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On Characterization of Chebyshev Optimal Starting and Transformed
Approximations by Families Having a Degree

Twierdzenie charakteryzacyjne dla optymalnyeh aproksymacji
startowych i transformowanych elementami rodzin nieliniowych

TeopeMH XapaKTepuayloliue CTApPTOpPHLI® H TpaRCHopMipOBaHIHe
OOTHMAaJAbHHE aNpOKCHMAIAH

1. Introduction.

Let C[a, b] be the space of real valued functions defined and conti-

nuous on [a, b] normed by

IfIl = max{|f(x)|: = € [a, b]}.

Denote by G a nonlinear approximating family of functions from C[a, b].
The following definitions are given in [7] (see also [3]).

Definition 1. The family G has property Z of degree n at g € @ if for
every h e G the function (h—g) has at most (n —1) zeros on [a, d] or
vanishes identically.

Definition 2. @ has property A of degree n at g € @ if given

(i) anintegerm,0 < m < n

(ii) a set {z4y...,2,} with a =<2, <...<7,<7%,, =0

(iii) ¢ with 0 < ¢ < } min{z;,,—2;: j=0,...,m}, and

(iv) a sign o€ {—1,1},
there exists h € @ with |h —g|| < ¢ and

0y, A2 T —¢
sign[h(@)—g(2)] =} (—1)'o, z,+e<z<2;,,—cand i =1,...,m—1
(=10, ¢, +e<z<b.
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In the case m = 0, we require
gign{h(z)—g(z)] =0, a< T <b.

Definition 3. The family G has degree » at g e @ if G has property Z
and property A4 of degree n at g.

Definition 4. A zero z of a continuous function f on [a, b] is called
a double zero if z is an interior point of [a, b] and f does not change sign
at 2. Otherwise, it is called a simple zero.

Definition 5. The points a;, a < a, < ... < a, < b are called alternation
points of the function f if f(a;) = (—1)'f(a,) # 0 fori =1,..., 2.

In the paper [9] we have introduced the nonlinear family of approxi-
mating functions having the weak betweenness property and have pre-
sented some of its properties.

Definition 6. A subset G of C[a, b] has the weak betweenness property
if for any two distinet elements g and & in @ and for every closed subset D
of [a, b] such that h(xz) +# g(z) for all z € D there exists a sequence {g;}
of elements of G such that

(i) limlg— g, = 0

(ii) numbers g,(2), where z € D and ¢ =1, 2, ..., lie strictly between
g(z) and h(x) (i.e. either

9(2) < g;(#) < h(x) or h(z) < g;(2) < g()).

Let us assume that the operator @: K — C[a, b] is defined and conti-
nuous on the set X < C[a, b] and that M is an arbitrary nonempty subset
of K.

Definition 7 (see [6]). The element g e M is said to be an optimal
starting approximation in M for fe K if ||®(f)—D(9)| < 1D(f)— D ()
for all A € M. The approximation of this type was considered in papers
(4, 6, 8, 9)].

Definition 8 (see [1, 2]).
The element g € M is called the optimal transformed approximation
in M for feCla,b] if

If = @@l < If—2(@)
for all h e M.

The optimal transformed approximation, with respect to M equal
to polynomial and rational families and & equal to an ordered function,
was considered by Dunham in [1,2]. The main purpose of this paper
is to prove the alternation theorems for optimal starting and transformed
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approximations, with M equal to a nonempty subset of family G having
a degree at all g € G. In particular, we shall gencralize Theorems 3.2 and 2
characterizing the optimal starting approximation from [4] and [6] re-
spectively.

Additionally, we shall obtain characterization theorems of Kolmogorov
type for optimal transformed approximation by families with weak be-
weenness property. These theorems are similar to characterization the-
torems from [9].

2. Optimal starting aproximation
Let us denote by D(g), where g € G, the closed subset of [a, b] defined by
D(g) = {z: |19(f)(z) — P(g)(®)] = |P(f)—DP(9)II}.
n this section the following definitions from [6] will be useful.

Definition 9. The operator @ is called pointwise strictly monotone
at f e K if for each h, g € K we have

|P(f)(2) — D(R)(2)] < |D(f)(2)—DP(g)(2)]
for each z € [a,b], where either g(z) < h(2) < f(2) or f(2) < h(2) < g(2)
Definition 10. The operator @ is said to be pointwise fixed at f e K,
if h € K with h(2) = f(2) for z € [a, b] implies @ (h)(2) = D(f)(2).

Now we shall prove two lemmas characterizing the family G having
a degree.

Lemma 1. Let the family G have a degree at all g € G. Then G has weak
betweenness property.

Proof. Let g, h be two arbitrary distinct elements of G and let » denote
a degree at g. Thus there exists k, k < n, simple zeros x; of (h —g) in (a, b).
Let D be any closed subset of [a,b] such that é = min {|k(x)—g(z)|:
z € D} > 0.If k = 0 then setting in Definition 2 o = sign {h(x) —g(x): 2 € D}
we conclude that for every ¢ 0 < e < 8, there exists p € M such that
lp —gll < € and p(z) lies strictly between g(z) and h(x) for every z e D.
From this the thesis of the lemma is obvious, because we may select g;

». : 1 ’ p
in Definition 6 which corresponds to ¢ = s 3 where an integer g is

1
such that 0 <; < 4. Otherwise, suppose that an integer I is so chosen
1 1 "
that sets (w,-——,:v,-—i—:) NnD, i =1,...,k are empty for all »> 1.
14
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1
From Definition 2 for each » > 1, 0 < ¢ < min {—, 6} and ¢ = sign {k(x)—
v

—g(x): v e DN[a, ,)} there exists g, which lies strictly between g(x)
and h(z) for all z € D and ||g, —g|| < ¢. Hence the family G has the weak
betweenness property and the proof is completed.

Lemma 2. Let g be an arbitrary fized distinct element of G and let e
€ C[a, b]. Assume that G has a degree n at g. Let D be a nonempty closed
subset of [a,b] such that e(x) # 0 for all x € D. Then the following three
conditions are equivalent:

(i) the set D contains at least (n+ 1) alternation points of the function e.

(ii) there does mot exist any element h € G such that the inequality

1) e(@)[h(z)—g(2)]> 0
8 satisfied for all ® € D.
(iii) there does mot exist any element h € G distinct from g such that the
inequality
(2) e(@)[h(z)—g(2)] >0
18 satisfied for all x € D.

Proof. The fact that condition (i) implies (ii) by property Z is obvious.
Now we shall prove that (ii) implies (iii). Let us suppose on the contrary
that there exists an element k € G distinct from g such that the inequality
(2) is satisfied for all z € D. Let 2z, ..., 2;, k < n, be simple zeros of the
function (h—g) in (a,b). If ¥ = 0 then the proof follows immediately
from Definition 2. Otherwise, renumbering if necessary z;, we assume
that z; e D for+ =1, ...,1, where Il < k. From the continuity of all con-
sidered functions and inequality (2) it follows that for sufficiently small
A> 0 there exist the sets 0,(2;) equal for ¢ =1,...,1 to (2;—1,2;) or
(2;y2¢+A)and forz =1+1, ..., kto (2;—4, 2,+ 4) such that 0,(z;)nD = 9.
Let z; be the mid-points of intervals 0,(z;) for ¢« =1, ..., k. Denote ¢
= gign{h(x)—g(z): = € (a,2,) and h(z) # g(x)}. From Definition 2 for

A
every 0 < e < F there exists p € G such that [p(z)—g(z)][h(x)— g(x)] = 0
k
and p(x) # g(x) for all z € [a,b]\ U 0:(2;) > D. Hence setting h = p
f=1

in (1) we obtain the contradiction of (ii). Finally, we prove that (iii)
implies (i). Let us suppose on the contrary that the set D contains exact-
ly k, k< n, alternation points @;, ¢ =0,...,k—1 of the function e.
If ¥ = 1 then setting ¢ = sign {e(z): = € D} we conclude from Definition 2
that there exists an element % €@ such that o = sign{h(z)—g(z):
z € [a, b]}. Hence the proof is completed. Otherwise, let x; denote arbi-
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trary fixed zeros of e in intervals (a; ,, a;), 2 =1, ..., k—1. Additionally,
let 0 = sign{e(z): z € [ay, ,)ND} and let ¢ > 0 be 8o chosen that (z;— ¢,
z;+e)NnD =0 for ¢ = 1,..., k—1. For these ¢, o and z, let h e @ be an
element defined by Definition 2. Obviously, inequality (2) with this A
is satisfied for all x € D. This gives a contradiction, and the lemma is
proven.

From Lemmas 1 and 2 in this paper and Theorems 3 and 4 from [9]
we immediately obtain the following theorem which generalizes Theorem 3.2
and 2 from [4] and [6] respectively.

Theorem 1. Let @: K — (C[a,b] be a continuous operator and let @
have a degree at all h € G. Fiz an element g € G and denote by m the degree
of G at g. Let M = KNG be a nonempty relatively open subset of G and let
e =f—g, where fe K\NM. Finally assume that & i3 pointwise strictly
monotone and pointwise fized at f. Then the following four conditions
are equivalent:

(i) the element g i3 an optimal starting approximation to f.

(ii) there does mot exist any element h € G such that inequality (1) 48
satisfied for all x € D(g).

(iii) there does not exist any element h € G distinct from g such that ine-
quality (2) i8 satisfied for all z € D(g).

(iv) the set D(g) contains at least (n +- 1) alternation points of the function e.

3. Optimal transformed approximation.

Let us denote by B(g), where g € @, the closed subset of [a, b] defi-
ned by
B(g) = {z: |f(2)—P(9)(@)] = IIf —P(g)ll}.
In this section the following definitions will be useful.

Definition 11. The operator @: K — C[a, b] is said to be pointwise
strictly increasing at g € M if for each h € M and z € [a, b] the inequality
g(z) < h(z)(g(x) > h(x)) implies that

2(9) () < @(h)(x)(P(g)(2) > P(h)(x)).

The operator @ is said to pointwise strictly monotone at g ¢ M if @
or — @ is pointwise strictly increasing at g. If the operator + & is a poin-
twise increasing at g € M then we set 0 = + 1. The ordered functions [2]
and more general transformations considered in [56] are examples of
operators pointwise strictly monotone at g, where g and M may be arbi-
trary chosen. For other examples see [6]. In particular, the operator &
may be equal to the identity operator.
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Theorem 2. Let ®: K — C[a, b] be a continuous operator. Let G be an
arbitrary subset of C[a, b] having weak betweenness property and let M = KN
N@ be a nonemply relatively open subset of G. Finally assume that ® is point-
wise strictly monotone at g € M. Then a necessary condition for g to be an
optimal transformed approximation, with respect to fe Cla,b]\.M is that
there does not exist any element h € G such that

(3) o[f(x) — D(g)()][h(2)—g(2)] > O
for all z € B(g).

Proof. Let us suppose on tho contrary that there exists h e G such
that inequality (3) is satisfied for all z € B(g). Then for z € B(g) we have
either

flz) > D(g9)(z) and oh(z) > ag(x)
or
f(z) < D(g)(x) and oh(z) < og(x).

From the continuity of all considered functions there exists the open
set E > B(g) such that the last inequalities hold for all # € E. Because G
has the weak betweenness property and M is open in G then there exists
the sequence g; of elements of 3 such that g;(x) lies strictly between
oh(x) and og(z) for all x € £ and g; is convergent uniformly on [a, b]
to g. Now, from the pointwise monotonicity of @ at g and the continuity
of the operator @ it follows that there exists an integer m such that

P(g,) () for all i >m and z € E lies strictly between f(z) and ®(g)(z).
Hence

(4) If(@)— P (go) ()] < |f(2)— (9)(x)] = I/ —P(g)l

foralli>mandx e E. If E = [a, b] then the proof is completed. Other-
wise, let us set ¥V = X\F and

8 = max {|f(a)— B(g)(2)]: z € V}.

Obviously V is a compact set. Since VNB(g) = O, thus ||f—P(g)| > 4.
From the continuity of @ and uniform convergence g; to g it follows that
there exists an integer k, k > m, such that [P (g9) — P (g,)| < lIf —P(g)|— &
for all i > k. Hence for all z € V and 7+ > k we obtain

[f(x) — P(g,)(2)] < | f(2) — P(g)(2)| + 1P (g)(2) — P(g;)(2)]
<S+If—P@I—90 =If—P(9)l.
Combining this result with (4) we have
If—@(g)ll < If —P(g)ll for all i> k.

This gives a contradiction.
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Theorem 3. Let M be an arbitrary nonempty subset of K and let the
operator @ be pointwise monotone at g. Then a sufficient condition for g e M
to be an optimal transformed approrimation to f e C[la,b]\M 18 that there
does not exists any element h € M such that

(5) o[f(z)—D(g)(2)][h(2) —g(z)] > 0
for all x € B(g).

Proof. Suppose on the contrary that there exists an k € M such that
[If — @ (R)| < If — D(g)ll. Hence for all z € B(g) we have

(6) |f(2) — D(h)(x)] < |f(@) — P(g)(z)].

Now, we must have for « € B(g) either f(z) > ®(g)(r) and oh(z) > ag(x)
or f(z) < @(g9)(r) and oh(z) < og(x). Indeed, otherwise from the point-
wise monotonicity of @ at ¢ we obtain that &(g)(z) lies strictly between
f(z) and ®(k)(zx) for all = € B(g). This gives a contradiction of (6). Combi-

ning the above inequalities for functions f, ®(g), og and ok we obtain that
the inequality (5) is satisfied for all z € B(g). This completes the proof.

Theorem 4. Under the assumptions of Theorem 2 and the additiona
assumption that

(7) h(z) = g(x) tmplies @ (h)(x) = D(g)(x) for all he M

a necessary and sufficient condition for g € M to be a transformed approzim-
ation to feCla,b]\M is that there does mnot erist any element h € G
such that

o[f(x)—P(g)(=)][h(z)—g(x)] > O
for all x € B(g).

Proof. From Theorems 2 and 3 and from the fact that the equality
k(z) = g(x) for an = € B(g) in the proof of Theorem 3 from condition (7)
is mpossible we immediately obtain the proof of this theorem.

Note that condition (7) is satisfied if the operator @ is the identity
oqerator, ordered function [2] or transformation from [5]. Finally from
Lemma 1 and 2 and Theorems 2 and 3 we have the theorem.

Theorem 5. Let @: K—C[a, b] be a continuous operator and let G
have a degree at all he@. Fix an element g eG and denote by n the degree
of G at g. Let M = KNG be nonempty relatively open subset of G and let
e =f—>(g), where feC[a, b]\ M. Finally assume that ® i8 pointwise
strictly monolone at g. Then the following four conditions are equivalent:

(i) the element g i8 an optimal transformed approximation to f.

(ii) there does mot exist any element heG such that the inequality

oe(w) [h(x)—g(x)]> 0 is satisfied for all x €B(g).
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(iii) there does mot exist any element h € G distinet from g swuch that the

inequality ce(x)[h(z)—g(x)] = 0 is satisfied for all x € B(g).

(1]
[2]

[3]
(4]

(5]
(6]
(71
(81
(9]

(iv) the set B(g) contains at least (n + 1) alternation points of the function e.
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STRESZCZENIE

W pracy udowodniono twierdzenia o alternansie, charakteryzujace
nieliniowg optymalny aproksymacje startowsa i transformowang. Ponadto,
dla optymalnej aproksymacji transformowanej podane zostaly twierdzenia
charakteryzacyjne typu Kolmogorowa.

PE3IOME

B npaunoit paGoTe MOKa3aHO TeopeMhl O ajbTEpHAliCe, XapaKTepw3u-

pywolllMe HeIMHeHHYI0 CTAPTEPHYIO M TPAHCPOPMHPOBAHHYIO ONTUMAIbHYIO
anpokcnmainyio. Hpome Toro, miIA oONTUMANbHOR TpaHcPoPMHUPOBAHHOMH
anpoOKCMMAalMM MNpeNCcTaBleHbl XapaKTepusylomue TeopeMel Tuna Hoa-
MoOropoBa.



