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On the Stability of Solutions of Differential Equations
with Random Retarded Argument

O stabilnosci rozwigzan réwnan rézniczkowych z losowo opéZnionym argumentem

06 ycroRausocTy pewenuit audPepeHUMANBHLIX YDABHEHIt CO CAYIaiHO
3ana3fbiBaloiUM apryMeHTOM

This paper is an attempt of an exetension of Repin’s results (cf. [1]) relating to the
stability of solutions of differential equations with retarded argument to the case of ran-
dom retardations.

The stability in this case has been also studied in [3—5] whereas other problems con-
cerning the differential equations with random retarded argument have been investigated

in [6-8].
L. Let us consider:
— a probability space (£2, 4, P) and an arbitrary (finite or infinite) interval T C &,
— a function f: T X &"™ X Q - &" continuous on TX &"™ for almost all w € Q and
A-measurable for all (7, x(1?, ..., ™)) € T X &"™ where x'/' €®",j=1,2,...,m,
— a non-negative number 7 € & and stochastic processes
T:TXQ>R/=1,2,...,m
such that for almost all w € Q2 sample paths T’r(w) of Tf are continuous on T and
(1) 0<T/(w)<71€T,
—anumber ¢, € T such that 1, — r € T, and a stochastic process
¢l :tfq _T,fo)x Q-

for which almost all sample paths ¢,(w) are continuous on {fg — 1, fo ).

Definition 1. We say that the stochastic process
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X, :[TN(tp—1,2)]X Q2> &"
is a sample solution of the differential equation
(3] ax f(t, X X )
— =1, e , W)
' di Ty Ty
wnh the initial condition ¢, iff for almost all WE Q :
° the sample path X, (w) of process X, is continuous on T Nty — 1, ),

7°X (W) =¢,(w), tG(ro T, to),
3° foreverthTﬂ(to,“’)

X,(@) =6, (w)+f F6 X, 7 )@ Xy gy (@), @) s

Besides. we say that this sample solution is unique iff for almost all w € Q and every
sample solution Y,, t ET N (t, — 1, ) of equation (2) with the initial condition ¢, we
have:

Xr(w)=Y(w) tET Nty —7,).

Theorem 1. Let L(t, w) : T = & be for almost all w € Q a continuous function such
thar

Nfee, x™, ., x™), wy—fe, xM, ... . x™, w)ll
m -

<Lt w) T xP—xNy,
J=1

M, xtmy (x| xmyeg"™, t€T.

Then there exists a unique sample solution X;, t € T N{ty —1,°) of the differential
equation (2) with the initial condition ¢,.

Proof. We choose a set Q* € 4 with P(Q2*) = 1 such that for any w € Q* :
— sample paths of f, ¢, and T';, J=1,2,...,m are continuous (on their domains, respec-
tively),
— the condition (1) is satisfied, and
— there exists a function L(t, w) such as in the assumption of the theorem.

Let ['be any closed interval with/C TNty —7,%°)and 1ty — 1, ¢y €I
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Now we fix any w € Q2* and put

§ (W), 1€ —110)

Xo(t, @) =
o(t, W) E,o(w),telﬂ o, =)
£, (@), 1€t — 1, 20)
X (1, w)= A
£ (+ {‘ f(s X (s =T} (@), ), oo, Xy (s —TY (), w), w)ds,
tE€10 U, , =)
k=1,2,..

It may be shown by induction that for every k=0, 1, 2, ... and t €] N(t,, =) it holds:

N Xgay (t, w)— Xg(r, )| < M [msup L(s w)]"L")‘“l
. ' sel ! (k+ l)' »

where

M= sup 1 f(s, Xo (s — T (W) . @), ., Xo (s — TT(w), W), W)
sein(gy, =)

Then
(max 7 —z1,)¥*1

(k+1)! 5

1 Xy (L) =X, (1, ) I <M [m sup £, W [

tel, k=0,1,2,..
Hence a limit X(t, w), 2 €7 of the sequence Xx(t, w), k =0, 1, 2, ... is a unique solu-
tion of the differential equation

dX,(w) p
7 = (1, Xr—T,'{w)(w}' ue's Xr-T}'?gw)(‘*’}’ w)

with the initial condition ¢y (w).
Forw&Q®* t€landk=0.1,2,..., we assume:

Xir(t DN=0 Xt «cHN=0
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We shall show by induction that for k =0, 1, 2, ... and every t €I the function X (1, w)
is A-measurable.

We choose an arbitrary k=1, 2, ..., and assume that for every t €/J the function
Xk-1(1, w) is A-measurable. It is enough to show that Xy (7, w) is 4-measurable for all
t€EIN(ty, o). Let Xx_1(t, @) =0forw &Q* t €It €ERand

¢l._,(w). 1E (=, to— 1)

X [, w)=
k1 (- 0) X,y (max/, w), t€(max1, =)

for w € Q*.
In view of Lemima 1.2 in [2] (p. 12—13) there exists a function Y(f, w): & X Q - K",
B X A-measurable (where B is the Borel o-field of &) such that for (f, w)ER X Q*

Xio (0 w)=Y(1, w).

Choose any t €1 N (1y,%). It follows from the above mentioned lemma that for any
fixed sE€(to, 1) there exists B"™ X A-measurable function g(s, x(1), ..., x(™) w):
: R X Q - &” such that

S, x L xt gy =g(s, x D, L x™) W), (xD), ..., x™, w)ER™™ X QF

(B"™ denotes the Borel g-field of ®"™).
Thus we have

0.we

X (1, w)= g .

0, (W)+ fE(s Y(s— Ti(w), W), .- Y(s - T'(w). w), w)ds, WEQN .
s Iy

Since all functions in this formula are measurable with respect to suitable o-fields and the
integral is the ordinary Riemann's one. it can be checked that X (¢, w) is A-measurable.
Finally. for every ¢ € the function X (r, w) is measurable too. Hence there exists a uni-
que sample solution X, = X(r, w), t €7 of the differential equation (2) with the initial
condition ¢,. This solution can be extended to the entire interval T N (z5 — 7, %),

II. Now, let us assume that T =(a, =), a € & (or T = &) and for almost all w €  the
function f satisfies the conditions:

N x®, L x™ o)y — 5, xD, L, x, W) |
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m
<L T D3y,
i=1

D, xmy (x| zmyegmm ieT reR,

and

f(.0,..,0,w)=0, tE€T, 0=(0, ...,0)ER".

Definition 2. We say that the trival solution of the dxfferentml equation (2) is uni-
formly asymptotically W-stable iff:

A AYA

PE(0,1) >0 n>0 6>0

=PI X (@) I<n, £>6+1, ]>p).

Let us consider a differential equation

ay,
@ @ =Y pe T g @)

where the function g satisfies the same assumptions as the function f (but its Lipschitz
constant have not to be equal to L).

Theorem 2. Let the differential equation (2) satisfy the following condition:

\/ su <s5=
(4) a>0B5>0%,>0 0<5<s, Q 1?(;15“; lwe o° (JE“._&_")IN,(«:)II (X, (@) <

<Bse (=8 1>4)],

where the set 0® have not to be the same for different sample solutions of this equation
with the initial condition ¢. If there exists ¢ > 0 such small that

oB

=3 (‘,m(l.+o)(llaln43+r)_!)<%‘
[}
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and such that

- \/ /\ (  sup x| <n=
4 NE€EA h>0 weQ teT j=1,2,....m
B pPm@)=1

=1f(t, xD, o, ™, ) —g(r, xV, 2™, ) <0 E 1)
=1

then the trival solution of the differential equation (3) is uniformly asymprotically
W-stable.

Proof. We choose a, B, by, o, ﬁ, and h according to the assumptions of the theorem.

Let € = min [2B8,, k] and B = €/2B. For any n > 0 we assume that 8 = r(1/aln4B + 7),
where r€ N and €/2" <.
Now we take any initial condition ¢, and a sample solution Y, t € TN (tq — 1, %) of the
differential equation (3) with this initial condition. Let a¥ea, P(Q Y) =] be a set such
that for every w € QY the sample path Y;(w), t € TNty — 7, %) of the stochastic pro-
cess Y; is a solution of the differential equation

d Yt (w)
dt

=gt Y,_ Tiw) (W), ..., Yr—?‘f’(u) (w), w)

with the initial condition ¢, (w).

Next, let R €4, P(QP) = 1be a set such that for any w € QP : -
— the sample paths of f, g, ¢; and 7’,, j=1,2,...,m are continuous (on their domains,
respectively),

— the condition (1) is satisfied, and

— the sample paths of f and g are lipschitzean (the function f with the constant L).

We take any sample solution X;, t € T N{ty — 7, ) of the differential equation (2) with
the initial condition ¢, and find for it the set Q* according to (4). Let QX be a set defined
for the function X; in the same manner as the set QY has been defined for Y;.

Now we fix an arbitrary W€ QO =N QY NQL N Q°NQX and assume that
e(s:p & Il ¢s(w) Il <B. Then (see the proof of Theorem 1 in [1]) the function Y, (w)
sE(L,-1,

satisfied following cc;nditions:
I Ye(w)I<€ tE(ty, 1o + 1/a In 4B + 1)
and
Il Yi(w)| <€/d4B,1E(ty +1/a In 4B, ty + 1/a In 4B + 7).

We cons‘ider the stochastic process Y; on the interval (¢q + 1/aln4B,ty + 1/alnd4B + 1)
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as an initial condition and we take any sample solution X;, t €T N (ty + 1/ain4B, ) of
the diffcrential equation (2) with this initial condition. For this solution we take sets %
and QX in a similar manner as the sets Q* and QX were choosen. If w € Q(1) = Q(0) N
NQFNQYand sup | ¢s(w) Il <P then, similarly as above

ySE(L-T, )

Y, (w)I<€/2,tE(tg + 1/alnd4B + 1, to +2(l/aln 4B + 1))
and

Il Ye(w)I<e€/8B,tE(ty +2:1/aind4B + 1,1, + 2(1/aln 4B + 1)).

In this way we obtain for every i =0, 1, 2, ... aset Qe 4 with P(Q‘i)) = 1 such that

for € QWif sup |l ¢s(w)ll <P then
SE(ty =T,8,}

I Yy(w) I <e/2, tEC(ty +i(l/ain4B + 1), ty + (i + 1)(1/ain 4B + 1)).

Let
Q=4 o,
A i=0
We choose any w € Q. If (sup | ¢s(w) | <B then || Y (w) Il <e/2" <nfort>6 +1,.
SE(t, -1,1,
Hence
\/ \/ N\ A su g
©) B>o0 n/>\o e\>/o fea ¢, welt (se<:,-pr.:,>"¢'(w)"<ﬂ =

P(ﬁ)=l
S(Y, (@) I<nt>6+1)],

where the set Q have again not to be the same for different sample solutions of the diffe-
rential equation (3) with the initial condition ¢r.

Let p €(0,1). We choose B according to (6). Let §€ & and 0 < 8 < (1 —p)B. Now we fix
any n> 0 and find 6 fulfilling (6). Finally we choose an arbitrary initial condition ¢, and
assume that

E[ sup ll¢s(w)l]<B
SEU, -1,1,)

o=Tilo

In view of Chebyshev inequality we get

El TXOIR
bE(st‘:,Er,r.) %) J

™) Pl - sup |I¢‘(w)||<51|>1— >p.
L) ]

l:e«,-r,
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We consider any sample solution Y, ¢t € TN (ty — 7, ) of the differential equation (3)
with the initial condition ¢;. By (6) and (7), we have:

Pl Y ()I<nt>0+1t,]>p,
with completes the proof.

Corollary. If the differential equation (2) fulfils the condition (4) and for almost all
w € Q it holds:

fx®, L x ™ y—g (e, xM, L, x ™), Gy

m . m
<z IxDw = 1xDy)y, teT,
I= j=1

where ¥ :8 =+ 6 and lim Y (x) = 0, then the trival solution of (3) is uniformly asymptoti-
x+0
cally W-stable.

Proof. You only need to note that almost surely for any ¢ > O there exists & from the
condition (5).
Let us consider a differential equation

dz,

(8) 2 =2 spen 2y s W),

where the stochastic processes S'(, j=1,2,...,m satisfies the same assumptions as the
processes T,.

Theorem 3. Let the differential equation (2) satisfy the condition (4). If there exists
0 > 0 such small that

pmL(1 +B)(emL(1/a Ind4B+27)_ 1) <%

and such that for almost all w € S

) Ti(w)—Sh(w) |<p. tET, j=1,2,..,m,

then the trival solution of the differential equation (8) is uniformly asymptotically W-sta-
ble.

l_’roof. We choose @, B, 8,, p according to the assumptions of the theorem. Let 2€ A4,
P(Q) =1 be a set on which the condition (9) is satisfied. Let € = 2B8, and f§ = ¢/28-
<e™~7 For any n>0 we assume that 6§ =r 1/aln 4B + (2r +1)7, where r EN and
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(¢/2") < n. Next, we take any initial condition ¢; and a sample solution Z;, t € T N (¢y —
— 7, ) of the differential equation (8) with this initial condition. Let sets Q% and Q0 be
defindet similarly as the sets QY and QP have been defindet in the proof of Theorem 2.
We consider the stochastic process Z; on the interval (¢, fo + 1) as an initial condition
and we take any sample solution X;, t € T N (t,, %) of the differential equation (2) with
this initial condition. For this solution we take sets 2* and QX in like manner as in the
proof the previous theorem.
Now we fix an arbitrary w € QO =gna?nal na*nX and assume that
s(\‘xp Il ¢s(w) | <B . Then (see the proof of Theorem 2 in [1}) the function Z,(w)

o=Tlp
fulfils the following conditions:
" Zt(w) " <€, te(to + 7, lo + l/a Ind4B + 3f)
and
I Z,(w) | <€/4B, tE(ty + 1/aln 4B + 1,y + 1/aln 4B + 3r).

Next, we consider a sample solution X;, t E TN (zy + 1/aln 4B + 27, 90) of the differen-
tial equation (2) with the initial condition

Zy, tE€E(teg +1/alndB + 21, to + 1/aln 4B + 37).

Analogically as in the proof of the previous theorem we obtain for every i = 0, l,_2, -
a set Q) €4 with P(2() =1 such that for E QD if sup |l ¢y(w) | <P then
SEUL, -1,1,)

fo =7,

I1Z,(w) N <€, tEC +illaln 4B + (2 + 1)1, 1o + (I + 1)1/aln 4B + (21 + 3)1).
Let

Q=4 o0
i=0

A . 3 -
We choose any wE L If sup |l ¢s(w) I <Bthen | Z,(w) I <€/ <nfort>0+1t,.
SE(L, -1,1,)

It proves that the condition (6) is also satisfied for the differential equation (8). Thus the
trivial solution of this equation is uniformly asymptotically W-stable.

II. Now, let us assume that the function f and initial condition @, are unrandom:
@, xV, L XM wy =1, D xm) weq,
(. x1), .., xM)yerx &m,

$1 (W) =9(1), WEQ, 1 E(tg — 1, Io).
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Furthermore, let us take functions
Uk Tr-&j=12,...,m
which are continuous on T and such that

0<ri(t)<r,I€T.

Let us consider differential equation

(L) dx“—f(tx(t—n(t)) X -1,()))
and

dX
(1) =f(t X, Tl,....Xt_T'm).

Definition 3. We say that the trival solution of the differential equation (10) is uni-
formly W-stable under persistent random retardations iff:

ANV VA b

PE@OL 8§>0
AE[i'l,sg.p...,m :eTns‘:t, -, I /(s) Tj(w)l ]< P)

=P [IIX,(w)H <e r>z°]> P ]

Theorem 4. If the trival solution of the differential equation (10) is uniformly asym-
ptotically stable, i.e._

\/ /\ \/ /\ SUP )II¢(S)II<3

>0 >0 6>0
12) i n

= (Ix@l<n, r>0+1)]

then it is uniformly W-stable under persistent random retardations.
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Proof. By Theorem 3 in [1], the trival solution of (10) is uniformly stable under persi-
dent disturbances of retardations, i. e.

/\ \/ \/ A [  sup ‘Il.p(s)ll<6

€e>0 6>0 p>0 ¢ s, —=Y, f?

(13)

N sup sup |7/($)_
J=1,2, ... m SET, {fy—7, =}

= () I<p)=(Ix° (1) <€t >0)].
where x° is solution of the following differential equation

0
. dx m—f(f X —13()), .. X0t —1° (1))

the equation fulfils the same conditions as (10).

For any choosen € > 0 we find § and p such as in (13). Next we fix any initial condi-
tion ¢- Let a set  be defindet similarly as the set QP N QX in the proof of Theorem 2.
By (13), for every w € Q if

sup ll¢(s)ll<8and sup sup |1,()—7T (W) | <p

SE(L, -1, 1) =1,2,....m TN, -v.-)’

then n'X,(w) lI<e t>ty.So we have

/\ \/ \/ /\ sup' t..)" o) II<8 A

e>0 6§>0 p >0 ¢ PﬁﬁA well , . -

A sup swp  136) =T (@) 1<) > (I X, (@) I <e 1> 1) ).

J=1,2,....m s€T, (t,~71, =

The end of the proof is analogous as previously.

Remark. The equations (2), (8) and the condition (6) can be considered instead of the
equations (10), (11) and take condition (12) in Theorem 4. However the ihitial condition
¢ in this theorem_should be urandom. If this initial condition is random then we can
prove a condition similar to (14), but afterwards we ought to modify Definition 3 in a
suitable manner.
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STRESZCZENIE

W pracy znajduja si¢ warunki dostateczne stabilnosci rozwigzan réwnan rézniczko--
wych z losowo opézZnionym argumentem, analogiczne do warunkéw podanych w pracy
[1;dla réwnan nielosowych.

PE3IOME

B paboTe HaXOQATCA NOCTaTOYHblE YCJOBMA YCTOWYMBOCTY pelIeHMi

andpepeHMANbLHLIX YPAaBHEHUI CO CTy4aifHO 3ana3fbIBalolMM apryMeH-
TOM, aHa. IOTU'IHbl YCJOBMAM MpeacTaBjeHHbIM B pabote [1] ana ypaBhe-
HIt}i HecC.ayuajiHbIX.



