ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA
LUBLIN—-POLONIA
VOL. XXXilI, 3 SECTIO A 1978

Al. 1. Cuza Uniyersity, lagi 6600, Romania

Teodor HAVARNEANU

On a Certain Integrodifferential System with Delay
O pewnym uktadzie rownan rézniczkowo-catkowych z opéZnieniem
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¢ 3ana3abiBaHMeM

1. Notations. In this paper we shall use the following notations: R is the real line; R*
and R are the positive. respektively negative, half—axis of R; M, is the set of square
matrices of order n with the Euclidian norm;

L'([0;+°9)) = [x/x:R* —R"; lixll ;1= {"I-Ix(r)ndr <+o]

2. Preliminaries. In some papers C. Corduneau [1-3], R. K. Miller [8—10], S. I. Gross-
man [11] and N. Luca [6—7] have established various variation of constants formula for
some classes of integrodifferential systems.

For various classes of integrodifferential systems have been studied by the help of
thecse formula the existence, uniqueness and behaviour of the solutions of some problems
with initial conditions. In the following sections we shall establish a variation of constants
formula for the case of some integrodifferential systems with delay whose kernel isn’t
a translation.

Using then this result we shall study some problems concerning a class of nonlinear
systems with delay.

3. Let us consider the integrodifferential equation:

(Bs)  (1)=A-x(1)+B-x(t—1)+f hE®)K(t—1) x§)dt with t>7>0

where A, B are real matrices from Mpxp, K(f) € Mpx, is a given matrix function defined
on R* and K(f) = 0E My, for t € R™, where 0 is the null matrix of My, 7€ R* is given
number and k:R* -* R is a given function.
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The main problem is to establish some conditions under which the equation (Eg) with
the initial conditions:

3.1 x(1)=g(), t<r and x(r+)=x°

has solutions and what is the behaviour of theese solutions with respect to initial data.
With this purpose let us consider the nonhomogeneous equations

!
(E) x(t)=A-x(t)+B-x(t —1) + [hQ®)-K(1—$)x()dS + f(1), t>7>0
. ST i
and the initial conditions (3.1)
where A, B, h, K, g, 1, are previously defined and f : R* = R" is a given function. In
connection with this problem the main result is contained in the theorem 3.1.
Theorem 3.1. Assur- thar

_(i) There is a unique continuous matrix function of two variables Y(t, u) which satisfies
the condition:

3.2) %(t, u)=A-Y(t,u)y+B-Y(t —r u)+ Irh(i’)'K(t —=3)Y(@. u)dt

(33) %’ (t,u)y=—Y(t, u)-A —Y(t, u+71)B—h(u): {' Y, 8) K@ —u)d}

fort> 1 and for, u>r.
(34) Y(a,a)=1,a>71
3.9) Y, u)=0,u>t
(ii) #:R* > Rand f: R* > R" are given continuous functions
(iii) g : (—=*; 7) - R" is a given continuous function;
(iv) 1 K(r) I €L ([0; + =),

Then there is a unique solution of the equation (E) which satisfies conditions (3.1)and
this solution is given by

x(1)=Y(t,1)x° +fY(tu+1)Brg)du+fY(, u)-f(uydu, t>71
0 T
(3.6) x(r)y=g(r), t<r
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Formula (3.6) is reffered to as ‘the variation of constants formula’ for equation (E).

Proof. We assume that the equation (E) with initial values (3.1) has solutions and we
shall prove that any solution has the form (3.6). Then we shall prove that the function
x(t) defined by the formula (3.6) verifirs the equation (E) and tne initial conditions (3.1).

Integrating between r and ¢ in the both members of the identity:

2 Y .
™ (Y (8 uyx ()] =5, (6 u)x@) + Y (¢, u)x(u)
we obtain

u=t

Y (¢, u)x(u) = Tj [% Y, u)yx @)+ Y(t, u)-i(u)] du,

u=rt

that is
1 3Y y
Y, ) x()—Y (@, 1) x(r4)=f [ Et_(t' u)-x(u) + Y(t, u)-x (u)] du,
T
whence, according to (3.4), (3.1) and (E) one can obtain the representation:

W
x()=Y(@, 1)x" + ! A (tuyx@)+Y(, u)yAx@u)+
+ Y uyBx@—1)+ Y€ w: ShEyK@—rr@)d +

+ Y, u)-f(u)] du

or

3
x(f) = Y(1, 7)x° + !' [%i e u)-x(u)] du + f;' Y(t, u)-A-x(u)du +

3.7 ’
+ 'I' Y(t, u)y-Bex@u—rydu + f Y(t, u)( J @)K (=) x@)dt)du +

+ _'[' Y(t, u)-f(u)du.
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Taking into account (3.5) we can write:

j’! Y(t,u):B-x(u—r1)du ==ffq)'(t, u+r71)-B-x(u)du =I7 Y(t,u+1)-B-
38 7 0 0

- x(u) du +';"' Y(t, u + 1) B x(u) du sz Yt et 7)+B g ), du +f Y(t,u+ 1)
- Bx(u) du.
According 1o (3.8) and (3.1) from (3.7) we obtain:
2(1) = Y(t, 1) x° +,;'[ Z—:—(x, u)+ Y(1,u)-A + Y(t, u + 1) B - x(u)du +
(9 +1 Yau+n)B-gw)du +f Y - £ h@) K@ =1)x@)dt)du +
+," Y(1, u)* f(u)du.
But
¥ o ey Ra=x @ ayau=1 he) - f ¥R =D iy
XQVAE =f M)+ (f Y08 KG—u)d) x(u)du
and therefore (3.9) can be written:

x(t) = Y(t, 7)-x° +!t i—:—r—(l,u)'f’ Y(, u)-A+ Y(t.u+r)-8 +h(u)-
T u

(3.10) :
.{’ Y(,$) K@ —u)dt ] x(u)du +{ Y(t,u+7)B-g(uydu +;r Y(t, u)* f(u) du.

Finally, according to (3.3) the formula (3.10) becomes:
r
x(t)=Y(1,7)x° -*-_ff Y(t,u+71):B-g(u)du+f Y(t, u)-f(u)du,
0 T

which is just the first fermula (3.6).

Therefore any solution of the equation (E) with the initial conditions (3.1) has the
form (3.6). This fact proves the uniqueness of solution of equation (E) with initial con-
ditions (3.1).
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Let us prove the existence of a sulution for this problem

For this we have sufficiently to prove that x(f) definet by the formula (3.6) is a so-
lution of the equation (E) and satisfies the initial conditions (3.1).

Deriving the both members of this equality we obtain:

(3.11)
Y raY ) raY :
x(f) = Pyl X V() () + f () fu)du + o (b +:7)-B g (u) du.
t T
Then on the base of condition (3.5) we can write:

£ (R K =) - Y&, uy - fu) duy d§ = ;'( ;’h(:) CK@E=3)* V(&) - fu) dt)du =

(3.12) = (fh®) - K@= - Y& ) f) db) du,
{16 - K@ =0 (f Y@ u+7) - B g du) du =

(3.13) 1 iy
=f () - K@—=3$»rYQ, u+r)dl)- B- g(u)du.
o 7

Now according to (3.2), (3.5), (3.12) and (3.13), the relation (3.11) becomes:

3 ay r 3Y
Gl HO= 2o @ +f ey @ du+ ] o w7y B R du =
S A-Y(E 1)+ Y u)yfa)du+f AY(,u+ 1) Bg)du +B-Y(—1,7)x° +
T 0
+57BY(—1, uyf@ydu + [ B-Y(t —1,u +1)-B-ga)du + § h)K(@E =) Y1)
T o L4
0 dg + B~ (5 V0 01 du) d5) + § BEy K@ =1 (f YGu+ )
*B-g(1) du) d + f(1).
On the base of formula (3.6) we can write:
(.15) A-x(f) + Bx(t — 1) +f h@)-K(t =) x(§) di = A-Y (1, 1)x° +°onY(:, uhg:
*B-g(u)du -rfrA Y1, u) f(u)du +B-Y(r—r, 7)-x° +6"I—B- Y( =1 u+7)Bg(u)du+

+ B Y (=1, ) f) du + f h@)K(E —§) Y, 7y d + ;’h(n-x(r —2)



40 Teodor Havarneanu

'(of' Y. u +§)-B-g(u) du) dt +;f'h(§')'ﬂ'(! = {‘ Y@, u)-f(u) du)ds.

Comparing (3.14) with (3.15) we obtain:

x(f)=A'x(t) + Bx(t —17) +frh(§)'K(! =Dx@)dE+Hf@), t>1

i. e. (3.6) is a solution of the equation (E).
Let us prove that x(r) given by the formula (3.6) verifies the initial conditions (3.1).
From the first relation (3.6) we obtain:

T
x(r¥)=x° +limf Y(t,u+ 7)B-g(u)du.
-7 0
t>r

Taking into account the hyppotheses (i) — (iii), (3.5) and Lebeque’s criterion of domi-
naton we have:

lim Ir Y(t,u+1)-B-g(u)du =j'r Y(r,u+r7)-B-g(u)du=0.
[

&34
t>r

Therefore x(7 +) = x°, which, together with the second relation (3.6) constitutes the re-
lations (3.1).
Let us consider the equation:

(E) i(!) =Ax(t)+ B-x(t—r)+!:h(§‘)'K(t—Q‘)'x({) dt+1(t,x(1)), r>»r>0

with the initial conditions (3.1).
With respect to this problem one can easily obtain the following result:

Theorem 3.2. If besides the hyppotheses of the theorem 3.1 the conditions (il) and
(i2) are satisfied and if L - C < 1, then the equation (E\)with initial conditions (3.1) has
an unique solution belorging to L'( [0; + =), and this solution satisfies the nonlinear
Volterra integral equation:

(3.16) x()=Y(t, )x° + ar’ Y(t, u + 1)-B-g(u)du + § Y(t, u)f(u, x(t) ) du

4 o=
(ih J WY@, w)ldr<C, , u=0 where Cis a positive consran;.
5 -
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(i2) f: R'x R" = R™ s Lipschitzian and its Lipschitz constant is L.

Proof. One can easily observe that the operator 4 : L! ([0; + =)) = L ([0: + =)
defindet by the formula:

(Ax)n) =Y(t, 7)x° + {r Y(t,u+1)B-g(u)du + f!' Y (¢, u)*f(u, x(u)) du

is a4 contraction.
Indeed from:

hax — Ay I, ={ -llrfr Y(t, u)-[f(u, x()) — f(u, y(u)) ) du lldi <

< S L x@-y@ - (f 1Y@ kdydu<L-C-hx =y,

and because L - C <1 we obtain that A is a contraction and so it has an unique fix point
in L' ([0: 4 =)).
By the help of the formula (3.6) one can obtain some results with respect to the beha-
viour of the solutions of the homogeneous equation (E,).
Obviously, the equation (Eg) with initial condition (3.1) g(t) =0 fort <7, x® =0,
has only the solution x = O which is called the trival solution of the homogeneous problem.
Now we want to study various stability types of the trival solution of this problem.
For this. we shall femind the necessary definitions:

Definition 3.1. Let x{t, 7, g, x°) be the solution of the equation (E) with initial con-
dition (3.1).

a) The trival soiution of the homogeneous problem is called stable with respect to ini-
tial values (7, x°, g) if it is defined on R and for every 7 > 0 and for any € > O there exists
a number 8(e, 7) > 0 such that for all g € L™( [0; + o)) with | g |, <3 and for ail x® with
I x® 1<8, x(¢, 7,8 x°) is defined for 1 > 7 and || x(t, 7, 8, x°) | <€ for t > 1, where

lgl, =sup g
r<r

b) The trival solution of the homogeneous problem is called uniformly stable with res-
pect to initial values (7, x°, g) if it is stable and & can be choscn indepdndent of 7.

¢) The trival solution of the homogeneuous pioblem is called asymptotically stable
with respect to initial values (7, x°, g), if it is stable and if for any given (7, x°, ) one has:

im Wx(, 1.8 x°)II=0,

P adon
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d) The trival solution of the homogeneuous problem is called uniformly asymptotically
stable with respect to (7, x°, g), if it is uniformly stable and if there exists a number
A >0, such that for any given € > O there exists T'(¢) such that:

llx(t + T(€), 7, 8 )l <€,

uniformly for all t > 7, all 7 > 0 and all x® €R", g € L™([0; + =)) such that:
Ihx° [l and | g |, < A.

The main results with respect to the stability of the trival solution of the homogeneous
problem are included in the following theorems:

Theorem 3.3. /n the hyppotheses of the theorem 3.1 the necesary and sufficient con-
ditions such that the trival solution of the homogeneous problem is uniformly stable are:

2
J rII Y(t,u)lldu and Y(t, 7) are uniformly bounded with respect to 7.
T

Proof. (a) From (3.6) we obtain that the solution x(r, 7, g, x°) has the form:

(3.17) x(t, 1,8 x°) = Y(t, 1)x° +‘|’1r Y(t,u+1)B-g(u)du
0
from where
T

Ix(ergx)I<UY@EDN- U N+UBI-1gl - JUY(u +1)lidu=

27
=NY@eDN-Ix°N+0Bl-lgl - SIHY(@Euwldu

T

27

Because || Y(¢, ) I<C; forall +»7>0 and J Y@ wldu<C forall t2720

we obtain:

Hx(t, 7,8 x)I<C, = IxX°N+UBI-C, +|glr

i € € -l a . . 5
: -3 —=- ——————| whichis obviously independent
Therefore. taking 8 (€) = min [ZC,' 2NBIC | y p

of 7. then if || x° || < 5and | g |- < & one can obtain || x (¢, 7, g. x°) || < e.

(b) We assume that the trival solution os uniformly stable. If €5 > 0 is fixed, then we
have:
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(G.18)  lix(t, 7.8 x°) | = 1Y (. 1)-x® + {' Y(t u+r)Bg)dull<ep, 137

for every 7 > 0 and forall (g, x°) with | g |, < 8, I x° | €84 (89 =60 (€o) is a constant),
Taking g =0 and x° # 0 € R” in (3.18), we obtain:

(3.19) |l Y(t,.7) - x° || < ¢ for ¢ > 7 and for every 7 0 and for all x° with || x° || <5,
from where, accowding to the principle of uniform boundness (see {12]) one can obtain:
(3.20) Y DIS<C;fore2r20.

Now we take x° =0 € R" and g € L~([0; + «)) in (3.18), and we obtain:

0 £ Yt u+7)Bgu)dull <e
(1]

from where, acording to the theorem of representation of the linear functionales, we have:

Ir I Y(t,u+71)Blldu<eg
0

from where

2
F1Y@uy B du<eo
T

which obviously involves:

j’zﬁ Y(t,u)lidu<C, fereveryr20.
T

Theorem 3.4. In the hyppotheses of the theorem 3.1 the necessary and sufficient con-
ditions such that the trival solution of the homogeneous problem is uniformly asymptoti-
cally stable are:

27 <
S ¥t uylldu and | Y(t,7)|=>0 when t->+ o uniformly with respect to t,i.e.
T

forany €> 0 there exists T(€) > 0 such that for every 1 > 0 one has

!zli Yt ulidu <€ and WY@, 1)l < e for t>T(€).
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Proof. Obviously, in the hyppotheses of the theorem 3.4 the trival solution of the ho-
mogeneuous problem is uniformly stable.
(a) From (3.17) we have:
T
Nx(t, 7.8 x°)I<NYEn)l-Ux°N+UBI-Igl, " ;f [l Y(2, u) lldu.
2 €
Because ITIY(t,u)IIdu<-2—Aj if t>To(e), 121, 720,
<2

€
I Yt 1) | <———— if t>To(€); 130, ¥ 70.
1) 2-IBll-4

taking | g |, <A and || x° || <A, we have:
llx(t, 7,8 x°) Il <€ ¥t 2 Ty(e).

(b) We assume that the trival solution is uniformly asymptotically stable and this
assumption implies that if € > 0 is fixed then for || x° || <4 and | g |, <A there exists
T(e) such that

lix(t, 7,8 x°) I<efort>T(e), t 27 30.
Taking g = 0 and x° # 0 € R" in (3.18) we obtain:
Y 1) x° IS¢ t>720,t>T(e).
Therefore || Y(z, 7) | = O for t =+ + oo uniformly with respect to 7.

If in (3.18) we take x® =0 ER" and g € L™([0; + =°)) one can obtain that W/ e >0,
there exists T(€) such that

I Y@t u+r)Bgu)dull < e.
o
Therefore one can easily obtain:
27
JUY(@ uBlldu < €,
T

ie. £l Y@t u)lidu~0 for ¢+
T

(uniformly with tespect to 7), with the proof of the theorem is finished.

4. Let us consider the equation
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(E2) i(t)=A'X(3)+B'x(!—T)+I"h(§)°K('"!’)‘X(I)di"*f(t. x(1)), T»t2120

with initial conditions (3.1).
With respect to this problem one can easily obtain the following result:

Theorem 4.1. If besides the hyppotheses of the theorem 3.1. the conditions:
G NY@EuwlI<C. ¥t,u€[0;T},C>1;

(j2) Atx) is a boundet real function defined on D = [0, T] x R™ which satisfies the
Lipschitz's condition:

. x)—fEe. ) N<G@E) - lx-yl
where G(t) is an integrable function on [0; T]
f:[0:T] xR" - R",

are satisfied then the equation (E2) with initial condition (3.1) has a unique solution
belonging to C(|0; T).

Proof. For proof will be necessary the following results.

Definition (see [5]). Let F be a transformation of B into itself, where B is a Banach

space with the norm |l |l,. The transformation F will be called ‘a strong contraction’ if for

every number € > O there exists a norm || Il ~ ll ll, such that for every x, y € B,
IFx-Fylle<e-llx—yl.

Theorem 4.2 (see [5]). A ‘strong contration’ has a unique fix—point. We remark then

that the equation (E2) with initial data (3.1) are equivalent with nonlinear Volterra inte-
gral equation:

x(t)=Y(, r)-J;° +6(TY(I. u +7)B-g(u)du + fr Y(t, u)f(u, x(u)) du .

Now we consider the operator 4 : C([0; T]) - C([0; T]) defined by the formula:

(Ax)r) = Y(t, 7)x° + {' Y(t, u + 1)-B-g(u)du + f Y(r, u)-f(u, x(u))du.

C([0: T) is a Banach space with the norm: || x llp = Sup. It x() .
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Define:

L@ G@nC, t€[0;T].

On C([0; T]) we take the norms (see [S])

1
Ixll, = sup eP{L®Od x| , xEC([05T]) , p>0
0;7)

and we obserye that || Ilp ~ 1 - llo

and we observe that || * [l ~ 1l * llo .
Now we shall prove that A is a ‘strong contraction’. This statement results from the

following inequalities:

[ 4
-pJL()d

1Ac = Ayllp = sup_ e " S Yy [ )~ 8 @)) du | <

r
L o FOE Ay e w i@ xw —ye i a <

0,7)

r
-p-f L) d}
< sup e ¢

- fGuyC- x@) —y@ |l du =
0, 7) 0

u u
JL@)dY -p-fL(})d¢
)-ep ! e © N x(u) —

4
-pfL)dt t
= sup e 0 «fL(u
0,7 0
I u
-pfLG)YdE 1 pf L) d¢
o

_ = . « (L(u)-e ° du =
y@)ll du <lx=yllp: sup e i 1)

4 u
-pfL®)dt (1 ep-‘{L(i’)di’ t
=jlx— ° su e O o == =

= le* &P, 5 0

U
1 1 -pfL®)as 1
=llx=ylp [sal‘pn(;—,—, e o )< g lix=ylp.

By virtue theorem 4.2. we conclude that the operator has a unique fix-point in
C([0; T]) which is just the solution of equation (E2) with initial conditions (3.1).
Let us consider the equation (E2) with initial conditions (3.1)

Other result with respect to this problem is contained in following theorem:
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Theorem 4.3. If besides the hyppotheses of the theorem 3.1, the conditions:
(k1) f:[0;+ ) x R" = R" is a given continuous and bounded function,
k2) 1Y w)ll<Co.¥t, u€ [0;+ ),

(k3) there exist the numerical sequences [an | , [ L, ]| — and a constant A > 0 such
that,

Wft, x)—ft, )WLy lix -y,

lima, =1, Iian=+°°

Nt s
L<i°S EN wh
i<C e where
Sp=l+aj0y...ap+aaz...ap+...ta 0, tay =
=([[(1+a) aa+1]cas+1]...)ap+1

are satisfied, then the equation (E2) with initial data (3.1) has no more than one solution
defined on R, = [0; + =),

Proof. First we remark that the equation (E 1) with initial data (3.1) is equivalent with
the nonlinear Volterra integral equation (3.16)

(3.16) x()=Y( 1) x° +{TY(1, u+7)B-g(u)du+ fr Y, u)-f(u, x(u)) du .

Then we observe that condition lim a, = 1 implies lim S, =+

n—+e n—o+w

Let x, y be two solutions of our problem.

We shallprove that x(r) = y(t) for every t € [0; + o),

We consider 7> 0 and we shall prove that x(¢) = y(¢) for every ¢t € [0; T].
Because f is bounded we have:

Ix())—y@ 1 <°;' 1Y, u) 1 - 1 £, %)) — f(u y () du <2 M Co 2.

Then, from the ccnsition (k 3) we have:

Ix()—y@) < ‘J"’" Y(t,u) o | f(u, x(0)) = f(u, y(u) ) Il du <
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t f
<Cor [ Ly lx@) —y@) I* du<Cor fL,(2MCquy® -
0 0

or

. Ly-Co(2MCp)*r -
hx(t)—y(t) Il < T < A-(2MCy)% - %01 =
a,

= (41" - (—2%--9-—)“: g
Taking into account (k2) and (k 3) for n = 2, we obtain:
!
ix(y—y)li< t{C’o' I f(u x()) —fu, y@)) Il du <

LyCo- (2 MCy)*s ~u* ™
1 +aq

! 4
< Co'{l-z' I x(u) —y @) I*? du < Co* f La( )% du <
(4

-”’?..0.2 1.5
2 CoL,°l | Co? E’ MCo) . !ru(l“h)'“edu =
(1 +a|} ’ W
_Corla Lt Cor AMGO) T | (hvay a0 ¢ g0 gorS "2 MCo)*+ =
(I +a)" [(1+a) e+ 1] |

2MC,

) 249,

= (A2 (
In the same way we get:

3 2MC,
Ix(t)—y@ Il < (Aryn - (

)a, a...ap )

Because (2MCo/A)™ % ---®n is bounded and lim (A7)’ = 0 for t < 1/4 making in
n=s+ o0
(%) n = + oo we obtain x(t) = y(r) on (0; 1/4).
If (0; 7) € [0; 1/4) then we shall repeat the previous reasoning on the interval [1/4, 2/4)
and so on.
Finally we obtain that x(f) = y(#) on [0; T]. Since T was chosen arbitrarilly there re-
suls that x(r) = y(z) on [0; + o). q. e. d.
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STRESZCZENIE

W pracy podano wzdr na uzmiennianie statej w przypadku uktadu réwnari réiniczko-
wo-catkowych (£, ) z opéZnionym argumentem. Przy pomocy tego wzoru podano warun-
ki konieczne i wystarczajgce na rozne rodzaje stabilnosci rozwiazan ukladu (Ey).

PE3IOME

B pabote npencraeneno dopMyIry HeMOMBIMCHON MIMEHYMBOCTY B cry-
Yae CXeMbl MHTerpaJbHO-audgepeHunaIbubix ypasHemit (E,) ¢ 3ame-
ANeEHbIM apryMeHToM. IIpm nomoum sToit GopMyssl mpeicTaBieHo He-

00X0JuMble M JOCTAaTOYHbIE YCJIOBMA AJA pa3Horo poxa cTabMIbHOCTK
pelleHus cxeMbl (Eg).






