UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN-POLONIA

VOL. XXXI, 14

SECTIO A

Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, Lublin

RYSZARD SMARZEWSKI

On Characterization of Chebyshev Optimal Starting and Transformed Approximations by Families Having a Degree

Twierdzenie charakteryzacyjne dla optymalnych aproksymacji startowych i transformowanych elementami rodzin nieliniowych

Теоремы характеризующие стартерные и трансформированные оптимальные апроксимации

1. Introduction.

Let C[a,b] be the space of real valued functions defined and continuous on [a, b] normed by

$$||f|| = \max\{|f(x)|: x \in [a, b]\}.$$

Denote by G a nonlinear approximating family of functions from C[a, b]. The following definitions are given in [7] (see also [3]).

Definition 1. The family G has property Z of degree n at $g \in G$ if for every $h \in G$ the function (h-g) has at most (n-1) zeros on [a,b] or vanishes identically.

Definition 2. G has property A of degree n at $g \in G$ if given

- (i) an integer $m, 0 \leqslant m < n$
- (ii) a set $\{x_1, ..., x_m\}$ with $a = x_0 < x_1 < ... < x_m < x_{m+1}$
 - (iii) ε with $0 < \varepsilon < \frac{1}{2} \min\{x_{j+1} x_j : j = 0, ..., m\}$, and
- (iv) a sign $\sigma \in \{-1, 1\}$,

there exists $h \in G$ with $||h-g|| < \varepsilon$ and

$$\operatorname{sign}\left[h(\boldsymbol{x})-g(x)\right] = \begin{cases} \sigma, \ a\leqslant x\leqslant x_1-\varepsilon \\ (-1)^i\sigma, \ x_i+\varepsilon\leqslant x\leqslant x_{i+1}-\varepsilon \ \text{and} \ i=1,\ldots,m-1 \\ (-1)^m\sigma, \ x_m+\varepsilon\leqslant x\leqslant b. \end{cases}$$

In the case m = 0, we require

$$sign[h(x)-g(x)] = \sigma, \ a \leqslant x \leqslant b.$$

Definition 3. The family G has degree n at $g \in G$ if G has property Z and property A of degree n at g.

Definition 4. A zero x of a continuous function f on [a, b] is called a double zero if x is an interior point of [a, b] and f does not change sign at x. Otherwise, it is called a simple zero.

Definition 5. The points a_i , $a \le a_0 < ... < a_n \le b$ are called alternation points of the function f if $f(a_i) = (-1)^i f(a_0) \ne 0$ for i = 1, ..., n.

In the paper [9] we have introduced the nonlinear family of approximating functions having the weak betweenness property and have presented some of its properties.

Definition 6. A subset G of C[a, b] has the weak betweenness property if for any two distinct elements g and h in G and for every closed subset D of [a, b] such that $h(x) \neq g(x)$ for all $x \in D$ there exists a sequence $\{g_i\}$ of elements of G such that

- $(i) \lim_{i \to \infty} \|g g_i\| = 0$
- (ii) numbers $g_i(x)$, where $x \in D$ and i = 1, 2, ..., lie strictly between g(x) and h(x) (i.e. either

$$g(x) < g_i(x) < h(x)$$
 or $h(x) < g_i(x) < g(x)$.

Let us assume that the operator $\Phi \colon K \to C[a, b]$ is defined and continuous on the set $K \subset C[a, b]$ and that M is an arbitrary nonempty subset of K.

Definition 7 (see [6]). The element $g \in M$ is said to be an optimal starting approximation in M for $f \in K$ if $\|\Phi(f) - \Phi(g)\| \le \|\Phi(f) - \Phi(h)\|$ for all $h \in M$. The approximation of this type was considered in papers [4, 6, 8, 9].

Definition 8 (see [1, 2]).

The element $g \in M$ is called the optimal transformed approximation in M for $f \in C[a,b]$ if

$$\|f-\varPhi(g)\|\leqslant \|f-\varPhi(h)\|$$

for all $h \in M$.

The optimal transformed approximation, with respect to M equal to polynomial and rational families and Φ equal to an ordered function, was considered by Dunham in [1,2]. The main purpose of this paper is to prove the alternation theorems for optimal starting and transformed

approximations, with M equal to a nonempty subset of family G having a degree at all $g \in G$. In particular, we shall generalize Theorems 3.2 and 2 characterizing the optimal starting approximation from [4] and [6] respectively.

Additionally, we shall obtain characterization theorems of Kolmogorov type for optimal transformed approximation by families with weak beweenness property. These theorems are similar to characterization thetorems from [9].

2. Optimal starting aproximation

Let us denote by D(g), where $g \in G$, the closed subset of [a, b] defined by

$$D(g) = \{x \colon |\Phi(f)(x) - \Phi(g)(x)| = \|\Phi(f) - \Phi(g)\|\}.$$

n this section the following definitions from [6] will be useful.

Definition 9. The operator Φ is called pointwise strictly monotone at $f \in K$ if for each $h, g \in K$ we have

$$|\Phi(f)(z) - \Phi(h)(z)| < |\Phi(f)(z) - \Phi(g)(z)|$$

for each $z \in [a, b]$, where either $g(z) < h(z) \le f(z)$ or $f(z) \le h(z) < g(z)$

Definition 10. The operator Φ is said to be pointwise fixed at $f \in K$, if $h \in K$ with h(z) = f(z) for $z \in [a, b]$ implies $\Phi(h)(z) = \Phi(f)(z)$.

Now we shall prove two lemmas characterizing the family G having a degree.

Lemma 1. Let the family G have a degree at all $g \in G$. Then G has weak betweenness property.

Proof. Let g, h be two arbitrary distinct elements of G and let n denote a degree at g. Thus there exists k, k < n, simple zeros x_j of (h-g) in (a,b). Let D be any closed subset of [a,b] such that $\delta = \min\{|h(x)-g(x)|: x \in D\} > 0$. If k = 0 then setting in Definition 2 $\sigma = \text{sign}\{h(x)-g(x): x \in D\}$ we conclude that for every ε , $0 < \varepsilon < \delta$, there exists $p \in M$ such that $\|p-g\| < \varepsilon$ and p(x) lies strictly between g(x) and h(x) for every $x \in D$. From this the thesis of the lemma is obvious, because we may select g_i in Definition 6 which corresponds to $\varepsilon = \frac{1}{s+i}$, where an integer s is

such that $0<\frac{1}{s}<\delta$. Otherwise, suppose that an integer l is so chosen that sets $\left(x_i-\frac{1}{\nu},x_i+\frac{1}{\nu}\right)\cap D,\ i=1,\ldots,k,$ are empty for all $\nu\geqslant 1.$

From Definition 2 for each $v \ge 1$, $0 < \varepsilon < \min\left\{\frac{1}{v}, \delta\right\}$ and $\sigma = \operatorname{sign}\{h(x) - g(x) \colon x \in D \cap [a, x_1)\}$ there exists g_v which lies strictly between g(x) and h(x) for all $x \in D$ and $\|g_v - g\| < \varepsilon$. Hence the family G has the weak betweenness property and the proof is completed.

Lemma 2. Let g be an arbitrary fixed distinct element of G and let $e \in C[a, b]$. Assume that G has a degree n at g. Let D be a nonempty closed subset of [a, b] such that $e(x) \neq 0$ for all $x \in D$. Then the following three conditions are equivalent:

- (i) the set D contains at least (n+1) alternation points of the function e.
- (ii) there does not exist any element $h \in G$ such that the inequality

(1)
$$e(x)[h(x)-g(x)] > 0$$

is satisfied for all $x \in D$.

(iii) there does not exist any element $h \in G$ distinct from g such that the inequality

(2)
$$e(x)[h(x)-g(x)] \geqslant 0$$

is satisfied for all $x \in D$.

Proof. The fact that condition (i) implies (ii) by property Z is obvious. Now we shall prove that (ii) implies (iii). Let us suppose on the contrary that there exists an element $h \in G$ distinct from g such that the inequality (2) is satisfied for all $x \in D$. Let $z_1, \ldots, z_k, k < n$, be simple zeros of the function (h-g) in (a, b). If k=0 then the proof follows immediately from Definition 2. Otherwise, renumbering if necessary z_i , we assume that $z_i \in D$ for i = 1, ..., l, where $l \leq k$. From the continuity of all considered functions and inequality (2) it follows that for sufficiently small $\lambda > 0$ there exist the sets $0_{\lambda}(z_i)$ equal for i = 1, ..., l to $(z_i - \lambda, z_i)$ or $(z_i, z_i + \lambda)$ and for $i = l + 1, \ldots, k$ to $(z_i - \lambda, z_i + \lambda)$ such that $0_{\lambda}(z_i) \cap D = \emptyset$. Let x_i be the mid-points of intervals $0_{\lambda}(z_i)$ for $i=1,\ldots,k$. Denote σ $= sign\{h(x) - g(x): x \in (a, z_1) \text{ and } h(x) \neq g(x)\}.$ From Definition 2 for every $0 < \varepsilon < \frac{\lambda}{2}$ there exists $p \in G$ such that $[p(x) - g(x)][h(x) - g(x)] \ge 0$ and $p(x) \ne g(x)$ for all $x \in [a, b] \setminus \bigcup_{i=0}^k 0_{\lambda}(z_i) > D$. Hence setting h = pin (1) we obtain the contradiction of (ii). Finally, we prove that (iii) implies (i). Let us suppose on the contrary that the set D contains exactly $k, k \leq n$, alternation points $a_i, i = 0, ..., k-1$ of the function e. If k = 1 then setting $\sigma = \text{sign}\{e(x): x \in D\}$ we conclude from Definition 2 that there exists an element $h \in G$ such that $\sigma = sign\{h(x) - g(x)\}$: $x \in [a, b]$. Hence the proof is completed. Otherwise, let x_i denote arbi-

trary fixed zeros of e in intervals $(a_{i-1}, a_i), i = 1, ..., k-1$. Additionally, let $\sigma = \text{sign}\{e(x): x \in [a_0, x_1) \cap D\}$ and let $\varepsilon > 0$ be so chosen that $(x_i - \varepsilon, x_i) \cap D$ $(x_i + \varepsilon) \cap D = \emptyset$ for i = 1, ..., k-1. For these ε , σ and x_i let $k \in G$ be an element defined by Definition 2. Obviously, inequality (2) with this h is satisfied for all $x \in D$. This gives a contradiction, and the lemma is proven.

From Lemmas 1 and 2 in this paper and Theorems 3 and 4 from [9] we immediately obtain the following theorem which generalizes Theorem 3.2 and 2 from [4] and [6] respectively.

Theorem 1. Let $\Phi: K \to C[a, b]$ be a continuous operator and let Ghave a degree at all $h \in G$. Fix an element $g \in G$ and denote by n the degree of G at g. Let $M = K \cap G$ be a nonempty relatively open subset of G and let e = f - q, where $f \in K \setminus M$. Finally assume that Φ is pointwise strictly monotone and pointwise fixed at f. Then the following four conditions are equivalent:

- (i) the element g is an optimal starting approximation to f.
- (ii) there does not exist any element $h \in G$ such that inequality (1) is satisfied for all $x \in D(g)$.
- (iii) there does not exist any element $h \in G$ distinct from g such that inequality (2) is satisfied for all $x \in D(g)$.
- (iv) the set D(g) contains at least (n+1) alternation points of the function e.

3. Optimal transformed approximation.

Let us denote by B(q), where $q \in G$, the closed subset of [a, b] defi- $B(g) = \{x \colon |f(x) - \Phi(g)(x)| = \|f - \Phi(g)\|\}.$ ned by

$$B(g) = \{x \colon |f(x) - \Phi(g)(x)| = \|f - \Phi(g)\|\}.$$

In this section the following definitions will be useful.

Definition 11. The operator $\Phi: K \to C[a, b]$ is said to be pointwise strictly increasing at $g \in M$ if for each $h \in M$ and $x \in [a, b]$ the inequality g(x) < h(x)(g(x) > h(x)) implies that

$$\Phi(g)(x) < \Phi(h)(x)(\Phi(g)(x) > \Phi(h)(x)).$$

The operator Φ is said to pointwise strictly monotone at $q \in M$ if Φ or $-\Phi$ is pointwise strictly increasing at g. If the operator $\pm \Phi$ is a pointwise increasing at $g \in M$ then we set $\sigma = \pm 1$. The ordered functions [2] and more general transformations considered in [5] are examples of operators pointwise strictly monotone at g, where g and M may be arbitrary chosen. For other examples see [6]. In particular, the operator Φ may be equal to the identity operator.

Theorem 2. Let $\Phi: K \to C[a, b]$ be a continuous operator. Let G be an arbitrary subset of C[a, b] having weak betweenness property and let $M = K \cap$ $\cap G$ be a nonempty relatively open subset of G. Finally assume that Φ is pointwise strictly monotone at $g \in M$. Then a necessary condition for g to be an optimal transformed approximation, with respect to $f \in C[a,b] \setminus M$ is that there does not exist any element $h \in G$ such that

(3)
$$\sigma[f(x) - \Phi(g)(x)][h(x) - g(x)] > 0$$

for all $x \in B(q)$.

Proof. Let us suppose on the contrary that there exists $h \in G$ such that inequality (3) is satisfied for all $x \in B(g)$. Then for $x \in B(g)$ we have either $f(x) > \Phi(g)(x)$ and $\sigma h(x) > \sigma g(x)$

$$f(x) > \Phi(g)(x)$$
 and $\sigma h(x) > \sigma g(x)$

$$f(x) < \Phi(g)(x)$$
 and $\sigma h(x) < \sigma g(x)$.

From the continuity of all considered functions there exists the open set $E \supset B(g)$ such that the last inequalities hold for all $x \in \overline{E}$. Because G has the weak betweenness property and M is open in G then there exists the sequence g_i of elements of M such that $g_i(x)$ lies strictly between $\sigma h(x)$ and $\sigma g(x)$ for all $x \in \overline{E}$ and g_i is convergent uniformly on [a, b]to g. Now, from the pointwise monotonicity of Φ at g and the continuity of the operator Φ it follows that there exists an integer m such that $\Phi(g_i)(x)$ for all $i \ge m$ and $x \in \overline{E}$ lies strictly between f(x) and $\Phi(g)(x)$. Hence

(4)
$$|f(x) - \Phi(g_i)(x)| < |f(x) - \Phi(g)(x)| = ||f - \Phi(g)||$$

for all $i \ge m$ and $x \in \overline{E}$. If $\overline{E} = [a, b]$ then the proof is completed. Otherwise, let us set $V = X \setminus E$ and

$$\delta = \max\{|f(x) - \Phi(g)(x)| \colon x \in V\}.$$

Obviously V is a compact set. Since $V \cap B(g) = \emptyset$, thus $||f - \Phi(g)|| > \delta$. From the continuity of Φ and uniform convergence g_i to g it follows that there exists an integer $k, k \ge m$, such that $\|\Phi(g) - \Phi(g_i)\| < \|f - \Phi(g)\| - \delta$ for all $i \ge k$. Hence for all $x \in V$ and $i \ge k$ we obtain

$$\begin{split} |f(x)-\varPhi(g_i)(x)| \leqslant |f(x)-\varPhi(g)(x)| + |\varPhi(g)(x)-\varPhi(g_i)(x)| \\ < \delta + \|f-\varPhi(g)\| - \delta \ = \|f-\varPhi(g)\|. \end{split}$$

Combining this result with (4) we have

$$||f - \Phi(g_i)|| < ||f - \Phi(g)||$$
 for all $i \ge k$.

This gives a contradiction.

Theorem 3. Let M be an arbitrary nonempty subset of K and let the operator Φ be pointwise monotone at g. Then a sufficient condition for $g \in M$ to be an optimal transformed approximation to $f \in C[a, b] \setminus M$ is that there does not exists any element $h \in M$ such that

(5)
$$\sigma[f(x)-\Phi(g)(x)][h(x)-g(x)]\geqslant 0$$
 for all $x\in B(g)$.

Proof. Suppose on the contrary that there exists an $h \in M$ such that $||f - \Phi(h)|| < ||f - \Phi(g)||$. Hence for all $x \in B(g)$ we have

(6)
$$|f(x) - \Phi(h)(x)| < |f(x) - \Phi(g)(x)|$$
.

Now, we must have for $x \in B(g)$ either $f(x) > \Phi(g)(x)$ and $\sigma h(x) \geqslant \sigma g(x)$ or $f(x) < \Phi(g)(x)$ and $\sigma h(x) \leqslant \sigma g(x)$. Indeed, otherwise from the pointwise monotonicity of Φ at g we obtain that $\Phi(g)(x)$ lies strictly between f(x) and $\Phi(h)(x)$ for all $x \in B(g)$. This gives a contradiction of (6). Combining the above inequalities for functions $f, \Phi(g), \sigma g$ and σh we obtain that the inequality (5) is satisfied for all $x \in B(g)$. This completes the proof.

Theorem 4. Under the assumptions of Theorem 2 and the additiona assumption that

(7)
$$h(x) = g(x)$$
 implies $\Phi(h)(x) = \Phi(g)(x)$ for all $h \in M$ a necessary and sufficient condition for $g \in M$ to be a transformed approximation to $f \in C[a,b] \setminus M$ is that there does not exist any element $h \in G$

$$\sigma[f(x) - \Phi(g)(x)][h(x) - g(x)] > 0$$

for all $x \in B(g)$.

such that

Proof. From Theorems 2 and 3 and from the fact that the equality h(x) = g(x) for an $x \in B(g)$ in the proof of Theorem 3 from condition (7) is mpossible we immediately obtain the proof of this theorem.

Note that condition (7) is satisfied if the operator Φ is the identity operator, ordered function [2] or transformation from [5]. Finally from Lemma 1 and 2 and Theorems 2 and 3 we have the theorem.

Theorem 5. Let $\Phi: K \to C[a, b]$ be a continuous operator and let G have a degree at all $h \in G$. Fix an element $g \in G$ and denote by n the degree of G at g. Let $M = K \cap G$ be nonempty relatively open subset of G and let $e = f - \Phi(g)$, where $f \in C[a, b] \setminus M$. Finally assume that Φ is pointwise strictly monotone at g. Then the following four conditions are equivalent:

- (i) the element g is an optimal transformed approximation to f.
- (ii) there does not exist any element $h \in G$ such that the inequality $\sigma e(x) [h(x) g(x)] > 0$ is satisfied for all $x \in B(g)$.

- (iii) there does not exist any element $h \in G$ distinct from g such that the inequality $\sigma e(x)[h(x) g(x)] \ge 0$ is satisfied for all $x \in B(g)$.
- (iv) the set B(g) contains at least (n+1) alternation points of the function e.

REFERENCES

- [1] Dunham, C. B., Transformed rational Chebyshev approximation, Numer. Math., 10 (1967), 147-152.
- [2] -, Transformed linear Chebyshev approximation, Aequationes Math. 12 (1975), 6-11.
- [3] -, Alternation with a null point, J. Approximation Theory, 15 (1975), 175-160.
- [4] Gibson, J. B., Optimal rational starting approximation, J. Approximation Theory, 12 (1974), 182-198.
- [5] Kaufman, E. H., Belford, G. G., Transformations of families of approximating functions, J. Approximation Theory, 4 (1971), 363-371.
- [6] Meinardus, G., Taylor, G. D., Optimal starting approximations for iterative schemes, J. Approximation Theory, 9 (1973), 1-19.
- [7] Rice, J. R., The approximation of functions, Addison-Wesley, Reading, Mass., 1969.
- [8] Smarzewski, R., On characterization of optimal polynomial and rational starting approximations, Zastos. Mat. XV, 3 (1977), 513-517.
- [9] -, Chabyshev optimal starting approximation by families with weak betweenness property, Zastos. Mat. XVI, 3 (1979), 485-495.

STRESZCZENIE

W pracy udowodniono twierdzenia o alternansie, charakteryzujące nieliniową optymalną aproksymację startową i transformowaną. Ponadto, dla optymalnej aproksymacji transformowanej podane zostały twierdzenia charakteryzacyjne typu Kołmogorowa.

резюме

В данной работе доказано теоремы о альтернансе, характеризирующие нелинейную стартерную и трансформированную оптимальную апроксимацию. Кроме того, для оптимальной трансформированной апроксимации представлены характеризующие теоремы типа Колмогорова.