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Introduction

The aim of this paper is to present a certain non-classic interpretation
of a linear connection on a differentiable manifold M.
As the starting-point of the reasoning the @-structure (denoted by FT M)

is given in the principal fibre bundle of linear frames FT M over the tangent
bundle TM. Next, the existence of the global diffeomorphism betwcen
this @-structure and the tangent bundle TF M is proved. (TFM is the
tangent bundle to the principal fibre bundle F M of linear frames over M.)
The existence of such diffeomorphism makes it possible to find in FT 23
the diffeomorphic equivalents of the horizontal distributions given over FF M
and consequently leads to a notion of local w-cross-sections of FT M,
which are obtained as these equivalents.

Then certain local classes of w-cross-sections over each open set TU
taken from the atlas on T M are considered, and the necessary and suffi-
cient condition for some family of such local classes to define a linear
connection globally on M is given.

Finally the family of the classes of w-cross-sections defining a linear
connection globally on M is interpretated as the global cross-section of
the quotient fibre bundle B = FTM/.... ... (¢[GL(n)] is the subgroup
of GL(2n) isomorphic to GL(n)).

The inspiration for this paper was the article by M. O. Rahula [4]
From this article descends the problem of the finding in the fibre bundle
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98 Zbigniew Radziszewski

FTM of the equivalent of the horizontal distributions given over FM.

This problem was solved by Rahula locally. In this paper it is solved
globally.

Presenting my work, I wish to express my thanks to Professor Kons-
tanty Radziszewski for the valuable remarks, which were helpful in
editing of this paper.

Part I

This part of the paper consists of some definitions and lemmas which
are needed in the reasoning of Part II.

Chapter 1. Lie Group TGL(n)

Let GL(n) be the general linear group i.e. the Lie group of the non-
singular n x n matrices, and let TGL(n) be the tangent bundle over GL(n),

(rGL(n) = U T,GL(n), T ,GL(n) denotes the tangent vector space
AeGL(n)

to GL(n) at A € GL(n)). It is possible to introduce a composition in TGL(n)
with the following rule:

If X,, Y are the tangent vectors at A and B respectively then:
1) X, ¥Yp:=ERp(X,)+L,(Yp)

where R, and L, denote right and left translations by A e GL(n) res-
pectively.

It is easy to verify the following:

Lemma 1. TQL(n) with the composition defined above constitutes a Lie
group.

Lemma 2. The function
y: GL(n) > TGL(n)
A0,

where O, is the zero vector at A, 18 a monomorphism of Lie groups.

Remarks. a) From now on we shall treat @L (n) as a subgroup of TGL(n).
b) Using the symbol O, we can rewrite (1) in the following form:

X, Yy =X,05+0,Yp
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Let TGL(n)/GL(n) denote the space of right cosets of the group TGL(n)
with respect to the subgroup GL(n). The elements of TGL(n)/GL(n) are
the classes of the vectors from TGL(n), which are obtained astheequiv-
alence classes with respect to the following equivalence relation:

(2) X, ~Yge v Yp=Ro(X,) =X, 00
CeGL(n)

TGL(n)/GL(n) 3 [X,] = {¥5 € TGL(n); Y5 = X}

It is apparent that the classes [ X ,]are nothing but right invariant vector
fields on GL(n). Each class [X ,] has an unique representant X, at the
unity I € GL(n).

XA =XI'OA, X,ETIGL(‘n).

Each vector X, can be expressed in the coordinates as X, = X§(4)-ek(4),
where ¢ (A) form the natural basis of T ,GL (n). We shall use the symbol X
to denote the matrix [Xj(A)] of the coordinates of X, in the natural
basis, and the symbol M (n) to denote the algebra of all » X n matrices,
(X% € M(n)). Then there holds

Lemma 3. TGL(n)/GL(n) can be identified with the algebra M (n).

Proof. The correspondence botween T'GL(n)/GL(n) and M (n) is given
by the following function

4: TGL(n)/GL(n) —> M (n)
[X ] XY A7 (= X

The independence of 4 on the choice of the representant X, can be
easily verified.

Consider now the Lie group -(E(2'n) < GL(2n) consisting of elements

of the form [‘;’ ;], with A e GL(n), X € M(n).
!

Lemma 4. The Lie group TGL(n) 48 isomorphic with the Lie group
GL(2n).

Proof. It follows from the direct computation that the function

i: TGL(n) - GL(2n)

A 0
XA —-)[X{:[’ A]

is the isomorphism of the Lie groups T7GL(n) and GL(2n).
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Chapter 2. Principal Fibre Bundle FTM

Let M be a n-dimensional differentiable manifold of class C* with
the complete atlas A, = {(U,x )}

L, M > U,— R"
T—> (T .euy ™)

By the symbol T M we denote the tangent bundle over M with the atlas A,y
The atlas Ay, is generated by the atlas A ,; as follows:

‘ATM . {(TUa’ ﬁu)}
I: TM - M; TU, = I-Y(U,)
B.: TU, - R™

Ve —> (F‘a(w)y (ﬂa)‘(vz)) = (21 ..., 2", v, ..., 0")

@
s b and e form

natural basis of vector fields on U < M. We can define the principal

fibre bundle of linear frames FTM over TM with the structural group
GL(2n).

where (u,), i8 the mapping induced by u,;v, =

Lemma 3. The principal fibre bundle FT M is reducible to a G-structure
with GL(2n) as a structural group.

Proof. If
wgopz s pa[UNUgl > py[U, 0 Uy) € R
(D oeny ") = (fLDYy ey By euny P22, ouuy @)

is a transformation of the local coordinates on U,NnU, = M then the
transformation of the local coordinates on TU nTU, < TM is of the
form:

B0z ": u[TU,NTU,) > ps[TU,NTU,] < B*"
(wr”)_"(.’n(m)s“-’fn(w)!ﬁ(m)”k’---;ﬂ:(w)”k)
where (z,v) = (2%, ..., 2", ¥}, ..., ")

i
and f} =§£—,
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and therefore Jacobian matrix of this transformation looks like

f;(w), 0]
*® J . =
e 0=\t (@re%; fiw)
a!fi

where fj'k = W
Since J € GL(2n) then our lemma is proved.

Remark. Hereinafter we shall use the symbol FTM to denote the
above defined G-structure.

Chapter 3. Diffeomorphism Between TF M and FT M

Let TFM be the tangent bundle over the principal fibre bundle FM
of linear frames over M, and let the G-structure FT M defined in Chapter (2)
be given. Our aim is to show

Theorem 1. TF M and FTM are diffeomorphic. (see [2]).

Proof. We begin with the local considerations.
Since F' M is locally trivial then we have the trivializationfunctions ¢,
such that for each chart (U, u) from the atlas 4,, on M there holds:

¢y: UXGL(n)—> FU, where FU := p~'[U]
p: FM — M natural projection
Let’s observe that the following local diffeomorphisms exist
TFU 3 T(UxGL(n)) 3 TU xTGL(n) > TU x GL(2n) °1Y, prU
TU:=MI0'[U); O: TM—>M
FTU:= 9 '[TU); p: FTM - TM

where IT and p are natural projections.
These diffeomorphisms are expressed in local coordinates as follows:
Given v € FU, p(u) = o

0 g 0 ,
=== By iiey —=1| B}
u (@.’L“ a 19 r i n)r
gy (u) = (,b) = (2, (B})) € UxGL(n)
and
2l i a i a i
Z,eT,FU, Z,=v e "—}—Xj——az—;:- " yXj € M(n)
v’-—“, =v,el, M
2 |

0 0

e 4
with s as natural basis of vector fields on U, and \—555, -3_23

) a8 na-
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tural basis of vector fields on FU. Let’s moreover denote

A

— natural basis of vector fields on GL(n) with the symbols ~—‘—; =¢
04} !
— natural basis of vector fields on TU with the symbols ( Fet E{)

and the composition of the written out local diffeomorphisms by
Pppoasoaz0a, = a,y: TFU T+ FTU

Then we have the formulas:
)4

0
+ Xf —=
B ¢
Qqeal 8 E‘ )
| § i
v | O — Xi—r) >
( o' |’ 7 o4

(v [ L)
3 i i)
—3 O - -
el [ )
[ T
or LAY L ) I—Bj.’ . ]
oz’ |, ol 1Xj Bil
for the expression of a,, a,, a3, Ppy and a,y in local coordinates.

As the second step in the proof we shall verify that the local diffeo-
morphisms a,; do not depend on the trivialization functions ¢; (or on
the local coordinates), what proves the existence of the global diffeomor-
phism a between TFM and FT M.

Let (2,...,2") — (f*(2,...,2"),...,f"(2',...,2")) be a transforma-
tion of the local coordinates on UnV < M

Then (7, A})—>(f?, f* 42), f*:= fP(&, ..., &") is the transformation of
the local coordinates on FU N FV < FM. Hence we have the following
transformation of the coordinates on TFUNTFV < TFM:

(&, 43, o', X}) > (f7, fP A3, f70°, fRov' AL+ fP X2)

which completes the proof of the theorem in virtue of the form of the
Jacobian matrix (*). (see the proof of the Lemma 5).

0
(3) awU: ('D‘_a‘:vq

o' |,
0

?
o'

Part 11
Chapter 1. Interpretation of Linear Connection on M in terms of FIM
A linear connection on a differentiable manifold M can be given by an

assignement of right invariant horizontal distributions on FM.
Let A: U —»GL(n) be an arbitrary function of the class C*(U) and let
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8: U-»FU <« FM

0
be a local cross-section of M over the open set U = M. The horizontal
distributions at the points of S are effectively defined by the local forms
of a linear connection as follows. If » € § has the local coordinates (&', A'j)

= (2%, Aj(#",...,2")) then the horizontal space H, < T,FM consists
of the vectors of the form

/)
zAf(w), ...,'55?

0 0

h, = 1"3-% — (o) (0)-Af (p(w)) EL
"

where (w(U,,,));', is the local form of the linear connection on U <= M,

W,y 18 associated with the holonomic cross-section of FU i.e. with

the field of natural linear frames on U.)

.0 0
v = (p‘ )u(hu) = (p)‘u (v‘ _a—z;}—‘_l ) = v‘W
\ o~ ul

E Tﬂﬂ)M’
P(u)
II(v) = p(u) = o.

Remark. In this paper we only use these local forms of a linear connec-
tion which are associated with the holonomic cross-sections. It is clear

that H, at the point » € § is nothing but the set of the values of the follo-
wing map:

(4) H: TU ->TFU
AT iy o / 8
v, = -0 . — (o, (v,) AN (v,)) =53
30}‘ |1 oz' la(n(v)) ( (U’H))k i j( :) 31} 8(mm)

Hence by virtue of Chapter 3 of Part I we can define the map:
(6) opy:=auwoH: TU—~>FTU

o[ 2] 2]\ [Aeme,), 0 ]
2TV, o) | - owasi(v) (450 ) (v, (401D (0.)

0 d .
(where (—%;, Ev—‘) is the natural basis of the vector fields on TU), which
is a special kind of a local cross-section of FT M.

Definition 1. If A4, is the complete atlas on M, then let £2(A4,) be
the set of all of 1-forms wy,: TU-—>M(n), og,,= (0w
(TU, u) € Apy;- Lot moreover A: U - GL(n) be an arbitrary function
of the class C*(U). The following local cross-section of FI M
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or5": TU > FTU

- _,(i 0 )_{(Aon)wz), 0 ]
o \owl, v, ) L—aow,(v) (AoM)(2,), (Aol)(o,)
we will call w-cross-section of FT M over TU.

a. . (.2 & g _i)
ox  \ox' ' ax~]’ w \ow ' oo

Remark. A certain interpretation of linear frames being values of
w-crogs-section one can find in [4].

Corollary 1. The horizontal distributions, which are assegned by (4)
at the points of the local cross-section S of FU, determine wy,,, cross-section
(5) of FT U, where w,y,,y i3 the local form of the linear connection defined by
these distributions. The set of the horizontal distributions at the points of
the cross-section S and the set of the values of wy, .-cross-section determined
by these distributions are diffeomorphic.

Since by the definition the horizontal distributions are needed to be
right invariant by GL(n), then the horizontal distributions on the whole
FU may be obtained by the right translations from the horizontal distri-
butions, which are assigned at the points of the local cross-section 8.

Hence the horizontal distributions on the whole FU are the values
of the functions, which belong to the following set:

{H} =|H; H: TU->TFU, \ H = R, (H))
C:U~+GL(n)
Definition 2. Given the set £(A,/) from the Definition 1, for each
O, € $2(Ay) we define the mapping:
|
(6) g TU s v, _>( aA ) i[I’ 0]
0x _w(U,u)('vx)’ I

0
)

which is understood as the equlvalence class of w-cross-sections of FTU

with respect to the following equivalence relation:

0
(U, p) 'AU,p) . 'AU,n) _— 2(U,n) (COH’
ory'0 O Tb V 1Oy’ UT&I :

C:U—GL(n) 1O, Coll

where - denotes the action of the structural group G"IT(2n) on ¥TU from
the Tioht, aed T B dotln, V T—B.1 O]'
| CeGL(n)
It is easy to verify that the compositions of the dlffeomorphism ag,
with each function from {H} constitute the class of w-cross -sections of
FTU of the from (6).
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Corollary 2. The horizontal distributions, which are assigned at each
point of FU, determine the local class of w-cross-sections of FT U of the form (6).
The set of all the horizontal distributionson FU and the set of the values of &,
w-cross-sections, which belong to the determined by these distributions class,
are diffeomorphic.

If I' is an arbitrary function of the form:
I's Ay — Q(Ay)

(U, p)~> U,

then let {o, . ku,mes, denote the set of the values of I. Since
each wy,, defines the local class 747 (as it was shown at (6)), then each
family {w(, .} v.mea, (OF each I') defines the family (255 0, ea "
of the local classes of w-cross-sections.

37

Definition 3. The family {Z7)"}y,yes,, ©0f the local classes
of w-cross-sections will be said to form the global class Xy,, if the follow-
ing condition holds:

(U, *Gp, T
For each X", Z3%" e {Z3Y H 0, iyed

Z‘%';.Ij"bnl'v — Z;IVI.;'I"I%JATV if TUﬁTV ?‘:0

Theorem 2. The family {Z7""}v. pea, ©f the local classes of
w-cross-sections form the global class X, if and only if it is defined by the
Jamily {ow ghw,mes, consisting of the local forms of a certain
linear comnection on M.

Proof. Let’s assume that the family {X;{7"}y ., forms the
global class Zpy, and Z77, 2397 € (Z70 Y pmeus,

0 0 I
zf;(g.ﬂ) : TUsv,— (—.— et )‘[ ’ 0]\
oxly, iy | IL—ows 1]
2 | ) l[I / 0]\
r-'.:’ o' ’l': — Wy I
G i il Fj Fij
where |—, —| and |{———, —|) form the natural bases of the vector
or’ ov ow o’
fields on TU and TV respectively, TUNTV +# 0.
It follows from the Theorem 1 that the transformation of the local

coordinates on UNV < M generates the following transformation of the
natural basis of the vector fields on TUNTV < TM:

) (@ \,[(Faﬂ)(w,), 0
Vzx 3 '\W Vz dF(v:)! (FOH)(OZ)]

v, eITUNTV, II:TM->M

@ i a

n

d
Vz’ o'

a2
35; IVI’ 31)
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F: U->GL(n), F =(fflou, fi==2f'ox’, (U,p)e Ay
dF: TU -~ M(n), dF = (dff)oii, (TU,p)e Ary

3 (U, m) —_— 'F'-
Since Zr{#nrr = Zr¥ #barys then

(3 6)'|[I, 0] _( i} 3\‘[ B, 0]._[1, 0]’_
or’ avl | — OW, I _\F.i-" ov') |_dF, F ‘ — O, ) i 4L
- (&5 | = e 1)
_ 850” 3'0' —w(yl,,), I
hence
1[1, 0]1 o I[r, 0"”
| ISP 4| e AF + F (—og,.)s rll
| l
L—ow., Il L dF-F 4+ F(—og,)F', I
and
(7) w(U’”) = adF_l'w(V',)‘*‘F—l'dF on TU('\TV

what proves that wg,, and o, are the local forms of some linear
connection on M. To complete the proof it is sufficient to assume that the
condition (7) holds for some family {wy ,}w,umea,, (i-. that this family
consists of the local connection forms of some linear connection on M)
and to reverse the calculus given above.

Chapter 2. Linear Connection on 1 Expressed as Term of E
= FTM[i[GL(n))]. I

Let FTM [i[GL(n)] (i[@L(n)]is a closed subgroup of GL(2n), ”” is the
isomorphism from the Lemma 4) be a quotient bundle with respect to the
equivalence relation
(1 P rPe v P= P

CeGL(n)

c, 0]
0, O}
The local coordinates on FTM [:[GL(n)] can be introduced as follows:

Yry : FTU[i[GL(n)] > R*™ x B"
e (L ,_‘;).|[Ai’ 0.]
oz’ |y~ oo’ iy Aj
where (2;, v;) = i (v,), (TU, ) € Agy-

In virtue of the calculus of the Theorem 2 it is obvious that the trans-
formation of the coordinates Cj is of the following form:

(8) C = (F~'oll)(v,)-C'-(Fo M)(v,) + (B~} oIT)(v,)-dF (v,)

where C = [C] and C' = [Cj'] are the coordinates of P, in the charts
(FTU |yginyy Yro) and (FTV [yarm)y Prv) respectively, FTV nFTU #* O

. - (x‘!v‘sB:A_l;) = (o', ”i’ Cj‘)
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The bundle FT islocally trivial then FTU —2> TTU x GL(2n).
Since GL(2n) and TGL(n) are the isomorphic Lie groups (Lemma 4)
and TGL(n)/G@L(n) can be identified with the algebra M (n) (Lemma 3),
then
] aify — . aiff

FTU[i[GL(n)] —> TU XGL(2n)[:[GL(n)] —> TU x TGL(n)/GL(n)
ai,
s 1O x M)

Hence we have the following

Lemma 6. The quotient bundle FTM|i{[GL(n)] is the fibre bundle
E(TM, M(n), GL(2n), q) over TM, with the standard fibre M (n) and the
structural group (_}L.(2n), which acts on M (n) to the left by the rule:

7 t: GL(2n) x M(n) - M(n)

([;” OA], C)—> A'0-A+47"X
A eGL(n), C, X € M(n).
Remarks. It is clear that the fibre bundle E as the quotient bundle
FTM[i[GL(n)] is associated with the principial fibre bundle FT M, (see
Proposition 5.5 Chap. I [1]). Since E has the standard fibre M (n), which

is diffeomorphic with an Euclidean space R”’, then (if M is paracompact)
by Theorem 5.7 in [1] E admits the global cross-sections X*: TM —E.

Definition 4. The global cross-section XE: T > E will be called
the quasilinear cross-section of E if for each TU the local cross-section
Xfy: TU—-Ey =q '[TU), q: E->TM has the following property:

‘PN/-G ):;SU :TU — TU % M(ﬂ}
Yruo Efy = lpy X (— oy, )
where 17, is the identity mapping of TU and oy, , € 2(4 ).
The above definition is correct since it does not depend on triviali-
zation functions. Really, if we change a trivialization function (i.e. if we

change local coordinates on E) then instead of w,y, , We obtain the func-
tion ', which (by (8)) can be written down as:

w'(v,) = F(2) oy,,(v,) - F'(z)+dF (v,)-F~'(x), for each v,eTU,

hence w’ also belongs to £2(4, )- our aim is to interpret the results of
Chapter 1 of Part 2 using notions of the bundle E. It is easy to see that
each local class of w-cross-sections of FT'U of the form (6) is (as the notion
of E) the local quasilinear cross-section of E,

(U, u)

Z’TU TU > E, = ¢ '[TU]
U, u)

YTUo Z'IEU = lpy X (= ow,)
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Hence the Theorem 2 can be rewritten in the following form:

o,

Theorem 3. The family | (Zy)gu}w_”,e 4, Of local quasilinear cross-
-gections of E constitutes one global quasilinear cross-section of E if and only
if it 18 defined by the family o{(y, .}, uea,, CON8I8ting of local connection
forms of a certain linear connection on M.

Corollary 3. There is one to one correspondences between the set of linear
connections on M and the set of global quasilinear cross-sections of E.

As we know, if M is paracompact then E admits global cross-sections;
in particular there exist global quasilinear cross-sections of E in this case.
Hence we have

Proposition 4. Fach paracompact manifold M admits linear connections
defined globally on M.

By Proposition 5.6 (Chap. I [1]) the existence of global cross-section
of ¥ = FTM|/[i[GL(n)] is equivalent to the property of FT13 that the

structural group GL(2n) is reducible to ¢[GL(n)] (i.e. that there exists
a t1[GL(n)] structure in FT1.) Then there holds

Proposition 5. The set of values of w-cross-sections, which belong to the
global class Zpy in FT M (see Def. 3), constitutes a total space of a 1 [GL(n)]
structure in FTM.

In virtue of Proposition 5 and Corollary 2 we obtain

Corollary 4. Each linear connection on M defines a i[GL(n)] structure
in FTM.
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STRESZOZENIE

Praca niniejsza przedstawia pewns interpretacje koneksji liniowej
na rozmaitosci M. Interpretacje te otrzymuje sie stosujgc dyfeomorfizm
wigzki stycznej TF M nad wiazka gléwna reperé6w liniowych FM nad M,
na pewng G-strukture FTM w wigzce glownej reperéw liniowych FTM
nad wiazkg styczng TM. Dyfeomorfizm ten przeprowadza dystrybucje
horyzontalne na FM okre§lajace koneksje liniowg na M w klasy réwno-
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waznych przekrojéw lokalnych wigzki FTM, ktore mozna utozsamié
z lokalnymi przekrojami wiagzki ilorazowej F'TM |GL(n). W pracy podane
83 tez warunki dostateczne dla istnienia takiego globalnego przekroju
FTM|GL(n), ktéry okre$la koneksje liniowa globalnie na M. Niektore
wyniki praey zostaly otrzymane na innej drodze w pracy [4].

PE3IOME

Hacroamana pa6oTta nmpepcraBiseT HeKOTOPYIO MHTePNPeTALHIO JUHEN-
HOJi CBA3HOCTH Ha MHorooGpasum M. MHTepmperauuio mojyyaem, mnojb-
ayach auddeomopduamom kKacarenbHoro paccinoedua TFM naj riaBHEM
paccinoeHneM uHelnnx penepoB FM nanm M Ha HeKOTOpylo G-CTpPyK-
Typy FTM B rnaBHoM paccioeHHMM JuHeitHBIX penepoB FTM Hanm Kaca-
tenbHEM paccioeHueM TM. Tor nuddeoMopduaM mnepeBOTUT TOPHIOH-
TallbHHle pacnpeneileHHA Ha FM, onpegeadAiolue JWHEHHYI0 CBA3HOCTb
Ha M B KIacChl 3KBMBAJIEHTHHIX JIOKAJBbHHIX ceueHHMit paccioenua FTM,
KOTOPBIX BO3MOMKHO OTOM{JeCTBOBaTh C JIOKAJbHLIMM CeUeHMAMII (aKTo-
paccinoenua FTM|Ql(n). B 3akmioyenue paGoTH KaeTcA TOCTATOYHOEP
yciioBMe N1fl CYLlecTBOBAHMA TaKoro rio6anbHoro cedenusa FTM [Gl(n),
KOTOpoOe onpenelndeT JIMHEHHYI0 CBA3HOCTh riao6ambHo Ha M. HekoTophie
JI0KaJbHEE pe3ynbTaThl paboTel ObIIM MOJydYeHRl HA APYroM NyTH B pa-
Gore [4].






