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On Characterization of Chebyshev Optimal Starting and Transformed 
Approximations by Families Having a Degree

Twierdzenie charakteryzacją ne dla optymalnych aproksymacji 
startowych i transformowanych elementami rodzin nieliniowych

Теоремы характеризующие стартерные и трансформированные 
оптимальные апроксимации

1. Introduction.

Let C[a, &] be the space of real valued functions defined and conti

nuous on [a, 6] normed by

H/ll = max{|/(»)|: x e [a, 6]}.

Denote by G a nonlinear approximating family of functions from C[a, 6]. 
The following definitions are given in [7] (see also [3]).

Definition 1. The family G has property Z of degree »at g e G if for 
every heG the function (h—g) has at most (» — 1) zeros on [a, 6] or 
vanishes identically.

Definition 2. G has property A of degree n at g e G if given
(i) an integer m, 0 < m < n
(ii) a set {®nxm} with a = x0 < ®1 < ... < xm< xm+1 = b

(iii) e with 0 < e < j min{a?y+1 —«/. j= 0,..., m}, and
(iv) a sign ae{ —1,1},

there exists heG with ||A —</|l < « and 

a, a < a; < a^ —e
( — l/a, x( + e < a?< a;<+1 —e and i = 1,..., w —1 

( —xm + e < x <6.
sign[M®) - 0(®)] =
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In the case m — 0, we require

sign[fe(a;) — g(x)~] = a, a^.x^b.

Definition 3. The family G has degree n at g e G if G has property Z 
and property A of degree n at g.

Definition 4. A zero x of a continuous function f on [a, 6] is called 
a double zero if x is an interior point of [a, ft] and f does not change sign 
at x. Otherwise, it is called a simple zero.

Definition 5. The points a,, a < a0 < ... < an < b are called alternation 
points of the function/ if/(a,) = (—l)’/(a0) =#= 0 for i = 1,n.

In the paper [9] we have introduced the nonlinear family of approxi
mating functions having the weak betweenness property and have pre
sented some of its properties.

Definition 6. A subset G of C[a, 6] has the weak betweenness property 
if for any two distinct elements g and h in G and for every closed subset D 
of [a, 6] such that h(x) g(x) for all x e D there exists a sequence {jrJ 
of elements of G such that

(i) lim ||0 - 0,.|| = 0
<->OO

(ii) numbers where x e D and i =1,2,..., lie strictly between 
g(x) and h(x) (i.e. either

0(«) < 9i(x) < &(®) or h(x) < gf(x) < g(x)).

Let us assume that the operator 0: K '-*■ C[a, &] is defined and conti
nuous on the set A c C[a, 6] and that Jf is an arbitrary nonempty subset 
of K.

Definition 7 (see [6]). The element g e M is said to be an optimal 
starting approximation inlf for / e A if ||0(/) — 0(0)|| sg; ||0(/) — 0(A)|| 
for all h e Jf. The approximation of this type was considered in papers 
[4, 6, 8, 9].

Definition 8 (see [1,2]).
The element g e M is called the optimal transformed approximation 

in Jf for f e C[a, 6] if

II/-0(0)11 < II/-0WII
for all h e M.

The optimal transformed approximation, with respect to M equal 
to polynomial and rational families and 0 equal to an ordered function, 
was considered by Dunham in [1,2]. The main purpose of this paper 
is to prove the alternation theorems for optimal starting and transformed
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approximations, with M equal to a nonempty subset of family G having 
a degree at all g e G. In particular, we shall generalize Theorems 3.2 and 2 
characterizing the optimal starting approximation from [4] and [6] re
spectively.

Additionally, we shall obtain characterization theorems of Kolmogorov 
type for optimal transformed approximation by families with weak be- 
weenness property. These theorems are similar to characterization the- 
torems from [9].

2. Optimal starting aproximation

Let us denote by D(g), where g eG, the closed subset of [a, b] defined by 

Z>(0) = {a?: \$(f)(x)-$(g)(x)\ = ||0(/)-0(g)||}.

n this section the following definitions from [6] will be useful.

Definition 9. The operator 0 is called pointwise strictly monotone 
at f e K if for each h, g e K we have

|0(/)(z)-0(Ä)(z)| < |0(/)(z)-0(g)(z)|
for each z e [a, 6], where either g(z} < 7i(z) </(z) or /(z) < h(z) < g(z)

Definition 10. The operator 0 is said to be pointwise fixed at f e K, 
if h e K with 7i(z) = /(«) for z e [a, 6] implies 0(7i)(z) = 0(/)(z).

Now we shall prove two lemmas characterizing the family G having 
a degree.

Lemma 1. Let the family G have a degree at all g eG. Then G has weak 
betweenness property.

Proof. Let g, hbc two arbitrary distinct elements of G and let n denote 
a degree at g. Thus there exists k, k <n, simple zeros Xj of (h — g) in (a, b). 
Let D be any closed subset of [a, b] such that 5 = min{|fe(a?) — <jr(rc)|: 
x e D} > 0. If & =0 then setting in Definition 2 a — sign{h(x) —g(x):xeJO} 
we conclude that for every e, 0 < e < <5, there exists p e M such that 
lip—0ll < e and P(a5) lies strictly between girt) and h(x} for every x e D. 
From this the thesis of the lemma is obvious, because we may select gf 

in Definition 6 which corresponds to e = ——-, where an integer s is

such that 0 < — < b. Otherwise, suppose that an integer I is so chosens
1

that sets----- , +
V V

xrf— nD, i=l,...,k, are empty for all j>>1.
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From Definition 2 for each v > 1, 0 < e < min , dj and a — sign{A(») —

— g(x): x e Dn[o, xt)} there exists g, which lies strictly between g(x) 
and /t(a?) for all x e D and ||gr„ — </|| < e. Hence the family G has the weak 
betweenness property and the proof is completed.

Lemma 2. Let g be an arbitrary fixed distinct element of G and let e 
e C[a, 6]. Assume that G has a degree n at g. Let D be a nonempty closed 
subset of [a, 6] such that e(x) 0 for all x eD. Then the following three 
conditions are equivalent:

(i) the set D contains at least (n-f-1) alternation points of the function e.
(ii) there does not exist any element h eG such that the inequality

(1) e(x)[h(x)-g(x)] > 0

is satisfied for all x e D.
(iii) there does not exist any element heG distinct from g such that the 

inequality
(2) e(a?) [/&(#)-£(®)] > 0

is satisfied for all x e D.

Proof. The fact that condition (i) implies (ii) by property Z is obvious. 
Now we shall prove that (ii) implies (iii). Let us suppose on the contrary 
that there exists an element heG distinct from g such that the inequality
(2) is satisfied for all x eD. Let ..., zk, k < n, be simple zeros of the 
function (h — g) in (a,b). If k = 0 then the proof follows immediately 
from Definition 2. Otherwise, renumbering if necessary z{, we assume 
that z( e D for i = 1, ...,l, where I < k. From the continuity of all con
sidered functions and inequality (2) it follows that for sufficiently small 
2 > 0 there exist the sets 0A(z,) equal for i = 1, ..., I to (z{ — 2, zf) or 
(zt, Zi + A) and for i = Z + l, ..., fc to (Zj —2, 2^ +A) such that 0A(z,)nI) = 0. 
Let Xi be the mid-points of intervals 0A(z<) for i = 1, ..., fc. Denote a 
= sign.{h(x) — g(x): xe(a,z1) and h(x) ^g(x)}. From Definition 2 for

2
every 0 < e < — there existsp eG such that [p(x) — </(#)][A(®) — ff(aj)] > 0 

2 k
and p(x) g(x) for all x e [a, 6]\ (J 0A(z<) => D. Hence setting h — p 

<-1
in (1) we obtain the contradiction of (ii). Finally, we prove that (iii) 
implies (i). Let us suppose on the contrary that the set D contains exact
ly k, k < n, alternation points , » = 0,..., k — 1 of the function e. 
If k = 1 then setting a = sign{e(a?): x e D} we conclude from Definition 2 
that there exists an element heG such that a = sign {A (a?) — g(x): 
x e [a, 6]}. Hence the proof is completed. Otherwise, let xt denote arbi
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trary fixed zeros of e in intervals (a,_n at), i = 1, ...,1c —1. Additionally, 
let a = sign {e (x): x e [a0, a\)nZ)} and let e > 0 be so chosen that (»< — e, 
o^ + ejnl) =0 for i — 1, k — 1. For these e, a and x{ let h eG be an 
element defined by Definition 2. Obviously, inequality (2) with this h 
is satisfied for all x e D. This gives a contradiction, and the lemma is 
proven.

From Lemmas 1 and 2 in this paper and Theorems 3 and 4 from [9] 
we immediately obtain the following theorem which generalizes Theorem 3.2 
and 2 from [4] and [6] respectively.

Theorem 1. Let <!>•. If-► C[a, 6] be a continuous operator and let G 
have a degree at dll h eG. Fix an element g eG and denote by n the degree 
of G at g. Let M — K r\G be a nonempty relatively open subset of G and let 
e =f—g, where feK\M. Finally assume that d> is pointwise strictly 
monotone and pointwise fixed at f. Then the following four conditions 
are equivalent:

(i) the element g is an optimal starting approximation to f.
(ii) there does not exist any element h eG such that inequality (1) is 

satisfied for all x e D(g).
(iii) there does not exist any element h eG distinct from g such that ine

quality (2) is satisfied for all x e D(g).
(iv) the set D (g) contains at least (« +1) alternation points of the function e.

3. Optimal transformed approximation.

Let us denote by B(<7), where g eG, the closed subset of [a, 6] defi
ned by

B(g) = {x: \f(x)-4>(g)(x)\ = ||/— <*>(<z)||}.
In this section the following definitions will be useful.

Definition 11. The operator <P: K-+C[a,b~\ is said to be pointwise 
strictly increasing at g e M if for each h e M and x e [a, 6] the inequality 
g{x) < h(x)(g(x) > h(x)) implies that

#(ff)(®) < $>(h)(x)(<I>(g)(x) > &(h)(x)).
The operator 0 is said to pointwise strictly monotone at g e M if 0 

or — 0 is pointwise strictly increasing at g. If the operator ± 0 is a poin
twise increasing at g e M then we set a = ± 1. The ordered functions [2] 
and more general transformations considered in [5] are examples of 
operators pointwise strictly monotone at g, where g and M may be arbi
trary chosen. For other examples see [6]. In particular, the operator 0 
may be equal to the identity operator.
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Theorem 2. Let K-+C[a, ft] be a continuous operator. Let G be an 
arbitrary subset of C[a, 6] having weak betweenness property and let M = Kr\ 
rtG be a nonempty relatively open subset of G. Finally assume that <I> is point- 
wise strictly monotone at g e JH. Then a necessary condition for g to be an 
optimal transformed approximation, with respect to feC[a,b]\M is that 
there does not exist any element h eG such that

(3) o[f(x)-^>(g)(x)][h(x)~g(x)']> 0
for all x e B (g).

Proof. Let us suppose on the contrary that there exists h eG such 
that inequality (3) is satisfied for all x e B(g). Then for x e B(g) we have 
either

f(x) > &>(g)(x) and ah(x) > ag(x)
or

f(x) < <$(g)(x) and ah(x) < ag(x).

From the continuity of all considered functions there exists the open 
set E => B(g) such that the last inequalities hold for all x e E. Because G 
has the weak betweenness property and Jf is open in G then there exists 
the sequence g{ of elements of M such that gfx) lies strictly between 
oh(x) and oglx) for all x e E and gt is convergent uniformly on [a, 6] 
to g. Now, from the pointwise monotonicity of at g and the continuity 
of the operator 0 it follows that there exists an integer m such that 
^(gi^x) for aU i > w and xeE lies strictly between f(x) and <P(g)(x). 
Hence
(4) \f(x)(a:)| < \f(x)-4>(g)(x)\ = \\f-4>(g)\\

for all i > m and xeE. If 2? = [a, 6] then the proof is completed. Other
wise, let us set V = X\E and

«5 = max{|/(a;) — 0(<7)(®)|: xeV}.

Obviously V is a compact set. Since Vr\B(g) =0, thus ||/— 0(<7)|| > i. 
From the continuity of 0 and uniform convergence gt to g it follows that 
there exists an integer k, k^m, such that l|0(</) — 0(<7i)|| < II/—0(<7)|| —<? 
for all i > k. Hence for all x e V and i > k we obtain

|/(«)-0(<?,)(»)| < |/(a?) — 0(flO(<»)l 4- |0(fl9(a?) — 0(^<)(a?)|
< <5 + ||/-0(<7)||- d = II/—0(flr)||.

Combining this result with (4) we have

ll/-0(?i)ll< II/—for all i^k.

This gives a contradiction.
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Theorem 3. Let M he an arbitrary nonempty subset of K and let the 
operator 0 be pointwise monotone at g. Then a sufficient condition for g e M 
to be an optimal transformed approximation to f e C [a, b]\M is that there 
does not exists any element h e M such that
(5) a[/(*)-0(ff)(s)][M*)-0(*)]>O
for all x e B(g).

Proof. Suppose on the contrary that there exists an h 6 M such that 
II/-0WII < II/— 0(fl')||. Hence for all x e B(g) we have
(6) |/(®)-0(*)(«)|<|/(®)-0(y)(a!)|.
Now, we must have for x e B(g) either f(x) > 0(y)(®) and o7i(a?) > <r</(x) 
or /(x) < 0(g) (x) and ah(x) < og(x). Indeed, otherwise from the point- 
wise monotonicity of 0 at g we obtain that 0(^)(®) lies strictly between 
/(«) and 0(A) (x) for all x e B(g). This gives a contradiction of (6). Combi
ning the above inequalities for functions /, 0(</), ag and ah we obtain that 
the inequality (5) is satisfied for all x e B(g). This completes the proof.

Theorem 4. Under the assumptions of Theorem 2 and the additiona 
assumption that
(7) h(x) = g(x) implies 0(A)(a?) = G>(g)(x) for all h e M
a necessary and sufficient condition for g e M to be a transformed approxim
ation to feC[a,b]\M is that there does not exist any element heG 
such that

o[f(x) — @(g)(x)][h(x)—g(x)] > 0
for all xeB(g).

Proof. From Theorems 2 and 3 and from the fact that the equality 
h(x) = g(x) for an x e B(g) in the proof of Theorem 3 from condition (7) 
is mpossible we immediately obtain the proof of this theorem.

Note that condition (7) is satisfied if the operator 0 is the identity 
oqerator, ordered function [2] or transformation from [5]. Finally from 
Lemma 1 and 2 and Theorems 2 and 3 we have the theorem.

Theorem 5. Let K->C [a, b~\ be a continuous operator and let G 
have a degree at all heG. Fix an element g eG and denote by n the degree 
of G at g. Let M — K r\G be nonempty relatively open subset of G and let 
e —f—^lg), where f eG [a, b]\M. Finally assume that 0 is pointwise 
strictly monotone at g. Then the following four conditions are equivalent:

(i) the element g is an optimal transformed approximation to f.
(ii) there does not exist any element heG such that the inequality 

oe(x) [A(a?) — g(x)] > 0 is satisfied for all xeB(g).
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(iii) there does not exist any element h eG distinct from g stick that the
inequality oe(x)[h(x)—g(x)] 0 is satisfied for all x e B(g).

(iv) the set B (</) contains at least (n +1) alternation points of the function e.
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STRESZCZENIE

W pracy udowodniono twierdzenia o alternansie, charakteryzujące 
nieliniową optymalną aproksymację startową i transformowaną. Ponadto, 
dla optymalnej aproksymacji transformowanej podane zostały twierdzenia 
charakteryzacyjne typu Kołmogorowa.

РЕЗЮМЕ

В данной работе доказано теоремы о альтернансе, характеризи- 
рующие нелинейную стартерную и трансформированную оптимальную 
апроксимацию. Кроме того, для оптимальной трансформированной 
апроксимации представлены характеризующие теоремы типа Кол
могорова.


