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1. In this paper we consider some types of boundary value problems for certain partial
differential equations, using a method developed by T. Lezasiski (see [2], [3]).

For the sake of clearity we shall briefly describe this method. Let (H, (...)) be a real
Hilbert space and let M be its dense linear subsed on which is defined another scalar pro-
duct (...),. If (H,,(...),) is 2 unitary completion of (M,(...),) and ¥: M X M + R isareal
valued functional satisfying the following conditions
(1.1) for every u €M the functional W¥(u,.) is linear and bounded in the norm || - Il,,
(1.2) there exists a positive constant b such that

/\M [ W(u+v,h)— ¥, h) | <b-lvie-lhlle,

u,r, h €

(1.3) there exists a positive constant a such that

/\ W(u+h h)y— VY h)y>a-llh 3.
uheM
then a functional ¥ {Hy X Hy, > K defined for u, h € H, by placing

(1.4) Y(u, h) = lim ¥ (up, hn) .
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where u, € M(n=1,2,..) and hy EM(n=1,2,...) are sequences convergent in the
norm || « il, to u and h respectively, enjoys the same conditions (1.1), (1.2), (1.3) (with
obvious changes), and the equation

(1.5) ¥ (u, h) = 0 for every h € H,

has a unique solution u in H, . If the space M, scalar product (...), and the functional ¥
are properly chosen, the solution u may sometimes be a solution of an appropriate
boundary value problem.

In his papers [2], [3] T. Lezariski solved some types of boundary value problems with
the aid of the above method. The characteristic feature of his papers [2], [3] is the rela-
tion C + |lu|l < |lull, (u € M), with a positive constant C; in the present paper this relation
usually does not hold, but despite of that the method may be successfully used and even
more general problems may be treated.

In the following two passages we shall investigate boundary value problems for certain
partial differential equations of order 2 + N (where V is a positive integer). In the last
passage we shall indicate a case when it may be effectively compute a sequence of eie-
ments u; (j = 1, 2,...) in M which converges in the norm ||+ ||, to a solution of considered
boundary value problems.

2. Let " denote the space of sequences ¢ = (£, ... , £n), & € ® with a scalar product
n
.n ten= El Eiemi
'-

and let Q be a simply-connected, bounded region in &”, with a boundary S = 3Q which
is a regular surface of the class C'. For any multi-index @ =(qy, ..., ay,), where a; are
non-negative integers, we shall denote

n
lal=2 o
i=1
and
a|°|
D= — — for ja] > 0
% . agan
and

D* = identity operator for |a| = 0.

Let N be a fixed natural number. We shall denote by m the cardinality of the set of all
multi-inedices a = (o , -.. , ) with ja| <N
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(2.2) m=card [a=(ay,....0n) : ja| KN]

it is seen that m = ( ";N ). Let
2.3) oM o2 om

where ol!) = (P, a(? . a(f,)) with a(P non-negative integers, be a fixed enumeration
of all multi-indeces a with |a| <N.

Definition 2.4. (H, (...)) denotes the space L* () with its scalar product

(1, v) = i'rz u(¥)-v(¢)dt for u, vE H; besides lull = V(u, u)
Now, we define a linear substed M of H.

Definition 2.5. A real valued function u belongs to M if u € C(2N) () and D*ulS=0
for every multi-index a with |a| <N,

It is readily seen that the set M is dense in A in the norm || « ||. We are going to deter-
mine on M anew scalar product (...),. Let [py, P2, ..., Pm] be a sequence of non-negative
functions p; which satisfv the following conditions

(2.6) pi€CM(@)fori=1,2,...,m,

(2.7) there exists a number k€ [0, 1, ..., N] such that mes ([€Q:p;(¢)=0])=0
forall;€fi€(1,2,...,m] : |aP|=k],

o (i=1,2,..., m) being the sequence of multi-indices fixed above (see (2.3))

ition 2.8. g
Definition 2.8. Let Wwv)e= 2% W v) ,
i=0

where

L) = b2,
. V) % (il j=i
(i=0,1,..,N), foreveryu,v€ M.

prerD® Puey0o vty a

We shall prove that the linear set M and the form (...), constitute a unitary space.
Lemma 2.9. The form (...), s a scalar product on the linear set M.
Proof. It is evident that each of theform: (...); (=0, 1,..., N) is bilinear and positive

and 5o is (...), as their sum. We shall demonstrate that if (u, u)x = O foran element u€ M,
then ¥ =0. Ineed, let u €M and let (i, u); =0i.e.
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s ol 2 o
5 et PO @ e =0

From this we obtain by (2.7) and by the condition u € c2M) &), D* u@®=0¢en)
for all mulii-indices a with |a| = k. If k = 0 this means that « = 0; if k > 0, then by the
condition D?ulg = 0 for all multi-indices g with || =k — 1, we get D u(¥) = 0 for every
£ € Q and for all multi-indices g with i8] = k — 1, because all partial derivatives of D?u
are equal to zero. Continuing this proces, if needed. we obtain after k steps u = 0, so the
form (...)g is really a scalar product. Now we may prove that (...), is also a scalar pro-
duct. If (u, u), = 0 for an element u € M, then by the condition

0< (u u), < z (u, u), = (u,u), =0,
i=0

we get (. u)x =0, which, by the first part of the proof, implies that u = 0. This ends the
proof of Lemma 2.9.
At present we shall define on the set M X M a real valued functional W¥. Let fi(t,n,. ..,
wtm. §)(J=1,2,...,m) be real valued functions, t; €&, { € Q. We assume these func-
tions satisfy the following conditions

(2.10) fieC("’mD(R’"XQ) (j=12,..,m),
(2.11) for every function v € C() it holds

Ilf,(o SO, Dl@EIdE < S15(0,...,0, 8l v (¥)ldE
supp f/(O supp p/

(i=12,..,m),

3 2
(2.12) b 15 (0, .,0, )l

dt < + o0 i=12,.., .
’ supp pj i) ; G ™)

To formulate next conditions let us put

fi (s tm, E)— (t,,.,..r,,,,z) (ji=12,...,m).

We also assume that the functions f;; comply with the next two conditions

(2.13) there exists a nositive constant a such that
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m . m : 2
I fypicsitsp 2 a X opjsg,
L/=1 J=1

(2.14) there exists a positive constant b such that

P < b2 ( 2 pie 3. $ pier?
P it o] € Zpi~sp-( Z pjery).
: | j=

Let ¢ € H=L*(52) be a real valued function satisfying the following condition

£®)
) e =
&9 & pio ®

di < + o,

where jo € [1, 2, ..., m] is such that |a/e?| = 0 (see (2.3)).
Definition 2.16. Let
W (u, h) = Vo (u, k) +(q. h),
where

(1) (V)
Vol )= ,-':31 fi(py @)D u(®. .., Pm(®E)D R () dE,

for every u, hEM.

It is evident that the functional ¥ (u, h) is linear with respect to h for each u € M. It
also holds.

Lemma 2.17. The functiormal W satisfies the following conditions:

1) for every u € M there exists a positive constant Cy, such that

/\ | W, k)l < C, Ikl

heM

/
2) /\ | W(u+v,h)y— VW h)i<etlivi.lhil,.
uv,heEM

3) //\ W +h hy—VYu h)y=alih Ii; -
uheM
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- Proof. First we shall prove 2). Letu, v, h € M. Then by (2.14), we have

W (u+ v h) =W (u h)l =Wy (u h) — Vo (u + v, h)| = II"}%'%(H +1-v, hydr) =
0

1oom (1) ot
SULE o@D w®) 4 v®) om0 " @) + 10,

]

s g i )
Pi) D" v D" "“)d"<"'{:{ (£ piey 102 vy .
j=t

mo . .
-(j)'::’ I’I(E)-ID"r h(g)lz Y2 dEdt < b- I(f ﬁ,Pi(E)'IDa(I)v(S)lz dE).

m ‘ (§2]
(X PO IDE TR @ A dr = £ bl eIl di = bl kY,
o

which proves 2). Now, using 2), we shall demonstrate 1). Since for u, h €M it holds
| W, h)|<|WV(@u, h)—V¥(0,h)+ | V(0. h) <
<b-llull, « lihlly + 1% (0,h)] + (g, h)l

it suffices to estimate | ¥, (0, h)| and |(g, h)| forh EM. By (2.11) and (2.12) we obtain
the following inequalities

1w mi<g & 150,...0.pH0 i< £ 5 150,091
Q j=1 f=1 supp pj

(V) m (0 0, &I i
10’ hpIdi < f L’"———E)— VP - ID"U)/I(E)I dt <
j=1 supp pj Vi (§)

m | 0, ..., 0, BF (j
<E(JS _-’—,——i)—di)m'( f _F’JF('E)'ID““'"(éll2 dg)* <
=) supp pj oi (%) supp pj

. (03] . : - 2
<(l§l %)% +( ,g: gpi(z)-:w R BT = (T 9V -lh, .
3 e 1=}

On the other hand by (" 15) we get
\/Plo( B Lh@)ldE <

(g Bl =

Plo (¢

f lm"dn“ (§ Pl @I hE)F ap? = lhll, <V ( E ik IF) <
Plo (§)

i N J -
<VE-VN+1 (/z LB I = VOV +1) Ukl
=0
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Hence finally, foreveryu, h €M ‘
m >
| W, h) | < [bliull +V’2 8 + VO-N+1) ]-lkl, .
=1

which ends the proof of 1). To prove 3), we shall take advantage of (2.13). Letu, h €M,
then

10
W(u+h, h)— (U, h) = Vo (u+h, k) — Vo (u, h) = [ = Yo(u+th hydt=
0

m 1)
= ({;{ Z, i@ ®D* (u + th)(), .. Pm @ D% "+ -m)(®), B-pi®)-

(/) ) m
D n@ 0 hydede > 0 £8 p@10% h) 1 dear = o finizar =
. o

=a-||Al2

which proves 3) and completes the proof of Lemma 2.17.
At present we shal find a different formula for the functional V. After integrating
W, (4, h) by parts (see Definition 2.16), we get

4 Gy o) (1) (m)
Yol i) =f = (=)D fy(py (1) D% (@) -, P (®) D u(®), DR (@),
for D%h|g = 0 for multi-indices a with |e| <N. So, if we define an operator U:M - H by

- m WO D m -
W@ ®=% 0* 02,00 u) ... o) - 0™y B+
(2.18) '

+2(®).

where ¢ € Q, then we may write foru, h€ M
(2.19) Y (u, h) = (U(u), h).

Let (H,,(.,.),) denote a unitary completion of (M, (.,.),) and let ¥ be the extension of
W defined in passage 1.

Now. we shall prove.

Theorem 2.20. Ler u € H, be such that ¥ (u, k) = 0 for every h €H,. If u €M, then
the function is a solution of the boundary value prcblem
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. m)
®  F -0 o @ 02V, . om® - DY), b e =0

i=

for every EE Q2

(ii) D%u(}) = 0 for every ¥ €S and mmulti-indices a with 1l < N. Besides, the problem (i),
(ii) has ar most one solution in the class N )(Q).

Proof. By the assuption ¥ (u, h) =0 for every h €H, and by the conditionu €M, we
obtain W (u, h) = 0 for every h EM i. e., thanks to (2.19) it holds (U(u), h) = O for every
h € M. By tine condition U(u) € H and from the density of M in H in the norm ||+ || it
follows that U(u) = 0; so the element u is a solution of the equation (i). The element
u also satisfies the condition sv) because u € M. To prove the last part of Theorem 2.20
let us observe that if u € {2 )(Q) is a solution of the boundary value problem (i), (ii),
t enu €M and (U(u), h) = 0 for every h € M. Hence by (2.19) and by the definition of
the functional ¥ we obtain ¥(x, h) = 0 for every h € H, . Since the equation W(u, h) = 0
for every h € H, has a unique solution, the same proerty has the boundary value problem
(i), (ii) in the class C>¥)(Q). This completes the proof of Theorem 2.20.

Remark 2.21. If an element u € H,, being a solution of the equation V(u, h) =0 for
every h € H,, were called a generalized solution of the boundary value problem (i), (ii)
then the following statement would be true ‘the boundary value problem (i), (ii) has
always a unique generalized solution’. It follows f om the above proof that so defined
generalized solution u would be a classical one, if « € M; conversely, any classical solution
o the problem would be a generalized one.

3. In this passage the symbols ", ¢+, Q, S, H, M, (.,.), D%, |a|, numbers N and m,
sequence of multi-indices (f = 1, 2, ... , m) retain their meaning (see (2.1), (2.2), (2.3),
Definition 2.4, Definition 2.5), but this time a scslar product in M will be defined diffe-
rently.

Let [py, P2, .- , Pm] be a sequence of real valued functions p; which satisfy the follo-
wing conditions ;

G.D) pieC™(@) (i=1,2,...,m),

@a3. 2) there exlsts a number k € [0, 1, ....,/V] such that for all numbersjE [ i€[l, 2,...
.om):laP [=k)

mes ([£€ Q : py(§) = 0]) = 0.

Let us notice that now we do not assume the functions p,, ..., P,y to be non-negative.
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Definition 3.3. Let

N
(u,v)e=Z (u, vy,
i=0
where

- %) :
=g = e 0" u@ 0" ucgyar (i=0,1,...N),
7:1eP=1)

for every u, v EM.
It is seen that Lemma 2.9 and its proof retain their validity in the case of ihe scalar
product {.,.), defined in Definition 3.3
Now, we are go ng to define on M X M a real valued functional W. Let fy(t,, t,, ...
tm E) (G=1,2,....m),,EREE £, be real valued functions such that
(3.4) 5E c('“w” (®™X Q) forj=1,2,...,m

Let the symbols fj; (i, j = 1, 2, ... ,m) have the same meaning as in passage 2. We shall
also assume that the functions fj satisfy the following two conditions

(3.5) there exists a positive constant a such t at
E fysics>ar(Es
ss s s S- a -
PV (MS,).
(3.6) there exists a positive constant b such that

2 m
g SjeT <b’(2s)(2r}
ij= lf” o i-l/ j=1

Let g € H = L* () be a real valued function fulfilling

lg(®) 12

f=f——0 dE <+
- d 1pjy B 1

where j, €[1,2,...,m] is such that lae)| = 0 (see (2.3)).
Definition 3.8. Let

W (u, h) =W (u, h) + (q. ),
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where

m 1) m ;
Yo (u, h) =s{;§. pj(®) - f;(p, (¢) - D* 4 u@), ... om) D"( )u(g), £ Da(’)h(g) dt

foreveryu, h€M
Now, we shall prove the following.

Lemma 3.9. The functional ¥ satisfies the following conditions

1) for every u € M there exists a positive constant Cy, such that

/\

| ¥(u, h)|<C, - lhll, ,

heM
2)
u,v,hEM I\Il(u+v.h)—\ll(u.h)|<b'||V||.'||h||..
3)
u/h\eM Y(u+h h)—V@m)>a ARG
Proof. First we shall prove 2). Let u, v, h € M. By (3.6), we have the following esti-
mates:

| W (u+ v, h) =Wy, h) |=)| Y@ k) — Yo +v, h)| = I{l—‘l'o(u trvhyde) <

1
<J JI
0

413

e (1) ; i
LSOO O D w+ 0)@). ... o ® D" v ) 0" hy 1 ar <

I

L3y

J
2
i S (0]
<6[s{b (,’?;.p/z(z)'m v(E) 12 )% E} P}(E)'ID"U)h(g) 2ysdtdr <

1 o m )
< b 2 (/3 % m /
CIYEPOITOR @ F 2102 ey 12 aghar =

=b-llvlle-lihla.
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Now, using 2), we shall show 1). Since foru, h €M
| W, )| <| ¥ h)—¥(O,h) |+ |¥O0.h)I< b -llulle-llhlle+|¥(©O,h)[+

+1@.nl,

it is enough to estimate |, (0, k)| and |(g. h)|. By virtue of the continuity of f, there
exists a positive constant X such that | f;(0, ..., 0,§)| <K for¢ € Qandj=1,2,...,m.
Hence by the Schwarz inequality:

m /
%0, 1<f 1 7,70, .00 hee) 1t <kf%1p® 1102 ey 1ag <
i= =

m el . Bor$ o2 (p)-
<x-vm g /2 1000 o ae<k-vim(fantof & o2 @)
10 hty 2 ag Y = K- i - fmest - L.

On the other hand by (3.7) and by Definition 3.3, we have forh € M:

1a@®) |
1@ I<flq®)|- |hE)|dE< N pio®) |+ | h(E) | dE<
. .)I (gl:(‘) LCIER eyl LACIREICTEE

——q N
< deYe . 208y 2 geyh-= /g - :
G & P/ 1@ F atf= Vo - 1ni, <VO(Z Ih 1)<

N
SVO-VN+L(Z IRIPYA=Vo-(V=1) - Ik lle,
=0
which gives in the end forh EM:
W@, k)| <(b-lulle+ K+ /momes ++/0-(N+ 1)) ki,
thus 1) is proved. To prove 3) let us take u, h € M; by virtue of (3.5) we get

1 0
W(u+h hy—V(u,h)y=You+hh)—Yuh)=f a—\llo(u + t*h, h)dt =
0

1 m

~£13 Py @Dt W @, pn @D w10 @, DI

i

'DQU)h(E)dE dr > a'Ilh[ > HOR |D°‘(”h(z).l dg dt=fa-Ihiidt=a-Ih 3.
00 j=1 ]

This ends the proof of Lemma 3.9.
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Les us notice that integrating W (¥, k) by parts (see Definition 3.8), we obtain for
everyu, h€M

Vo (u, k) =J (= n"" M, patd [ 2IE) fr (2 (B "V U(®), ..., o () D u(t) )R

Q Jj=1

k() dt,

since D® h|g = O for multi-indices a with lai <N. Let us define an operation U : M + H
by placing

clo  Way®=£ - el o2 e, 002 i) . @) -
D", H1+9@®),

where £ € Q. Using this operation we may express the functional W by the formula

(3.11) W(u, h)=(U().h) foru, hEM.

Let (H,, (.,.),) denote a unitary completion of (M, (.,.),) and let ¥ be the extension
of ¥ defined in passage 1.

Theorem 3.12. Let u € H, and let il(u, h) = 0 for ail k € H,. If the element u belongs
to M, then it is a solution of the boundary value problem

m ) U) (1) l
o BV e @ 2 u om0 a0+
i
+q(%)=0 for f € Q,
(ii) D(§) = 0 for ¢ € S and multi-indices a with |a| <N. The problem (i), (ii) has at
most one solution in the class C‘ V().

The proof of Theorem 3.12 is quite similar to the one of Theorem 2.20 so we omit it.

4. All symbols used in passage 2 retain their meaning in the present passage. In this
passage we are going to give a sufficient condition for the existence of an orthonormal
and linearly dense sequence ¢; €M (j = 1,2, ...) in the space (M. (.,.),). Such systems are
important in appiications, because using them we ma construct a sequence of elements
u; €M (j = 1,2,...) which approximate in the norm || [l, the solution # €A, of the equa-
tion W(u, h) = O for all h € H,, i.e. theore holds hm llu; - ull, = 0. Namely, if ¢; (j =

= 1,2, ...) is an omthoriormal and iinearly dense in (M, (.,.),), then the element u; €
€lin(e,, €,, ... , &) is defined as a solution of the equation
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“4.1) W(u, h)=0 forevery hElin(ey,€,,..., ) (J=1,2,..).

As it is known the equation (4.1) has always a unique solution u; € lin (ey, e, ... , €) (for
a detailed treatment of a numerical solving cquations of the type (4.1) see T. Lezariski
[2]). Now, we are passing on to a lengthy considerations.

Definition 4.2. Let

N
(u, ¥)q =k!2_o(u. o,k

where
(o =f E_D*u® D r®d (k=0,1,...,N),

for every u, v EM.

If all the functions py, pa, ..., pm (see (2.6)) are bounded, then there exists a positive
constant K; such that

(4.3) flull, <X * liully foru€M.

On the other hand it follows from the well known Friedrichs inequality that there
exists a positive constant Cp, such that for every u €M

(44) "““o,p <Cp ¥ ”u“O, p¥| (P = 0’ l’ voe )N_ l)-

therefore it also holds

(4.5) lullg <K3 - llully, y foreveryu €M,

where K, is an appropriate constant.

- az
Let A=% — . Itis readily seen that the operator A, = A *+ A+ ... A, regarded

/=1 0¥j p-times

asacting on C (2p )(Q)(with p natural), may be represented in the form

i
46 AP =% K‘?’D"",
( ) lalap

where K{?) are positive integers.
Letu, v € M. Integrating (= 1)" - AVu, ¥) NV times by parts, we obtain

(4.7) (=1 ANy )= £ K [P u) D@t
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Definition 4.8. Let u, v €M and let
@ )ee = (DY - &Vu, v).
If K5 =sup [KN) : ja| = V), then
(4.9 Nullo, v <lull,, <Kj ¢ llully, y foreveryu €M.
Hence finally by (4.3), (4.5) and (4.9), we get
(4.10) hull, <K * lull,, foru €M,

where K =K, - K;.
By the last considerations, we obtain.

Lemma 4.11. If the functions p,, p,, ... , pm are bounded and elements ey €M (j =1,
2, ...) constitute a linearly dense set in (M,(.,.),,), then the sequence ¢; (j=1,2,...)is
a linearly dense set in (M, (.,.),).

Linearly dense systems in (M, (.,.),,) has been constructed by L. Kantorovitch (cf. e.
g- [1], 295-306 or [4], 368—369) under certain assumptions concerning the region £2. As
it follows from the above Lemma 4.11, the sam systems are also linearly dense in (M,
(.,-),). Hence after having been orthonor. alized with respect to the scalar product (.,.),
these systems may be used to construct a sequence of elementsu; €M (j = 1, 2,...) such
that hm liuy — uli = 0, where & € H, is a solution of the problem \ll(u h) = Ofor every.

he H, ; thus if the boundary value problem (i), (ii), (see Theorem 2.20) has a solution in

the class C2¥ )(§}), the sequence uj (j=1,2,..) converges to the solution in the norm
Il* i, (this is obviously true if the region § satisfies the conditions needed in the above
mentioned L. Kantorovitch’s construction).

Remark 4.12. Let us notice that what we have told about linearly dense systems in the
space (M, (.,.),) oonsxdered in passage 2 applies as well to the space (M, (.,.),) considered
in passage 3.
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STRESZCZENIE

W pracy ninicjszej badane s3 jednorodne prdblemy brzegowe dla dwéch typow réw-
nan rozniczkowych czastkowych rze¢du parzystego (problem (i), (ii) z Twicrdzenia 2.20
oraz problem (i), (ii) z Twicrdzenia 3.12). Wykazano, ze jesli rozwazane problemy maja
rozwigzanie to jest ono jedyne. Ponadto wskazano przypadek, gdy problemy te moga by¢
rozwigtane w spesob pizyblizony; mianowicie mozliwe jest efektywne wyliczenie elemen-
tow ciggu zbieznego (w normie ||+ |I,) do rozwiazain powyzszych probleméw (o ile te roz-
Wigzania istnieja).

PE3IOME

B pabore paccMoTpeHb! OAHOPOZIHBIE KpaeBble NpobJeMul A4 ABYX TH-
Noe audpdbepensLMaNLuBIX YPAaBHEHU C YaCTHLIMK [TPOU3BOAHLIMM YETHOIO
nopanka (npobnemMa (i), (1i) u3 Teopembr 2.20 u npobaema (i), (1) u3 Teo-
pcmur 3.12). Jloka3aHO, 4TO pacCMaTpUBaeMble MpoGJeMhl MMEIOT TOJBKO
0qio peweime. Kpome roro, noKa3aHo cJyd4ait, KOFrAa 3T NpPodJeMEI MO-
TVl ObITh NPUOAMIECHHO pelleHbl; UMEHHO BO3MOXHO 3(p(PeKTHBNO Bbl-
YHCMITE YseHbl NOCJICA0BATETHHOCTH, CXOASILE (s sopmMe |- lix) k peure-
HiIo paccmaTpiiBaeMbIX npoSJieM (ecist 970 peuleHye CyulecTByeT).






