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Values Assumed by Gelfer Functions

0 zbiorze wartości funkcji Gelfcra

О множестве значений функции Тельфера

1. Introductory Remarks

Let A be the open unit disk of complex numbers, A = {z e C: |«| < 1} 
and-^ the class of ’’Gelfer functions”. 99(2) is a Gelfer function if

(1.1)

and

(1-2)

?>(«) =1+ J^«***, « e A,
k~l

9’(г1) + 9’(г2) =#= 0 for all zv and z2 in A.

The latter condition asserts that both a complex number and its negative 
are never assumed; this property is shared by the class & of functions of 
positive real part studied by Carath6odory, therefore is a proper subclass 
of 0. Members of 9 need not be univalent however, in the present work 
we will consider only those which are and will denote the univalent sub­
class of by 9U.

The definition and basic properties of 0 were given by Gelfer in 1946, [5].
. 1 -b ® (~)An important tool in his considerations was the relation 99(2) = -——

which gives a one-to-one correspondence between Gelfer functions 
and the Bieberbach-Eilenberg functions. Gelfer showed that |ax| < 2

* This work was performed while the second author was in Lublin under a program 
sponsored jointly by Polska Akademia Nnuk and the National Academy of Sciences.
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and that |a,.| < 2^2e, for ł>2; subsequently Lebedev and Mamai [12] 
showed that |a2| C 2.05 and they conjectured that |a2| < 2 for all q>(z) 
in Hummel [8], using a variational method for the Bieberbach-Eilen- 
berg functions developed jointly with Schiffer [7], arrived at the surpri­
sing conclusion that |a3| < 2.00011--- (which is sharp).

If 99(2) is in &u and we define y(z) by

(1-3) v(*) + l =fo(*)]2,
then
(1.4) y(0) =0, y(s) 5* -1
and y(z) is regular and univalent for z e J; we denote the collection of 
all such ip(z) by G. An essential property of the class G which will be 
exploited below is that its members omit the value —1.

Goluzin [6] has given a variational formula for a univalent function 
in A which omits m pre-assigned values. With proper choice of parameters, 
the case m — 1 gives a variational formula for G which is equivalent to 
that of Hummel [8]. This variational method is used below to find the 
region of values (variability region) for the class G and as a consequence 
of (1.3) and (1.4) for the class The techniques used are similar to those 
of Krzyż [10,11] and Złotkiewicz [15,16].

2. Some Preliminary Results

Here we re-write the formula of Goluzin to conform to our situation, 
give some auxiliary tools and review the notion of a regular point of the 
boundary of a region in the plane.

Lemma 1. If y>(z) is in G,A is real, za e A and A is any complex number, 
then

(2.1) V*(~) = y>(z) + lAy(z) y>(g) + l 
y(«) —y>(z0)

AAzy)'(z)
[y(z0) + l]y(z„) 

ZQ [y'(Zo)P[>- *.]

+ A3gay'(g) [t!±+1]rfa)-+oW 
«olY(*o)],[l-zo2']

is likewise in G.
This is obtained from Goluzin [6, p. 109] by choosing m = 1 and

Replacing y(z0) by a value a exterior to the set of all y(z) and retaining 
the first two terms of (2.1) gives an “exterior” variation of the form

(2.2) ip(z) = y(z) + By(z) y(3) + l, 
ip(z)-a

whore B is a complex number close to the origin [6, p. 108].
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We will require two other variations which are summarized in the 
following statement.

Lemma 2. If y(z) is in 0, then so are the functions

(2.3) y>(z) =y)(eiez) — y>(z) + iOz,p' (z) + o(0),

for 0 real, and

(2.4) y>°(z) ^y,(z)-zy>'(z)^—^-t + O(t),
1 +zoz

or 0 < t < 1.
Let k(z) be the Koebe function k(z) = z(l—z)~2 and g(z, t) 

— &-1[(l —f)fc(«)] be the corresponding quasi-starlike function (see [13], 
for example) which maps J onto itself out along the negative axis. The 
variation (2.4) is given by ip(g(z, <)).

Finally we review the notion of a non-singular (or regular) boundary 
point of a region given by Biernacki [4] and Schaeffer and Spencer [14]. 
Let D be a domain in the complex plane and 8D its boundary; a point b 
in 8D is a non-singular boundary point of D if there exists a point a in 
C\D and a non-degenerate disk J (a; r) centered at a and with radius r 
which has the property that 8D meets A (a; r) in only the point b. (D de­
notes the closure of set D.)

It is known [14] that the set of non-singular boundary points of the 
region of values assumed by a compact family of univalent functions is 
a dense subset of that boundary. Now &u is not compact, however adjoining 
the function identically 1 yields a compact family which we will again 
denote by (SU whenever we need compactness; 0 is treated analagously by 
adjoining the function which is identically zero. It follows that the boundary 
of the variability region of either class has the property asserted above. 
In the remainder of this paper we aim characterizing the boundaries of 
these variability regions by determining their non-singular points.

3. The Differential Equation.

In this section we derive the fundamental equation satisfied by func­
tions corresponding to boundary points of the variability region of 0 for z' 
in A. Let -B, or more precisely -B(z'), be this region, i.e.,

(3.1) R = {w e C\w = y(z') for a y>(z) in 0}.

Suppose b is a non-singular boundary point of R and suppose y(z) 
is an extremal which gives b, i.e., b = y>(z) for the given z in A. If a (depen­
dent on y)(z)) is a point in C\R corresponding to y(z) in the definition above,
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then y>(z) provides the sharp lower bound for

(3.2) min{|<jr(z) — o|: g(z) in 0}.

This means that |yj(z)—a| > |</(z) —a| if g(z) is any one of the functions 
in 0 given by (2.1), (2.2), (2.3) or (2.4). In particular, choosing y*(z) from 
(2.1), we may write

(3.3) |/(z)-«|2> ly(«)-a|2.

Letting arg{y>(z) — a} = a, using the representation (2.1), letting A -> 0 
and performing appropriate computations we obtain

V»(«) + l 
y>(z) — ip(z.)

(v,(Zo) + l)y(g„) J

, eia2V£2) Mfo) + 1) 
*oiy(2o)]2(l-2o2)

or in a more symmetric form

(3 5) e~~ia y(g)(y(g) + 1) . gpIVfo))]2 = e-ia zy'M _ e+(a z^'jz) 
V’(2o)(v(2o) + 1) V’(«)-V’(2o) 2-«o l-«o2’

Now we simplify the right side of (3.5). By applying the variation 
given by (2.3) as in (3.3) and in the successive computations specifically 
replacing y*(z) in (3.3) by y(z), we find that the number (e~'azy>' («)) is real. 
Applying the variation given by (2.4) in the same fashion we conclude 
that

and that

(3.6) (e-iazy>'(z)) <0.

By taking (3.6) into account and simplifying (3.5) we arrive at the differ­
ential equation

(3 n e~ia = cd^
w(l + w)(w0-w) £(z —£)(l-fz)’

where c = e~'azy)'(z)(l — \z\2), w0 corresponds to ip(z) and w to y(z0). z 
is fixed and we have replaced z0 by £. [Note that by rotating A we may 
choose z to be real and replace z by z in the last form if we wish.]
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We state the main results of this section.

Theorem 1. If corresponds to a non-singular boundary point of RA, 
different from oo where R is the variability region of 0, then y>(£) satisfies 
equation (3.7). Furthermore y(£) maps A onto the slit from — 1 to oo 
along an analytic arc.

To justify the last statement we apply variation (2.2) under the assump­
tion that the complement of y>[J] contains a neighborhood. This gives 
a contradiction which shows that this complement is a union of arcs contain­
ing oo and that y)(y) — —1 for some y e 8 A. Rewriting (3.7) in the form

v»(C) (l+y(O) (v>(») - ?>(£)) C(r- C)(i - fr) ’
where A is a suitable constant dependent on z and r = |z|, and comparing 
both sides of (3.7)' for regularity we conclude that y'(C) has only a simple 
zero at % and consequently that —1 is the end of a simple arc. We see 
in the same way that y(£) has a simple pole on 8 A. Then the conclusion 
follows by further direct analysis of (3.7)' or by an application of Theo­
rem 3.2, [9].

4. The Region R.

Here solutions to (3.7) are given in closed form in terms of the pe func­
tion of Weierstrass, then the boundary of R is obtained as the solution of 
an equation given in terms of a related elliptic modular function.

We begin by finding solutions of (3.7) which lie in 0. To ease the repre­
sentation we let

(4.1) P(£) =£(r-£)(l-£r),

having made the assumption z = r. Now choosing and fixing either 
branch of /P(C) in the disk A cut along the segment [0, r] we define the 
modules

r iTc
=2

s' /P(C)

(4.2) =2
r yTc

Jr
J

H3 = I21 ,

where y = and w{y) = — 1.
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A solution of (3.7) can now be written as
: /-

(4.3) w(t) =A^[ £j,£2]+.B,

with w(t) = oo, t = eiy and A and B being constants to be determined 
to guarantee that w(£) lies in 0. [Hereafter, if no confusion arises, we will 
write the pe function with but a single argument.]

c
We now show that w(f) is single-valued. Because p^jdf2 is rea^

and positive when f 6 8 A it follows from the extremal character of w(f), 
see ([14], [16]), that

P+2n ------

(4.4) I 1/ 1^7d0 = f V \^d6

where £ = e<0. Then if we consider closed paths inside A enclosing segment 
[0, r] and hoinotopic to 8 A we have

fl ------------ y+2n -------------  2» .------------ -

(4.5) 2|l/ -f-d0= f l/_£_d0=f 1/ LL. dfl =
/ F >(C) / r \P(t) J V |P(C)|

Let [»7, £] denote the segment joining rj to £ when either 0 or r does not 
lie on the segment and otherwise let it denote the segment with suitable 
semi-circular paths about the singular points 0 or r. Then

(4.6) 1(f) " /]/
(i.CJ P(C)

d£

is single-valued in A. Now, for any path in A joining rj to £, we have 
c

(4.7) / kio U.
I /(O + Wlf?! 
|Ha-l(f) + «H1,

for suitable integers m and n. Then the integral appearing in (4.3) can be 
written as

(4.8) fl/Z®Zd£ = fl/—d£ + fl/ 
yr P(£) / r P(£) J r

d£
PC)

I + + ni)lf
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having used ihe fact that the first integral in (4.5) corresponds to an 
integral from t to rj on 8A. The last form in (4.8) can be written as 
— (/(£)++ £, + (» —l),Qi. Finally, because the pe function is 

both periodic and even, we have

This shows that w(£) is single-valued in J; the univalence of w(f) is a deep­
er consequence of the form of the quadratic differential (3.7) due to 
Teichmuller (see [2], for example).

Using the mapping properties of (4.3) we arrive at

(4.10)

^(z(f)-f -^(/(0) +

z /0»|i(OB■2) -^|Z(»?) + v)

It should be noted that because the pe function is homogeneous all constants 
other than w„ in (3.7), play no role in the form (4.10) and the one remaining 
parameter is rj. By (4.2) we may write 1(0) = i (Qx + f?2),

2i

and finally that a boundary point of R is given by

where the notation was altered to emphasize the dependence on rj. [Also 
one may write = f2,(r) and S)2 — Q2(rj,r) to clarify the roles played 
by and r.]

By appealing to standard notation used for elliptic functions (see 
[1, 3], for example) we observe that

(4.13) w(r;J?)=-Z^.
e2 —

6 — Annale«



82 Z. Lewandowski, R. Libera, E. Zlotkiewicz

Now, by writing

(4-i4)

we see that

(4.15) w(r; rf> = +

where 2(f) is the elliptic modular function defined in terms of [1,3]. 
If <(77) is real (this corresponds to the case when — 1), then the solution 
of (3.7) corresponds to the Koebe function.

Summarizing of the results of this section gives rise to the following 
result.

Theorem 2. For fixed z the region of values B of functions in 0 is the 
set bounded by the points satisfying the equation

(4.16) w =2(1 + 0-

Relation (1.3) now makes it possible to state our principal conclusion.

Theorem 3. If (p(£) is a univalent Gelfer function and z is fixed in A, 
then <p (z) lies in the closure of the domain bounded by the curve given by 

(4.17) w = l/l-2(l + t),

where 2 and t have meanings given in (4.2), (4.14) and (4.16) and the branch 
in (4.17) is taken so that —1 is not covered.

Finally, if we make use of the connection between Gelfer functions 
and the Bieberbach-Eilenberg functions mentioned above, we may draw 
the following conclusion.

Corollary. If E(£) is a univalent Bieberbach-Eilenberg function and z 
is fixed in A, then E(z) lies in the closure of the region bounded by the curve 
whose points satisfy the equation

(4.18)
j/l—2(1+$) —1 

w = -■------- ■—----- ,
/l_2(l + t) + l

where 2 and t have the meaning given above.
It is known [5] that every Gelfer function and every Bieberbach-

Eilenberg function is subordinate to a univalent one of the same variety, 
therefore Theorem 3 and the corollary hold true without the assumption 
of univalence.
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STRESZCZENIE

Niech O oznacza rodzinę funkcji analitycznych w kole jednostkowym A 
i takich, że /(«) +/(w) =#= 0 dla z, u e A i niech Ou będzie podklasą funkcji 
jednolistnych. Wykorzystując związki między funkcjami klasy Gu i funk­
cjami nie przyjmującymi w kole A wartości — 1 znaleziono wzory wariacyj­
ne w klasie Gu a następnie wyznaczono dokładny zbiór wartości funkcjo­
nału /(«), z ustalone, f eG.
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РЕЗЮМЕ

Пусть О обозначает семейство аналитических функций в едини­
чном круге А и таких, что /(«)+/(«) 0 для г,иеА и пусть ви
будет подклассом однолистных функций. Используя связи между 
функциями класса &и и функциями не принимающими в круге А 
значения —1 найдено вариационные формулы в классе (/„ а потом 
определено точное множество значений функционала /(я), г фикси­
ровано, / е 67.


