## ANNALES

# UNIVERSITATIS MARIAECURIE-SKEODOWSKA LUBLIN - POLONIA 

SECTIO A

On Characterization of Chebyshev Optimal Starting and Transformed Approximations by Families Having a Degree

> Twierdzenie charakteryzacyjne dla optymalnych aproksymacji startowych i transformowanych elementami rodzin nieliniowych

Төорөмы характеризующиө стартөрныө и трансформированные оптимальныө апроксимации

## 1. Introduction.

Let $C[a, b]$ be the space of real valued functions defined and continuous on $[a, b]$ normed by

$$
\|f\|=\max \{|f(x)|: x \in[a, b]\}
$$

Denote by $G$ a nonlinear approximating family of functions from $C[a, b]$. The following definitions are given in [7] (see also [3]).

Definition 1. The family $G$ has property $Z$ of degree $n$ at $g \in G$ if for every $h \in G$ the function $(h-g)$ has at most $(n-1)$ zeros on $[a, b]$ or vanishes identically.

Definition 2. $G$ has property $A$ of degree $n$ at $g \in G$ if given
(i) an integer $m, 0 \leqslant m<n$
(ii) a set $\left\{x_{1}, \ldots, x_{m}\right\}$ with $a=x_{0}<x_{1}<\ldots<x_{m}<x_{m+1}=b$
(iii) $\varepsilon$ with $0<\varepsilon<\frac{1}{2} \min \left\{x_{j+1}-x_{j}: j=0, \ldots, m\right\}$, and
(iv) a sign $\sigma \in\{-1,1\}$,
there exists $h \in G$ with $\|h-g\|<\varepsilon$ and
$\operatorname{sign}[h(x)-g(x)]=\left\{\begin{array}{l}\sigma, a \leqslant x \leqslant x_{1}-\varepsilon \\ (-1)^{i} \sigma, x_{i}+\varepsilon \leqslant x \leqslant x_{i+1}-\varepsilon \text { and } i=1, \ldots, m-1 \\ (-1)^{m} \sigma, x_{m}+\varepsilon \leqslant x \leqslant b .\end{array}\right.$

In the case $m=0$, we require

$$
\operatorname{sign}[h(x)-g(x)]=\sigma, a \leqslant x \leqslant b .
$$

Definition 3. The family $G$ has degree $n$ at $g \in G$ if $G$ has property $Z$ and property $A$ of degree $n$ at $g$.

Definition 4. A zero $x$ of a continuous function $f$ on $[a, b]$ is called a double zero if $x$ is an interior point of $[a, b]$ and $f$ does not change sign at $x$. Otherwise, it is called a simple zero.

Definition 5. The points $a_{i}, a \leqslant a_{0}<\ldots<a_{n} \leqslant b$ are called alternation points of the function $f$ if $f\left(a_{i}\right)=(-1)^{i} f\left(a_{0}\right) \neq 0$ for $i=1, \ldots, n$.

In the paper [9] we have introduced the nonlinear family of approximating functions having the weak betweenness property and have presented some of its properties.

Definition 6. A subset $G$ of $C[a, b]$ has the weak betweenness property if for any two distinct elements $g$ and $h$ in $G$ and for every closed subset $D$ of $[a, b]$ such that $h(x) \neq g(x)$ for all $x \in D$ there exists a sequence $\left\{g_{i}\right\}$ of elements of $G$ such that
(i) $\lim _{i \rightarrow \infty}\left\|g-g_{i}\right\|=0$
(ii) numbers $g_{i}(x)$, where $x \in D$ and $i=1,2, \ldots$, lie strictly between $g(x)$ and $h(x)$ (i.e. either

$$
\left.g(x)<g_{i}(x)<h(x) \text { or } h(x)<g_{i}(x)<g(x)\right) .
$$

Let us assume that the operator $\Phi: K \rightarrow C[a, b]$ is defined and continuous on the set $K \subset C[a, b]$ and that $M$ is an arbitrary nonempty subset of $K$.

Definition 7 (see [6]). The element $g \in M$ is said to be an optimal starting approximation in $M$ for $f \in K$ if $\|\Phi(f)-\Phi(g)\| \leqslant\|\Phi(f)-\Phi(h)\|$ for all $h \in M$. The approximation of this type was considered in papers [4, 6, 8, 9].

Definition 8 (see [1, 2]).
The element $g \in M$ is called the optimal transformed approximation in $M$ for $f \in C[a, b]$ if

$$
\|f-\Phi(g)\| \leqslant\|f-\Phi(h)\|
$$

for all $h \in M$.
The optimal transformed approximation, with respect to $M$ equal to polynomial and rational families and $\Phi$ equal to an ordered function, was considered by Dunham in $[1,2]$. The main purpose of this paper is to prove the alternation theorems for optimal starting and transformed
approximations, with $M$ equal to a nonempty subset of family $G$ having a degree at all $g \in G$. In particular, we shall gencralize Theorems 3.2 and 2 characterizing the optimal starting approximation from [4] and [6] respectively.

Additionally, we shall obtain characterization theorems of Kolmogorov type for optimal transformed approximation by families with weak beweenness property. These theorems are similar to characterization thetorems from [9].

## 2. Optimal starting aproximation

Let us denote by $D(g)$, where $g \in G$, the closed subset of $[a, b]$ defined by

$$
D(g)=\{x:|\Phi(f)(x)-\Phi(g)(x)|=\|\Phi(f)-\Phi(g)\|\} .
$$

n this section the following definitions from [6] will be useful.
Definition 9. The operator $\Phi$ is called pointwise strictly monotone at $f \in K$ if for each $h, g \in K$ we have

$$
|\Phi(f)(z)-\Phi(h)(z)|<|\Phi(f)(z)-\Phi(g)(z)|
$$

for each $z \in[a, b]$, where either $g(z)<h(z) \leqslant f(z)$ or $f(z) \leqslant h(z)<g(z)$
Definition 10. The operator $\Phi$ is said to be pointwise fixed at $f \in K$, if $h \in K$ with $h(z)=f(z)$ for $z \in[a, b]$ implies $\Phi(h)(z)=\Phi(f)(z)$.

Now we shall prove two lemmas characterizing the family $G$ having a degree.

Lemma 1. Let the family $G$ have a degree at all $g \in G$. Then $G$ has weak betweenness property.

Proof. Let $g, h$ be two arbitrary distinct elements of $G$ and let $n$ denote a degree at $g$. Thus there exists $k, k<n$, simple zeros $x_{j}$ of $(h-g)$ in $(a, b)$. Let $D$ be any closed subset of $[a, b]$ such that $\delta=\min \{|h(x)-g(x)|$ : $x \in D\}>0$. If $k=0$ then setting in Definition $2 \sigma=\operatorname{sign}\{h(x)-g(x): x \in D\}$ we conclude that for every $\varepsilon, 0<\varepsilon<\delta$, there exists $p \in M$ such that $\|p-g\|<\varepsilon$ and $p(x)$ lies strictly between $g(x)$ and $h(x)$ for every $x \in D$. From this the thesis of the lemma is obvious, because we may select $g_{i}$ in Definition 6 which corresponds to $\varepsilon=\frac{1}{s+i}$, where an integer $s$ is such that $0<\frac{1}{s}<\delta$. Otherwise, suppose that an integer $l$ is so chosen that sets $\left(x_{i}-\frac{1}{\nu}, x_{i}+\frac{1}{\nu}\right) \cap D, i=1, \ldots, k$, are empty for all $v \geqslant 1$.

From Definition 2 for each $\nu \geqslant 1,0<\varepsilon<\min \left\{\frac{1}{v}, \delta\right\}$ and $\sigma=\operatorname{sign}\{h(x)-$ $\left.-g(x): x \in D \cap\left[a, x_{1}\right)\right\}$ there exists $g_{v}$ which lies strictly between $g(x)$ and $h(x)$ for all $x \in D$ and $\left\|g_{v}-g\right\|<\varepsilon$. Hence the family $G$ has the weak betweenness property and the proof is completed.

Lemma 2. Let $g$ be an arbitrary fixed distinct element of $G$ and let $e$ $\in C[a, b]$. Assume that $G$ has a degree $n$ at $g$. Let $D$ be a nonempty closed subset of $[a, b]$ such that $e(x) \neq 0$ for all $x \in D$. Then the following three conditions are equivalent:
(i) the set $D$ contains at least $(n+1)$ alternation points of the function $e$.
(ii) there does not exist any element $h \in G$ such that the inequality

$$
\begin{equation*}
e(x)[h(x)-g(x)]>0 \tag{1}
\end{equation*}
$$

is satisfied for all $x \in D$.
(iii) there does not exist any element $h \in G$ distinct from $g$ such that the inequality

$$
\begin{equation*}
e(x)[h(x)-g(x)] \geqslant 0 \tag{2}
\end{equation*}
$$

is satisfied for all $x \in D$.
Proof. The fact that condition (i) implies (ii) by property $Z$ is obvious. Now we shall prove that (ii) implies (iii). Let us suppose on the contrary that there exists an element $h \in G$ distinct from $g$ such that the inequality (2) is satisfied for all $x \in D$. Let $z_{1}, \ldots, z_{k}, k<n$, be simple zeros of the function $(h-g)$ in $(a, b)$. If $k=0$ then the proof follows immediately from Definition 2. Otherwise, renumbering if necessary $z_{i}$, we assume that $z_{i} \in D$ for $i=1, \ldots, l$, where $l \leqslant k$. From the continuity of all considered functions and inequality (2) it follows that for sufficiently small $\lambda>0$ there exist the sets $0_{\lambda}\left(z_{i}\right)$ equal for $i=1, \ldots, l$ to $\left(z_{i}-\lambda, z_{i}\right)$ or $\left(z_{i}, z_{i}+\lambda\right)$ and for $i=l+1, \ldots, k$ to $\left(z_{i}-\lambda, z_{i}+\lambda\right)$ such that $0_{\lambda}\left(z_{i}\right) \cap D=\varnothing$. Let $x_{i}$ be the mid-points of intervals $0_{\lambda}\left(z_{i}\right)$ for $i=1, \ldots, k$. Denote $\sigma$ $=\operatorname{sign}\left\{h(x)-g(x): x \in\left(a, z_{1}\right)\right.$ and $\left.h(x) \neq g(x)\right\}$. From Definition 2 for every $0<\varepsilon<\frac{\lambda}{2}$ there exists $p \in G$ such that $[p(x)-g(x)][h(x)-g(x)] \geqslant 0$ and $p(x) \neq g(x)$ for all $x \in[a, b] \backslash \bigcup_{i=1} 0_{\lambda}\left(z_{i}\right) \supset D$. Hence setting $h=p$ in (1) we obtain the contradiction of (ii). Finally, we prove that (iii) implies (i). Let us suppose on the contrary that the set $D$ contains exactly $k, k \leqslant n$, alternation points $a_{i}, i=0, \ldots, k-1$ of the function $e$. If $k=1$ then setting $\sigma=\operatorname{sign}\{e(x): x \in D\}$ we conclude from Definition 2 that there exists an element $h \in G$ such that $\sigma=\operatorname{sign}\{h(x)-g(x)$ : $x \in[a, b]\}$. Hence the proof is completed. Otherwise, let $x_{i}$ denote arbi-
trary fixed zeros of e in intervals ( $a_{i-1}, a_{i}$ ), $i=1, \ldots, k-1$. Additionally, let $\sigma=\operatorname{sign}\left\{e(x): x \in\left[a_{0}, x_{1}\right) \cap D\right\}$ and let $\varepsilon>0$ be so chosen that ( $x_{i}-\varepsilon$, $\left.x_{i}+\varepsilon\right) \cap D=\varnothing$ for $i=1, \ldots, k-1$. For these $\varepsilon, \sigma$ and $x_{i}$ let $h \in G$ be an element defined by Definition 2. Obviously, inequality (2) with this $h$ is satisfied for all $x \in D$. This gives a contradiction, and the lemma is proven.

From Lemmas 1 and 2 in this paper and Theorems 3 and 4 from [9] we immediately obtain the following theorem which generalizes Theorem 3.2 and 2 from [4] and [6] respectively.

Theorem 1. Let $\Phi: K \rightarrow C[a, b]$ be a continuous operator and let $G$ have a degree at all $h \in G$. Fix an element $g \in G$ and denote by $n$ the degree of $G$ at $g$. Let $M=K \cap G$ be a nonempty relatively open subset of $G$ and let $e=f-g$, where $f \in K \backslash M$. Finally assume that $\Phi$ is pointwise strictly monotone and pointwise fixed at $f$. Then the following four conditions are equivalent:
(i) the element $g$ is an optimal starting approximation to $f$.
(ii) there does not exist any element $h \in G$ such that inequality (1) is satisfied for all $x \in D(g)$.
(iii) there does not exist any element $h \in G$ distinct from $g$ such that inequality (2) is satisfied for all $x \in D(g)$.
(iv) the set $D(g)$ contains at least $(n+1)$ alternation points of the function $e$.

## 3. Optimal transformed approximation.

Let us denote by $B(g)$, where $g \in G$, the closed subset of $[a, b]$ defined by

$$
B(g)=\{x:|f(x)-\Phi(g)(x)|=\|f-\Phi(g)\|\} .
$$

In this section the following definitions will be useful.
Definition 11. The operator $\Phi: K \rightarrow C[a, b]$ is said to be pointwise strictly increasing at $g \in M$ if for each $h \in M$ and $x \in[a, b]$ the inequality $g(x)<h(x)(g(x)>h(x))$ implies that

$$
\Phi(g)(x)<\Phi(h)(x)(\Phi(g)(x)>\Phi(h)(x)) .
$$

The operator $\Phi$ is said to pointwise strictly monotone at $g \in M$ if $\Phi$ or $-\Phi$ is pointwise strictly increasing at $g$. If the operator $\pm \Phi$ is a pointwise increasing at $g \in M$ then we set $\sigma= \pm 1$. The ordered functions [2] and more general transformations considered in [5] are examples of operators pointwise strictly monotone at $g$, where $g$ and $M$ may be arbitrary chosen. For other examples see [6]. In particular, the operator $\Phi$ may be equal to the identity operator.

Theorem 2. Let $\Phi: K \rightarrow C[a, b]$ be a continuous operator. Let $G$ be an arbitrary subset of $C[a, b]$ having weak betweenness property and let $M=K \cap$ $\cap G$ be a nonempty relatively open subset of $G$. Finally assume that $\Phi$ is pointwise strictly monotone at $g \in M$. Then a necessary condition for $g$ to be an optimal transformed approximation, with respect to $f \in C[a, b] \backslash M$ is that there does not exist any element $h \in G$ such that

$$
\begin{equation*}
\sigma[f(x)-\Phi(g)(x)][h(x)-g(x)]>0 \tag{3}
\end{equation*}
$$

for all $x \in B(g)$.
Proof. Let us suppose on the contrary that there exists $h \in G$ such that inequality (3) is satisfied for all $x \in B(g)$. Then for $x \in B(g)$ we have either

$$
f(x)>\Phi(g)(x) \text { and } \sigma h(x)>\sigma g(x)
$$

or

$$
f(x)<\Phi(g)(x) \text { and } \sigma h(x)<\sigma g(x) .
$$

From the continuity of all considered functions there exists the open set $E \supset B(g)$ such that the last inequalities hold for all $x \in \bar{E}$. Because $G$ has the weak betweenness property and $M$ is open in $G$ then there exists the sequence $g_{i}$ of elements of $M$ such that $g_{i}(x)$ lies strictly between $\sigma h(x)$ and $\sigma g(x)$ for all $x \in \bar{E}$ and $g_{i}$ is convergent uniformly on $[a, b]$ to $g$. Now, from the pointwise monotonicity of $\Phi$ at $g$ and the continuity of the operator $\Phi$ it follows that there exists an integer $m$ such that $\Phi\left(g_{t}\right)(x)$ for all $i \geqslant m$ and $x \in \bar{E}$ lies strictly between $f(x)$ and $\Phi(g)(x)$. Hence

$$
\begin{equation*}
\left|f(x)-\Phi\left(g_{i}\right)(x)\right|<|f(x)-\Phi(g)(x)|=\|f-\Phi(g)\| \tag{4}
\end{equation*}
$$

for all $i \geqslant m$ and $x \in \bar{E}$. If $\bar{E}=[a, b]$ then the proof is completed. Otherwise, let us set $\nabla=X \backslash E$ and

$$
\delta=\max \{|f(x)-\Phi(g)(x)|: x \in V\} .
$$

Obviously $V$ is a compact set. Since $V \cap B(g)=\varnothing$, thus $\|f-\Phi(g)\|>\delta$. From the continuity of $\Phi$ and uniform convergence $g_{i}$ to $g$ it follows that there exists an integer $k, k \geqslant m$, such that $\left\|\Phi(g)-\Phi\left(g_{i}\right)\right\|<\|f-\Phi(g)\|-\delta$ for all $i \geqslant k$. Hence for all $x \in V$ and $i \geqslant k$ we obtain

$$
\begin{aligned}
\left|f(x)-\Phi\left(g_{i}\right)(x)\right| & \leqslant|f(x)-\Phi(g)(x)|+\left|\Phi(g)(x)-\Phi\left(g_{i}\right)(x)\right| \\
& <\delta+\|f-\Phi(g)\|-\delta=\|f-\Phi(g)\| .
\end{aligned}
$$

Combining this result with (4) we have

$$
\left\|f-\Phi\left(g_{i}\right)\right\|<\|f-\Phi(g)\| \quad \text { for all } i \geqslant k
$$

This gives a contradiction.

Theorem 3. Let $M$ be an arbitrary nonempty subset of $K$ and let the operator $\Phi$ be pointwise monotone at $g$. Then a sufficient condition for $g \in \mathbb{M}$ to be an optimal transformed approximation to $f \in C[a, b] \backslash M$ is that there does not exists any element $h \in M$ such that

$$
\begin{equation*}
\sigma[f(x)-\Phi(g)(x)][h(x)-g(x)] \geqslant 0 \tag{5}
\end{equation*}
$$

for all $x \in B(g)$.
Proof. Suppose on the contrary that there exists an $h \in M$ such that $\|f-\Phi(h)\|<\|f-\Phi(g)\|$. Hence for all $x \in B(g)$ we have

$$
\begin{equation*}
|f(x)-\Phi(h)(x)|<|f(x)-\Phi(g)(x)| . \tag{6}
\end{equation*}
$$

Now, we must have for $x \in B(g)$ either $f(x)>\Phi(g)(x)$ and $\sigma h(x) \geqslant \sigma g(\mathrm{x})$ or $f(x)<\Phi(g)(x)$ and $\sigma h(x) \leqslant \sigma g(x)$. Indeed, otherwise from the pointwise monotonicity of $\Phi$ at $g$ we obtain that $\Phi(g)(x)$ lies strictly between $f(x)$ and $\Phi(h)(x)$ for all $x \in B(g)$. This gives a contradiction of (6). Combining the above inequalities for functions $f, \Phi(g), \sigma g$ and $\sigma h$ we obtain that the inequality (5) is satisfied for all $x \in B(g)$. This completes the proof.

Theorem 4. Under the assumptions of Theorem 2 and the additiona assumption that

$$
\begin{equation*}
h(x)=g(x) \text { implies } \Phi(h)(x)=\Phi(g)(x) \text { for all } h \in M \tag{7}
\end{equation*}
$$

a necessary and sufficient condition for $g \in M$ to be a transformed approximation to $f \in C[a, b] \backslash M$ is that there does not exist any element $h \in G$ such that

$$
\sigma[f(x)-\Phi(g)(x)][h(x)-g(x)]>0
$$

for all $x \in B(g)$.
Proof. From Theorems 2 and 3 and from the fact that the equality $h(x)=g(x)$ for an $x \in B(g)$ in the proof of Theorem 3 from condition (7) is mpossible we immediately obtain the proof of this theorem.

Note that condition (7) is satisfied if the operator $\Phi$ is the identity oqerator, ordered function [2] or transformation from [5]. Finally from Lemma 1 and 2 and Theorems 2 and 3 we have the theorem.

Theorem 5. Let $\Phi: K \rightarrow C[a, b]$ be a continuous operator and let $G$ have a degree at all $h \in G$. Fix an element $g \in G$ and denote by $n$ the degree of $G$ at $g$. Let $M=K \cap G$ be nonempty relatively open subset of $G$ and let $e=f-\Phi(g)$, where $f \in C[a, b] \backslash M$. Finally assume that $\Phi$ is pointwise strictly monotone at g. Then the following four conditions are equivalent:
(i) the element $g$ is an optimal transformed approximation to $f$.
(ii) there does not exist any element $h \in G$ such that the inequality $\sigma e(x)[h(x)-g(x)]>0$ is satisficd for all $x \in B(g)$.
(iii) there does not exist any element $h \in G$ distinct from $g$ such that the inequality $\sigma e(x)[h(x)-g(x)] \geqslant 0$ is satisfied for all $x \in B(g)$.
(iv) the set $B(g)$ contains at least $(n+1)$ alternation points of the function $e$.

## REFERENCES

[1] Dunham, C. B., Transformed rational Ohebyshev approximation, Numer. Math., 10 (1967), 147-152.
[2] -, Transformed linear Chebyshev approximation, Aequationes Math. 12 (1975), 6-11.
[3] -, Alternation with a null point, J. Approximation Theory, 15 (1975), 175-160.
[4] Gibson, J. B., Optimal rational starting approximation, J. Approximation Theory, 12 (1974), 182-198.
[5] Kaufman, E. H., Belford, G. G., Transformations of families of approximating functions, J. Approximation Theory, 4 (1971), 363-371.
[6] Meinardus, G., Taylor, G. D., Optimal starting approximations for iterative schemes, J. Approximation Theory, 9 (1973), 1-19.
[7] Rico, J. R., The approximation of functions, Addison-Wesley, Roading, Mass., 1969.
[8] Smarzewski, R., On characterization of optimal polynomial and rational starting approximations, Zastos. Mat. XV, 3 (1977), 513-517.
[9] -, Chabyshev optimal starting approximation by families with weak betweenness property, Zastos. Mat. XVI, 3 (1979), 485-495.

## STRESZCZENIE

W pracy udowodniono twierdzenia o alternansie, charakteryzujące nieliniowa optymalna aproksymacje startową i transformowaną. Ponadto, dla optymalnej aproksymacji transformowanej podane zostaly twierdzenia charakteryzacyjne typu Kołmogorowa.

## PEЗЮME

В даннои работе доказано теоремы о альтернансе, характеризирующие нелинейную стартерную и трансформированную оптимальную апроксимацию. Кроме того, для оптимальной трансформированной апроксимации представлены характеризующие теоремы типа Колмогорова.

