ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN-POLONIA

VOL. XXXI, 10	SECTIO A	1977
second and the same of the same of the second s		

Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, Lublin

JAN KRZYŻ, JAN STANKIEWICZ

Quasisubordination and quasimajorization

Quasipodporządkowanie a quasimajoryzacja

Квазиподчинение а квазимажорация

1. Introduction

Let B denote the class of functions regular and bounded by 1 in absolute value in the unit disk K_1 . Let B_0 be the subclass of B consisting of all $\omega \in B$ with $\omega(0) = 0$. In what follows we assume that f and F are functions regular in K_1 .

We start with familiar definitions of subordination and majorization.

Definition 1. We say that f is subordinate to F, if there exists $\omega \in B$ such that $f = F \circ \omega$; then we write $f \prec F$.

Definition 2. We say that f is majorized by F, if there exists $\varphi \in B$ such that $f = \varphi F$; then we write f < F.

Both concepts are well known and many results point out an analogy between them. Aiming at a unification of results involving these notions M. S. Robertson [1] introduced a more general notion of quasisubordination.

Definition 3. We say that f is quasisubordinate to F, if there exists a function g regular in K_1 such that

$$f < g ext{ and } g \prec F;$$

then we write $f \ll F$.

Obviously $f \ll F$, if there exist $\omega \in B_0$, $\varphi \in B$, such that

(1)
$$f = \varphi(F \circ \omega).$$

Here and in the sequel the brackets in functional notation indicate the order of operations. Thus f in (1) has the form: $f(z) = \varphi(z) F(\omega(z))$.

In special case when F is the identity function id, majorization and subordination are equivalent by Schwarz's Lemma and $f \prec \text{id} \Leftrightarrow f < \text{id} \Leftrightarrow f < \text{id} \Leftrightarrow f < \text{id} \Leftrightarrow f < \text{id}$

Evidently $\varphi(z) \equiv 1$ and $\omega = id$ in (1) yield subordination and majorization, resp.

As pointed out by the latter author, there is another way of obtaining a simultaneous generalization of subordination and majorization indicated by following

Definition 4. [2]. We say that f is quasimajorized by F, if there exists a function h regular in K_1 such that

$$f \prec h$$
 and $h < F$;

then we write $f \prec < F$.

Obviously $f \prec < F$, if there exist $\omega_1 \in B_0$, $\varphi_1 \in B$, such that

$$f = (\varphi_1 \circ \omega_1)(F \circ \omega_1) = (\varphi_1 F) \circ \omega_1$$

In [2] the latter author proved the following

Lemma 1. If $f \prec < F$, then $f < \prec F$.

He also put the question whether the converse of Lemma 1 is true. In this communication we answer this question in the negative.

2. A counterexample

In what follows we need the following, well-known

Lemma 2. If $\psi(z) = a_0 + a_1 z + a_2 z_0 + ... \in B$, then

(3)
$$|a_k| \leq 1, \ k = 0, 1, 2, \dots$$

If $|a_k| = 1$, then $\psi(z) = \eta z^k$ with $|\eta| = 1$.

This lemma is an immediate consequence of a well-known inequality:

$$\sum_{k=0}^{\infty} |a_k|^2 \leqslant 1.$$

Suppose that

(4)
$$F(z) = z + A_2 z^2 + A_3 z^3 + \dots, z \in K_{2}$$

and consider

(5)
$$f(z) = zF(z^2) = z^3 + A_2 z^5 + A_3 z^7 + \dots$$

Obviously (1) holds with $\varphi(z) = z$, $\omega(z) = z^2$, thus $f \prec F$. We shall prove that quasimajorization $f \prec F$ holds only if F = id. Hence the case of $F \neq id$ and $f(z) = zF(z^2)$ leads to a function f which satisfies $f \prec F$, while the relation $f \prec F$ does not hold.

Suppose, on the contrary, that there exist $\varphi_1 \in B$ and $\omega_1 \in B_0$ such that (2) holds. If

(6)
$$\omega_1(z) = c_1 z + c_2 z^2 + \ldots,$$

(7)
$$\varphi_2(z) = \varphi_1(\omega_1(z)) = b_0 + b_1 z + b_2 z^2 + \dots$$

then by (4) and (5), the condition (2) takes the form

$$z^{3} + A_{2}z^{5} + A_{3}z^{7} + \dots = (b_{0} + b_{1}z + b_{2}z^{2} + \dots) \times$$

$$\times [c_{1}z + c_{2}z^{2} + \dots + A_{2}(c_{1}z + c_{2}z^{2} + \dots)^{2} + \dots]$$

$$= b_{0}c_{1}z + [b_{0}(c_{2} + A_{2}c_{1}^{2}) + b_{1}c_{1}]z^{2} +$$

$$+ [b_{0}(c_{3} + 2A_{2}c_{1}c_{2} + A_{3}c_{1}^{3}) + b_{1}(c_{2} + A_{2}c_{1}^{2}) + b_{2}c_{1}]z^{3} + \dots$$

By equating corresponding coefficients we obtain the following system of equations:

(8)

$$0 = b_0 c_1,$$

$$0 = b_0 (c_2 + A_2 c_1^2) + b_1 c_1,$$

$$1 = b_2 (c_3 + 2A_2 c_1 c_2 + A_3 c_1^3) + b_1 (c_2 + A_2 c_1^2) + b_2 c_1,$$

The first equation implies one of the following possibilities:

(i) $b_0 = 0, c_1 \neq 0;$ (ii) $b_0 \neq 0, c_1 = 0;$ (iii) $b_0 = 0, c_1 = 0.$

We start with the discussion of the case (i). The second equation in (8) yields $b_1 = 0$ and this gives, in view of the third equation in (8), $b_2c_1 = 1$. By Lemma 2 we see that

(9)
$$\varphi_2(z) = \eta z^2, \ \omega_1(z) = \eta z, \text{ where } |\eta| = 1.$$

The equality $zF(z^2) \equiv \eta z^2 F(\eta z)$, where F(z) has the form (4), implies $A_2 = A_3 = \ldots = 0$, or F = id. (ii). The second equation in (8) gives $b_0c_2 = 0$ and consequently $c_2 = 0$. Thus the third equation in (8) takes the form $b_0c_1 = 1$. By Lemma 2 we see that $\varphi_2(z) = \eta$, $\omega_1(z) = \eta z^3$. Again $zF(z^2) \equiv \eta F(\eta z^3)$ holds for F = id only.

(iii). The third equation in (8) has the form $b_1c_2 = 1$ and by Lemma 2 we obtain $\varphi_2(z) = \eta z$, $\omega_1(z) = \eta z^2$. On the other hand, $\eta z \equiv \varphi_1(\eta z^2)$ by (7) which is impossible since φ_2 is even and odd while not vanishing identically.

Thus we have proved that for any F given by (4) the function $zF(z^2)$ that is quasisubordinate to F is quasimajorized by F, if F = id.

In our counterexample quasisubordinate function f has a zero of order three at the origin. It would be interesting to find possibly a corresponding counterexample with $f'(0) \neq 0$. Also the relation between quasisubordination and quasimajorization in case of univalent functions fand F remains an open question.

REFERENCES

- [1] Robertson, M. S., Quasisubordinate functions, Mathematical essays dedicated to A. J. Macintyre, Ohio Univ. Press, Athens, Ohio (1970), 311-330.
- [2] Stankiewicz, J., Quasisubordination and quasimajorization of analytic functions, Ann. Univ. Mariae Curie-Skłodowska, Sectio A (to appear).

STRESZCZENIE

W pracy tej podany jest pewien kontrprzykład na to, że pojęcia quasipodporządkowania i quasimajoryzacji wprowadzone odpowiednio w pracy [1] i [2], nie są sobie równoważne.

РЕЗЮМЕ

В данной работе представлен контрпример на то, что понятие квасиподчинения и квазимажорации введено соответствующим образом в работе [1] и [2] не являются эквивалентными.