x/] contains a regular (with respect to K) sub
sequence.

The almost convergence and regularity of sequences have the following properties 
which we will collect in a few lemmas.

Lemma 1. a)[19]//x/ =xforevery iandx &K, thenAg -Mmxj-x.
i

b) [19]/M£ — limx,=x, then for every subsequence [xjn]Ag -limx/n = x.
i n

c) [19] If [x,] does not almost converge to xEK, then there exists a subsequence of 
which every sequence does not almost converge to x.

. A) If [x,] is regular in K, then every subsequence [xJ?!] is also regular in K and A (K, 
[x,J)CA(X, [x.J).

e) If [x/] is regular with respect to K and xEA(K, [x,]) then there exists lim ||x - 

- x/|| and lim ||x - x, || - r(x, [x,]) = ^([x,]).

f) If [xf] is regular in K and x = Ag - lim X/, then for each y £ K\[x] we have.

rK ([*/]) = r(x, [x/P < lim inf ||y -x,|| 
i

Lemma 2. Let x belong to K. If for each regular subsequence [X(n]ofthe sequence [x,]

there exists subsequence [x,- ] which has [x]as its asymptotic center, then x=Ag —limx,-.
* i

In some Banach spaces we may say something more about almost convergent sequenc
es. We call a Banach space X an Opial space with respect to a weak (weak—*) converg
ence, if for every sequence [x,] in X, which converges weakly (weakly-*) to x 6X and 
for all y sLx we have lim sup ||y - x/|| > lim sup ||x - x,-|| Z. Opial introduced this condi

tion in [20]. For connections between the Opial’s condition and other important pro
perties of normed spaces cf. [11], [14], [17]. We say that X is uniformly convex in every 
direction (u.c.e.d.) if for all 0 < e < 2 and z EX with Hz I! =1 we have

5(e, z) = inf [ 1 — :||xl|<l, ll/IKl, llx-yii>e,

\ /
V x-y 
tea

tz ]>0

fseefll.f21.18I r231ï



An Almost Convergence and its Applications 81

Lemma 3. Let X be an Opial space with respect to a weak (weak-*) convergence and 
weak (sequentially weak-*) compact. Then a sequence [x/] G K" is almost

convergent iff it is weak (weak-*) convergent.

Lemma4. X is an u.c.e.d. Banach space and 0 ¥= K C X is convex. Then each regular 
sequence w th nonempty its asymptotic center is almost convergent in K.

Corollary 1 '[9] If X is an uniformly convex Banach space and K is a nonempty closed 
convex subset of X, then each regular (in K) sequence is almost convergent in K.

The next lemma answers the following question: are asymptotic centers of sequences 
are ‘similar’?

Lemma 5. Let X be a Banach space, 0 #= AT C X |x/] - bounded and x GA (K, [x/]) 
For a sequence of nonnegative real numbers [ot/] we define yj = cq Xj + (1 — a,) x (f - 1, 
2,...). Then the following statements are fulfiled:

a) If a,- = a for each i and 0 < a < 1, then arg ([x/]) = rg ([y/J) and x G A (K, [y,]) C 
ex (X, [x,]).

b) Ifx=Ag - lim x/ and lim sup a,- < l,thenx =Ag — limy/..

c) //x =Ag — limx,-, 1 < lim sup cq < + '»andK is convex, then x = Ag - limy/.

The last properties of asymptotic centers are related to an notion of ‘inwardness’ ([12]). 
Let X be a Banach space, 0 &K ZX and x G K. Then we define the inward set of x rela
tive to K, denoted Ig (x), as follows

/jt(x) = [(1 — a)x + ay :y GAT, o > 0].

Lemma 6. For X, K as above and for a bounded sequence [x/] such that (x]=A (K, [x/]). 
we have rK([xj])<r(y, [x/])=lim sup||y-x/||/or eac/ryG4;(x)\[x].

Lemma 7. If X is u.c.e.d., K is a nonemty convex subset ofX, [x/J is bounded and [x]=
(AT, [x, ]X then for every yG/jf(x)\[x] we have rg ([x,])<r(y, [xr]).

Now we may introduce a new topology in a nonempty subset K of a Banach space X.

Definition 1. A subset M of K is said to be Aj^ - closed if for each bounded sequence 
(*<] of its elements, which is almost convergent tox inX.havexGA/. A family of all A^ - 
closed subsets of A is a closed sets family of a new topology in K, that we will call an 

— topology. A .will be called sequentially A -compact iff from each sequence [x/] of
hs elements we may choose an almost convergent in K subsequence [x^].
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Theorem 2. A sequence [x,] of elements of set K is convergent to x in an Ag - topo
logy iff x=Ag -limxj.

I

Proof. It follows from well known facts relative to S* - spaces and L* — spaces (see 
[5], [15]).

Remark 1. We notice that if CK, then an Ag — topology in Kt may be different 
from an Ag — topology relativized to Kt (examples may be constructed in the same way 
as in [ 10], see also examples which are shown later in this paper).

Remark 2. If Kx and K2 are sequentially A — compact and K=K2 then K
needn’t to be sequentially A — compact.

Remark 3. If K is sequentially A — compact, then is bounded and closed in (X, || ||).

Remark 4. It may happen, that anX^ — topology is a topology induced by a norm to
pology of X even, if K is not compact.

Remark 5. It is known, that K is sequentially A — compact if:
a) K is compact,
b) K is weakly compact and X is an Opial space with respect to a weak convergence 

(then the Ag — topology is the weak — topology relativized to K),
z)K is weakly — * compact, A- is a Banach space that is adjoint to a separable Banach 

space and X is an Opial space with respect to a weak — * convergence (then the Ag — to
pology is the weak - * topology relativized to K),

i)K is a bounded convex closed subset of an uniformly convex Banach space X.

Remark 6. In many cases Ag — topologies are not the relativized weak or weak — * to
pologies in K. For example see a unit ball in Lp(0,1) for p>l and p#:2 ([20]). It isn’t 
even known whether an Ag - topology is a T2 — topology (Hausdorff topology).

In this part of the paper we shall give some fixed point theorems for nonexpansive 
mappings.

Theorem 3. Let K be a nonempty sequentia ly A - compact subset of a Banach space 
X and let T-.K-rtt be a nonexpansive mapping, where it denotes the family of nonempty 
compact subsets ofX, equipped w th the Hausdorff metric. IfT is an inward mapping, i.e.
TxCIgx for xEK, and there exists a sequence [xt]&KN such that dist (x,-, Tx,)->-0, then 

i

Fixr=[xeAS:xerx]=?t0. If addditionally X isu.c.e.d. the condition ‘TxCIgx for each 
x&K’may be replaced by the condition ‘TxCIg(x) for each x&K’.

This result may be proved by an approach due to K. Goebel [9] (see also [3], [17], 
[18], [19]).
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Exemple 1. Suppose [a,], [ft,] are bounded sequence of positive numbers, infa,->0 and 
i

di<Jbj for 1=1,2,... . Chose two points/j=a,-e,-, gj=bjej in each ‘axis’ and define K- 
=conv[/j„g,-],-ejy. This/f is not weak —* compact. Simply calculations show that for weak 
—* convergent [x,] tox

X(/f, [x, ]) = Proj^ x where Projx x = [/G/C: || y — x || = inf ||z-x||l 
ze*

Then ProjtfX consists of exactly one point iff there exists exactly one index/, such that
^■=mina,-.

i

Choosing properly four sequences [a,], [aj], [ft,], [ft/] such that a,<aj<ftj<ft,- (/=1,2,...), 
we may construct, in a similar way, two sets K', K that K' C.K and K' is sequentially A — 
compact, while K is not or vice versa. It explains statements given in remark 1,2,4. Re
peated this constructions infinitely many times we may also construct the sequence of 
sets [K,]([£,]) with the following properties:

a) each Kj(Lj) is nonempty closed and convex,
b) (L,OL,-+t) for/=1,2,...,
c) U^=A?(nL,=L#=0),

t i

d) Kj(Lj) has a fixed point property for nonexpansive mappings (f.p.p.) for/=l,3,5,..., 
and £,(£,,) has not f.p.p. for/'=2,4,...,

e) for each e>0 there exists and such that//(/C,/Q)<e (//(£., L,)<e), where H denotes 
the Hausdorff metric,

f) K(L) has f.p.p. (the point// may be replaced by/’/K(L) has not f.p.p.).

Definition 2 [21 J. Let K be a nonempty subset of a Banach space X and T■.K^K.The 
mapping T is called asymptotically regular if

lim||rf*lx-r'x||=0
i

for eachxGX.

Theorem 4. If K is a nonempty sequentially A —compact subset of a Banach space X 
and T-.K-'K is a nonexpansive asymptotically regular mapping, then for each x [T'xja/- 
ntost converges to some fixed point.

Corollary 2. If K is a nonempty convex sequentially A -compact subset of a Banach 
space X and T :K-*K is nonexpansive, then for each 0<a<l,and each xdK a sequence 
[~>Lx] (Sa=a7’+(1— o)Id) is almost convergent to a fixed point of T.

Proof. Sa is nonexpansive and asymptotically regular [13].
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Example 2. Let X=/‘, A=[x=[ft]G/1 :||x||<l, ^>0 for *=1,2,...J rx=r([f*])= 
=lP.£i .fc,... ] and Sia = l/2(7'+Id). Then e, ] is w-* convergent to 0 and 
115^ q ||=1 forf= 1,2,....

Example 3. Let X=ll, a>Q, ft=et, fi=(l+a)ej for i>2 and /T=conv[^]. If 73r= 
=HU* ])■[$»,0,$a,$3> ••• ] forxGKand S1/2 = l/2(r+Id),then [SiZ2/2] almost convergens 
to/j and l|S[z2/21|=1 +0 for each i

Remark 7. In theorem 4 the assumption ‘K is sequentially .4 -compact’ may be replac
ed by the following assumptions: [T'x] is bounded for some x&K and from each bound
ed sequence [x,] in A we may choose an almost convergent in A' subsequence [x,„]. Some

other generalizations are related to so called normal Mann iteration process for T (see [6], 
[7], [13], [16], 120], [21], [22]).

Finally we will be concerned with methods of constructions of some sequentially A — 
compact sets. If we have a countably family of Banach spaces [(A7, llll/)] and p>l, 
/P(A/)=X will signify a Banach space of all sequences x=(xz) such that xl belongs to Ay 
for each I and

||x|| = [S ( Hx7 ||/)P]1,P < + °o.
Z-i

Let Ki be a nonempty subset of x/ (/=1,2,...). We define K = n Ki n X and we always
/«i

assume that K ± 0. Let [x,] = [(x{)] be a bounded sequence in X. Then we can obtain the 
following lemma.

Lemma 8. [x,] « almost convergent in K iff each [x{],Gyy is almost convergent in fy.

A proof depends upon two facts:
1) if each [x{]/Gjy is almost convergent toxz inA^, thenx = (x/)G X,

2) if each of [*/J/Gjy (/= 1>2,...) and[x,] is regular in Kj orK(respectively),y = (F^G 

GA\[x] and there exist the following limits: lim ||x—X/||, lim ||p-x, ||, lim ||xz-x{||/, 

lim ||/-x{||;(/ = 1,2,...) and

“""J*^** then lim lip-x || = [2 rP(3'/. [*5]/eyy) +

+1"" Hm £ (|| x' ||, /]>" > [2 rP (x'. [ x‘ ]. G N ) +

+ lim lim £ ( llxj. II.)*’!1'7’= lim ||x-x. ||.
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Corollary 3. K is sequentially A -compact iff every Ki is sequentially A -compact and 

(diam K[)p < + <».

Let us choose a function G : R™ -> R+ (R+ = [f €R : t > 0]) such that

1.

2. aeR (t‘,...,tm)£Rm ~ aG(t > ••• > I )

3. (,...... .........................................sm<tm)~G(s'......... sm)<G(f1........fm)]
(**..... r'w)eJ?«

4- (f.......tm}eRm + tl........s'" + tm)<G(sl........./”) 4- G(f‘,..., H”)

(»*......s^eR?

Then in a product of a Banach spaces (X,,|| ||,), ...,(Xm, || ||m) we may introduce 
a new norm

llx|lc=G(ll**ll1,...,U*Mllm)
m

fotx = (x‘,..., xm)eX = II xl.
Z»i

Lemma 9. If each K/ (Z = 1,... ,m) is a nonempty subset of Xj and each sequence
(I = I,... ,m) is regular in Ki, then a sequence [xj ■ [(xj,..., xj”)]fc regular in

m m i
A = n AT, C X. rK ([x,]) = G{rKi ([X* rKm (Pf ])) and n A (K/, [x']) C A (K, [x,]>

/«1 /el

V in place of 3 there is a condition
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A
3' (r*...... t

(?......

I [(s* <t1, ..., sm <tm)/\(s\ ..., sm)*(t'........r'")]^

If G satisfies conditions 2, 3’, 4, then we have the following corollaries.

Corollary 4. A sequence [x,] is almost convergent to x = (x1,, xm) in K iff each

Corollary 5. K is sequentially A -compact iff Ki is sequentially A -compact for 1, 2,
..., m.

Using the last corollary we may construct an example of a sequentially A —compact 
set K with nonempty its interior in a Banach space X, which is neither u.c.e.d. nor Opial 
space with respect to weak-* convergence.

Example 4. Let X = 1/(0,1) X ll(p > l,p ¥= 2) with the norm !l(x,y)|| = (||x|||p+ 

+ IIy lip )lfl. Let A' = A£p X Ap , where A£p, Ap are closed unit balls in Lp (0,1) and /’ 

respectively. Then A is sequentially?! — compact.
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STRESZCZENIE

W pracy zdefiniowano nową rodzinę zbiorów mających własność punktu stałego dla 
wielowartościowych operacji nieoddalających.
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РЕЗЮМЕ

В работе определено новое семейство множеств имеющих принцип 
неподвижной точки для многозначных слабосжимающих отображений.


