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On Certain Boundary Value Problems for Partial Differential Equations

O pewnych problemach brzegowych dla równań różniczkowych cząstkowych

Об некоторых краевых задачах для дифференциальных уравнений с частными 
производными

1. In this paper we consider some types of boundary value problems for certain partial 
differential equations, using a method developed by T. Lezariski (see [2], [3]).

For the sake of clearity we shall briefly describe this method. Let (H, (...)) be a real 
Hilbert space and let M be its dense linear subsed on which is defined another scalar pro
duct (.. .)*. If (7/,,(.. .)*) is a unitary completion of (ri/,(.. .)*) and 'i’-.M X M -* (Risa real 
valued functional satisfying the following conditions

(1.1) for every u£M the functional 'P(u,.) is linear and bounded in the norm || • ||#,

(1.2) there exists a positive constant b such that

A
u,r, h

I Ф(ы + v, h) — Ф(ы, Л) 1 • II v II* • || h 11« ,

(1.3) there exists a positive constant a such that

A
u.heM

Ф(и + h, h) — Ф(ы, Л) >a* || h Hi ,

then a functional Ф : Hx X Hx -*■ <R defined for u, h€Ht by placing

(1.4) Ъ(и. Л) = lim Ф(ид,Лл).
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where un € M(n = 1, 2,...) and hn EM(n - 1,2,...) are sequences convergent in the 
norm || • II* to u and h respectively, enjoys the same conditions (1.1), (1.2), (1.3) (with 
obvious changes), and the equation

(1.5) 'I'(u, h) = 0 for every/i G#!

has a unique solution u in HY. If the space M, scalar product (...)* and the functional 4’ 
are properly chosen, the solution u may sometimes be a solution of an appropriate 
boundary value problem.

In his papers [2], [3] T. Lezariski solved some types of boundary value problems with 
the aid of the above method. The characteristic feature of his papers [2], [3] is the rela
tion C • ||u|l < ||u||* (u SA/), with a positive constant C;in the present paper this relation 
usually does not hold, but despite of that the method may be successfully used and even 
more general problems may be treated.

In the following two passages we shall investigate boundary value problems for certain 
partial differential equations of order 2 • N (where N is a positive integer). In the last 
passage we shall indicate a case when it may be effectively compute a sequence of ele
ments Uj{j= 1, 2,...) in M which converges in the norm || • ||* to a solution of considered 
boundary value problems.

2. Let Rn denote the space of sequences H = (Hi, •••» Hn), Hie <R with a scalar product

(2.1) H’n = 2 Hi*’?/
i«i

and let £2 be a simply-connected, bounded region in (R”, with a boundary S = 3 £2 which 
is a regular surface of the class C1. For any multi-index a = (oj,... , a„), where a, are 
non-negative integers, we shall denote

I a | = 2 a, 
i-i

and

3|ai
for | a i > 0

and

Da = identity operator for |a| = 0.

Let TV be a fixed natural number. We shall denote by m the cardinality of the set of all 
multi-inedices a = (ai,..., a„) with ja| <TV
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(2.2) m - card [a = (ai,.... a„) : |a| <A<]

it is seen that m = ( ). Let' n '

(2.3) ,a(m)

where c/'} = (a(P, c/p.......a$ ) with e/p non-negative integers, be a fixed enumeration
of all multi-indeces a with |a| <JV.

Definition 2.4. (H, (...)) denotes the space L 2 (£2) with its scalar product

(u, v) = f u((yi>(£)d$ for u,ve/f; besides ||u || = V(u, u) 
n

Now, we define a linear substed M of H.

Definition 2.5. A real valued function u belongs to M if u £ <52A)(£2) andDaulS' = 0 
for every multi-index a with |a| <N.

It is readily seen that the set M is dense in H in the norm j| • jj. We are going to deter
mine on M anew’ scalar product (...)*. Let [p1( p2, ...,pm] be a sequence of non-negative 
functions Pi which satisfy the following conditions

(2.6) pf E for is 1,2, ...,m,

(2.7) there exists a number fc£ [0,1, ...,Af] such that mes ([£ £ £2 : p7(£) = 0] ) = 0
forall/£[»£ [1,2, : |a(/)| = fcj,

a(r> (i = 1,2,..., m) being the sequence of multi-indices fixed above (see (2.3))

Definition 2.8. Let N
(u, v)*= 2 (u,i>)/ , 

i»o
where

(«,»*«/ £

(i = 0, 1.......AO, for every u, v £ M.

We shall prove that the linear set M and the form (...)* constitute a unitary space.

Lemma 2.9. The form (...)„ is a scalar product on the linear set M.

Proof. It is evident that each of the form (...)/(/ = 0,1...... N) is bilinear and positive
and so is (...)* as their sum. We shall demonstrate that if («, u)k = 0 for an element u£Af, 
then u = 0. Ineed, let u £ M and let (u, u)k = 0 i.e.
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/n

From this we obtain by (2.7) and by the condition u £ C^2jV\£2)’ Da u(ij) = 0(£ £ £2) 
for all multi-indices a with ia| = k. If k = 0 this means that u = 0; if k > 0, then by the 
condition Dsu\s = 0 for all multi-indices /3 with |/3| = k — 1, we get «(£) = 0 for every 
£ £ £2 and for all multi-indices /3 with i/3| = k — 1, because all partial derivatives of D^u 
are equal to zero. Continuing this proces, if needed, we obtain after k steps u = 0, so the 
form (...)* is really a scalar product. Now we may prove that (...)* is also a scalar pro
duct. If (u, u)* = 0 for an element u £ M, then by the condition

N
0 < (u, uY < 2 («, uY = (u, «), = 0,

K i«o '

we get (u. u)k = 0, which, by the first part of the proof, implies that u = 0. This ends the 
proof of Lemma 2.9.

At present we shall define on the set M X M a real valued functional 4'. Let/y(fi,fj,..., 
..., tm, £)(/ =1, 2,..., m) be real valued functions, tj£ <R, $ £ £2. We assume these func
tions satisfy the following conditions

(2.10) //£C(I“W|) (&m X £2) (/= 1,2,... ,m),

(2.11) for every function v £ C(£2) it holds

jl/,(o.......o,?)l‘l^(Ol^ < f l$(o,-...o,oi-i«'({)ldf
supp/ytO.0,*) suppp/

(7=1,2,... ,m),

(2.12)
lf/(0....... 0, £)P

' supp pf pj ({)

To formulate next conditions let us put

</$<+« (7 = 1, 2.......m)f

fjj ( ti.......£) ~ ( ^1 ’ > £) (/>* 1» 2» ••• > w)

We also assume that the functions /,y comply with the next two conditions

(2.131 there exists a positive constant a such that
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m m

(2.14) there exists a positive constant b such that

< b2 ( £»'•$•( 2 pfir2).
i s i ' i « t ’

Let qEH = L2 (£2) be a real valued function satisfying the following condition

where/o G [1, 2, is such that |a^«^ I = 0 (see (2.3)). 

Definition 2.16. Let

^(u, h) = % (u, ft) + (<7, A),

where

for ever)' u, h&M.
It is evident that the functional 'P(n, h) is linear with respect to h for each u EM. It 

also holds.

Lemma 2.17. The functional 'P satisfies the following conditions:

1) for every u EM there exists a positive constant Cu such that

hEM

A I >P(u + v. A) - 'P(u, A)! < A-il v H,-Il h II» .
u, v, h G M

3)
u. h EM

>P(u + A, A) — 'Pyr, h) >fl’|i A li; .
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Proof. First we shall prove 2). Let u, v,hEM. Then by (2.14), we have

I *(u + u. h) - *<«, /r)| = |% (u. h) - % (u + p, /r)| = | f A % (u + /-p, h) dt\ =
0 01

= '! h />! (U(^ + .......Pm(^)-Da<m\u(^) + f.p({) ), £).

•p/a)Dft</,-PG)-Z>a('\(O^ I <*•// ( S P/«)-|DqU)p(£)|2 

on /-i 7

’<,?■ „'«WO“"’/,«)!’ < 4-/(jT Z1p/(t).,c<.<«p({)|»d{).».

■</ WK)-I «“*' ’*«»* * = /M - ll.-ll h II. <lt - (.-II r II.-II h II. .

which proves 2). Now, using 2), we shall demonstrate 1). Since for«, h EM it holds

I M'(u. h)| < | ♦(«, h) — 4f(0,h)| + | 'P(O,/z)| <

<MI«II. • ll/ill. + I *0(0,A)|+ l(<?./01

il suffices to estimate | 'Po(0,/i)| and |(<7, /i)| for/i EM. By (2.11) and (2.12) we obtain 
the following inequalities

!%(m./0I</ 2 |f.(0,...,0,OIHPQ(/)/rU)l^< 2 f |f.(0.....0,01-
n/=l ' j-1 supp pf 'n /■

«(/) rn
•IP“ /i(£)|d£ < S s

j=i supp pi

l//(0.....o.OI
V/V (0

Vp/(0 • ID“^//($)!</£ <

<S( J dtf*-{ f <
/=1 supp pj p/ (£) ------- 'supp PI

J/>
<( I Ą ),/l-( S Jp/«)-|Z?“ /»ß)lM)Va=( 2 <5/),'2-||//||. . 

/'I /=) n /»J

On the other hand by (2.15), we get/

1 (g, /0| < / Vp/oU) * I h№ I <
nvP/o({)

f P/o(i)|/I(£)|2dOV2 =v'ö IIMo<\/0( 2 IIM?)< 
n Wo«) « '°

< V6 • ( 2 li h ||2)VI = Vö(N+l) • II h II. .
/■o 1
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Hence finally, for every u.h&M

which ends the proof of 1). To prove 3), we shall take advantage of (2.13). Let u, h E.M, 
then

which proves 3) and completes the proof of Lemma 2.17.
At present we sha 1 find a different formula for the functional 'k. After integrating

% (u, h) by parts (see Definition 2.16), we get

forZ>“/i|s = 0 for multi-indices a with |a| <N. So, if we define an operator UzM-*H\sy

where £ S £2, then we may write for «, hCzM

(2.19) *(«. /I) = (t/(u),h).

Let (H,, (.,.)*) denote a unitary completion of (M, (.,.),) and let 'L be the extension of 
'h defined in passage 1.

Now. we shall prove.

Theorem 2.20. Let u be such that 'k (u, h) = 0 for every h&H^. Ifu €M, then 
the function is a solution of the boundary value problem
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(i) 2 (- l)1 “0) 1 -//'^(p,(£) • £>aU)u(O.......Pm(i) • B^u®, f) + g(£) = 0
/-»

for every £ G fi.

(ii) D“u(£) = Q for every %ES and multi-indices a with \a\<N. Besides, the problem (i), 
(ii) has at most one solution in the class <52^(fi).

Proof. By the assuption ^(u, h) = 0 for every h G Hx and by the condition u EM, we 
obtain 'Pfu, h) = 0 for ever)' h EM i. e., thanks to (2.19) it holds (U(u), h) = 0 for every 
h E M. By the condition U(u) E H and from the density of M in H in the norm || • || it 
follows that (/(«) = 0; so the element u is a solution of the equation (i). The element 
u also satisfies the condition (ii) because u E M. To prove the last part of Theorem 2.20 
let us observe that if u E (52^\fi) is a solution of the boundary value problem (i), (ii), 
t en u E M and (U(u), h) = 0 for every h E M. Hence by (2.19) and by the definition of 
the functional 'k we obtain '{'(u, h) = 0 for every hEHx. Since the equation ^(u, h) - 0 
for every h EHt has a unique solution, the same proerty has the boundary value problem 
(i), (ii) in the class C(2'v\fi). This completes the proof of Theorem 2.20.

Remark 2.21. If an element u E Hlt being a solution of the equation ’T(u, h) = 0 for 
every h E Ht, were called a generalized solution of the boundary value problem (i), (ii) 
then the following statement would be true ‘the boundary value problem (i), (ii) has 
always a unique generalized solution’. It follows f om the above proof that so defined 
generalized solution u would be a classical one, if u EM-, conversely, any classical solution 
o the problem would be a generalized one.

3. In this passage the symbols <R", £*r?, fi, S, H, M, (.,.), Da, |a|, numbers N and m, 
sequence of multi-indices (J = 1,2, ... , m) retain their meaning (see (2.1), (2.2), (2.3), 
Definition 2.4, Definition 2.5), but this time a scslar product in M will be defined diffe
rently.

Let [Pi, Pi> . Pm] be a sequence of real valued functionsp/ which satisfy the follo
wing conditions

(3.1) P/GCw(fi) (r = l,2,...,m),

(3.2) there exists a number k G [0, 1, ...,JV] such that for all numbers; G [ iE [1, 2,...

mes([£Gfi:p/(£) = 0]) = 0.

Let us notice that now we do not assume the functions p,,..., pm to be non-negative.
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Definition 3.3. Let

(u, p). = Z (w, v\ ,

where

(u, V)i=f
n

for every u,v€M.
It is seen that Lemma 2.9 and its proof retain their validity in the case of ihe scalar 

product (.,.), defined in Definition 3.3
Now, we are go ng to define on M X M a real valued functional W. Let//(fj, fj, ... 

..., fm, £) (J~ L 2,... ,m),z, e <R, ££ £2,be real valued functions such that

(3.4) X £2) for/« 1,2,..., m.

Let the symbols ft/ (i, j = 1,2,..., ni) have the same meaning as in passage 2. We shall 
also assume that the functions/,y satisfy the following two conditions

(3.5) there exists a positive constant a such t at

(3.6) there exists a positive constant b such that

Letq&H = 1? (£2) be a real valued function fulfilling

(3.7)

where /0 G [1,2,... ,m] is such that la^>> I = 0(see (2.3)).

Definition 3.8. Let

W(n, h) = A) + (q, h).
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where

%(«. A)=/I P/«)*//(A«) -Da(1)u«).......Pma)’Da(m)u(^), l)-Da(,)h^)d^

for every u, hEM.
Now, we shall prove the following.

Lemma 3.9. The functional'F satisfies the following conditions

1) for every u EM there exists a positive constant Cu such that

| tf(u, h) 1<CU • || A ||. ,

| 'I'O + v, h) — ^(u, A) | < b • || V II. • II h II. ,

*
ty(u + h, A)-'P(u, h)>a • II A III .

Proof. First we shall prove 2). Let u, v, h E M. By (3.6), we have the following esti
mates:

I *(w + v, A) - *(u, A) | = | %(«, A) -%(u + v, h) | = |/ —%(u + fv, h)dt | <
0

1 m
"V ' (u + r-Xe....
* fk "ź® i"“"’-® i’ >“ • ifl“'7’*«) p >»d^, <

l m (j\
A P>(f) 1 °a |2 • (f f p](£) ’ I DaU)h^) p dt =

»• /«1
= b ■ Ill'll. - IIh II..
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Now, using 2), we shall show 1). Since for«, hEM

|'k(u(/i)|<|'k(u,/i)-^(O,/i)| + |’I'(O)/i)|< b ■ || u ||* • II h ||* + | %(0, h) f+

+ I (Q. h) |,

it is enough to estimate |4'o(O, A)| and |(<7. A)|. By virtue of the continuity of fj, there 
exists a positive constants such that | fj(Q, ... ,0,£)|</C for£S£2and/ = 1,2,... ,m. 
Hence by the Schwarz inequality:

I %(0,/i) | </ IS ... ,0^yDaU\^\di<K fZ \Pj(&\-\DPU\(®\dl<
n /=1 7 n /=i 7

<K^f \p,(i)-Da0)h(^l2d^K’y/^(fd^(f S p’a)- 
n v 7=1 7 n n 7=1 7

• | £>“(7\(0 I2 d$ )% = K • Vm • 'JmesSl • || h ||*.

On the other hand by (3.7) and by Definition 3.3, we have for h EM:

which gives in the end for h&M:

thus 1) is proved. To prove 3) let us take u, h&M\ by virtue of (3.5) we get

o dt

This ends the proof of Lemma 3.9.
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Les us notice that integrating 'P0(u, A) by parts (see Definition 3.8), we obtain for 
every u,h€.M

U /«1

•A(£) d$,

since 23“ h |$ = 0 for multi-indices a with la i <N. Let us define an operation U -.M-+H 
by placing

(3.10)
(2/(u))(£) = S (^l)i“(/>l •Dft(/)lp/«)-//(p1(f)-DttU?u(0.......pTO(£).

/->
^'"'u«), £)] + ?(£),

where £ G £2. Using this operation we may express the functional 'P by the formula

(3.11) ¥(«, A) = (tZ(u), A) for «, A GAf.

Let (//), (.,.)„) denote a unitary completion of (M, (.,.)„) and let 'P be the extension 
of 'P defined in passage 1.

Theorem 3.12. 2.e/u G22, and let 5<u, A) = 0 for all h£Hx. If the element u belongs 
to M, then it is a solution of the boundary value problem

S (-1)1® J)|-Pa°)(p/(£)-//(pI(£)-23a(1)u(£).......pm(£)-23“(m)w(f), £) + /

(>)
+ <7(0 = 0 for £ G £2,

(ii) Z3°b(£) = 0 for £ G S and multi-indices a with |a| <N. The problem (i), (ii) has at 
most one solution in the class C(2JV\f2).

The proof of Theorem 3.12 is quite similar to the one of Theorem 2.20 so we omit it.

4. All symbols used in passage 2 retain their meaning in the present passage. In this 
passage we are going to give a sufficient condition for the existence of an orthonormal 
and linearly dense sequence ey GA/ (J = 1,2,...) in the space (AT. (.,.)*). Such systems are 
important in applications, because using them we ma construct a sequence of elements 
«/GA/ (/' = 1,2,...) which approximate in the norm 1!’ll* the solution u GZ/j of the equa
tion ^(u, A) = 0 for all A G Hx, i.e. theore holds lim ||uy - u||* - 0. Namely, if ej (j~

= 1,2, ...) is an orthonormal and ’linearly dense in (Af, (.,.)„), then the element «/ G 
G lin(ej,-e2,... , ty) is defined as a solution of the equation
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(4.1) ^(w, /0 = 0 for every h G lin (e^et........ey) (/ = 1,2,...).

As it is known the equation (4.1) has always a unique solution uy € lin (e1(e2,..., ey) (for 
a detailed treatment of a numerical solving equations of the type (4.1) see T. Lezanski 
[2]). Now, we are passing on to a lengthy considerations.

Definition 4.2. Let

where

(«, ”)o k = f Z °’1.......N )’
u’* n !cr|-A 

for every u, v &M.
If all the functions p,, p2,..., pm (see (2.6)) are bounded, then there exists a positive 

constant Kt such that

(4.3) il«IU<Xa -liu!lo foruSM.

On the other hand it follows from the well known Friedrichs inequality that there 
exists a positive constant Cp such that for every it

(4-4) llM|lo,p<Cp-||ttllotp,i (p = 0,1........JV-1).

therefore it also holds

(4.5) ll«llo <K2 • ||u||0> N foieveiyuEM,

where A2 is an appropriate constant. 

h 32
Let A = i------ . It is readily seen that the operator Ap = A • A • ... • A , regarded

/-i 31-/ p-times

as acting on C'~p\f2)(with p natural), may be represented in the form

(4.6) AP = 2
I«I—p

where are positive integers.
Let u, v e M. Integrating (( -1 )N • A^u, v) N times by parts, we obtain

l((-iyv-Ayvu,v)= 2 fDau(i)-Dav(i)di.
lal-N “ n

(4.7)
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Definition 4.8. Let u, v €M and let

(u, v)„ = ((-1)^ * A^u.f).

IfK3 = sup [*<*> : |a | = TV], then

(4.9) IImIIo, at < Hull»,<£3 ’ Hullo,A’ for every u EM.

Hence finally by (4.3), (4.5) and (4.9), we get

(4.10) Hull, •Hull,, foruEM,

where K-K3 • K2.
By the last considerations, we obtain.

Lemma 4.11.7/ the functions pt, p2,, pm are bounded and elements e/€M (j = 1, 
2, ...) constitute a linearly dense set in (M, (.,.),,), then the sequence ej (j = 1,2,...) is 
a linearly dense set in (M, (.,.),).

Linearly dense systems in (M, (.,.)„) has been constructed by L. Kantorovitch (cf. e. 
g. HL 295-306 or [4], 368-369) under certain assumptions concerning the region £2. As 
it follows from the above Lemma 4.11, the sam systems are also linearly dense in (M, 
(.,.),). Hence after having been orthonor alized with respect to the scalar product (., .)# 
these systems may be used to construct a sequence of elements Uy£ 37 (/=1,2,...) such 
that lim IIUj - u II = 0, where u e 77, is a solution of the problem ^(u, h) = 0 for every

h ; thus if the boundary value problem (i), (ii), (see Theorem 2.20) has a solution in
the class C^2Ar\f2), the sequence Uj (j = 1, 2, ...) converges to the solution in the norm 
II* II, (this is obviously true if the region Q, satisfies the conditions needed in the above 
mentioned L. Kantorovitch’s construction).

Remark 4.12. Let us notice that what we have told about linearly dense systems in the 
space (37, (.,.),) considered in passage 2 applies as well to the space (37, (.,.)„) considered 
in passage 3.
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STRESZCZENIE

W pracy niniejszej badane są jednorodne problemy brzegowe dla dwóch typów rów
nań różniczkowych cząstkowych rzędu parzystego (problem (i), (ii) z Twierdzenia 2.20 
oraz problem (i), (ii) z Twierdzenia 3.12). Wykazano, że jeśli rozważane problemy mają 
rozwiązanie to jest ono jedyne. Ponadto wskazano przypadek, gdy problemy te mogą być 
rozwiątane w sposób przybliżony, mianowicie możliwe jest efektywne wyliczenie elemen
tów ciągu zbieżnego (w normie || • II,) do rozwiązań powyższych problemów (o ile te roz
wiązania istnieją).

РЕЗЮМЕ

В работе рассмотрены однородные краевые проблемы для двух ти
пов дифференциальных уравнений с частными производными чётного 
порядка (проблема (Ц, (и) из Теоремы 2.20 и проблема (1), (и) из Тео
ремы 3.12). Доказано, что рассматриваемые проблемы имеют только 
одно решение. Кроме того, показано случай, когда эти проблемы мо
гут быть приближенно решены; именно возможно эффективно вы
числить- члены последовательности, сходящей (в норме II • ||х) к реше
нию рассматриваемых проблем (если это решение существует).




