ANNALES

UNIVERSITATIS MARIAE CURIE-SKモODOWSKA L U BLIN-POLONIA

VOL. XXXI, 10
SECTIO A
1977
Instytut Matematykl, Uniworaytot Marlf Curlo-Sklodowskied, Lublin

> JAN KRZY', JAN STANKIEWICZ

> Quasisubordination and quasimajorization
> Quasipodporządkowanie a quasimajoryzacja
> Квавиподчинениө а квавимажорация

1. Introduction

Let B denote the class of functions regular and bounded by 1 in absolute value in the unit disk K_{1}. Let B_{0} be the subclass of B consisting of all $\omega \in B$ with $\omega(0)=0$. In what follows we assume that f and F are functions regular in K_{1}.

We start with familiar definitions of subordination and majorization.
Definition 1. We say that f is subordinate to F, if there exists $\omega \in B$ such that $f=F \circ \omega$; then we write $f<F$.

Definition 2. We say that f is majorized by F, if there exists $\varphi \in B$ such that $f=\varphi F$; then we write $f<F$.

Both concepts are well known and many results point out an analogy between them. Aiming at a unification of results involving these notions M. S. Robertson [1] introduced a more general notion of quasisubordination.

Definition 3. We say that f is quasisubordinate to F, if there exists a function g regular in K_{1} such that

$$
f<g \text { and } g \prec F ;
$$

then we write $f \ll \boldsymbol{F}$.
Obviously $f \ll F$, if there exist $\omega \in B_{0}, \varphi \in B$, such that

$$
\begin{equation*}
f=\varphi(F \circ \omega) \tag{1}
\end{equation*}
$$

Here and in the sequel the brackets in functional notation indicate the order of operations. Thus f in (1) has the form: $f(z)=\varphi(z) F(\omega(z))$.

In special case when F is the identity function id, majorization and subordination are equivalent by Schwarz's Lemma and $f<\mathrm{id} \Leftrightarrow f<\mathrm{id}$ $\Leftrightarrow f=\omega$ with $\omega \in B_{0}$. Moreover, $f<\omega<$ id, i.e. $f \ll$ id.

Evidently $\varphi(z) \equiv 1$ and $\omega=\mathrm{id}$ in (1) yield subordination and majorization, resp.

As pointed out by the latter author, there is another way of obtaining a simultaneous generalization of subordination and majorization indicated by following

Definition 4. [2]. We say that f is quasimajorized by F, if there exists a function h regular in K_{1} such that

$$
f<h \text { and } h<F ;
$$

then we write $f \ll F$.
Obviously $f \ll F$, if there exist $\omega_{1} \in B_{0}, \varphi_{1} \in B$, such that

$$
\begin{equation*}
f=\left(\varphi_{1} \circ \omega_{1}\right)\left(F \circ \omega_{1}\right)=\left(\varphi_{1} F\right) \circ \omega_{1} . \tag{2}
\end{equation*}
$$

In [2] the latter author proved the following
Lemma 1. If $f \ll F$, then $f \ll F$.
He also put the question whether the converse of Lemma 1 is true.In this communication we answer this question in the negative.

2. A counterexample

In what follows we need the following, well-known
Lemma 2. If $\psi(z)=a_{0}+a_{1} z+\alpha_{2} z_{0}+\ldots \in B$, then

$$
\begin{equation*}
\left|\alpha_{k}\right| \leqslant 1, k=0,1,2, \ldots \tag{3}
\end{equation*}
$$

If $\left|a_{k}\right|=1$, then $\psi(z)=\eta z^{k}$ with $|\eta|=1$.
This lemma is an immediate consequence of a well-known inequality:

$$
\sum_{k=0}^{\infty}\left|\boldsymbol{\alpha}_{k}\right|^{2} \leqslant 1 .
$$

Suppose that

$$
\begin{equation*}
F(z)=z+A_{2} z^{2}+A_{3} z^{3}+\ldots, z \in K_{\chi}, \tag{4}
\end{equation*}
$$

and consider

$$
\begin{equation*}
f(z)=z F\left(z^{2}\right)=z^{3}+A_{2} z^{3}+A_{8} z^{7}+\ldots . \tag{5}
\end{equation*}
$$

Obviously (1) holds with $\varphi(z)=z, \omega(z)=z^{2}$, thus $f \ll F$. We shall prove that quasimajorization $f \ll F$ holds only if $F=\mathrm{id}$. Hence the case of $F \neq$ id and $f(z)=z F\left(z^{2}\right)$ leads to a function f which satisfies $f \ll F$, while the relation $f \prec<F$ does not hold.

Suppose, on the contrary, that there exist $\varphi_{1} \in B$ and $\omega_{1} \in B_{0}$ such that (2) holds. If

$$
\begin{gather*}
\omega_{1}(z)=c_{1} z+c_{2} z^{2}+\ldots, \tag{6}\\
\varphi_{2}(z)=\varphi_{1}\left(\omega_{1}(z)\right)=b_{0}+b_{1} z+b_{2} z^{2}+\ldots, \tag{7}
\end{gather*}
$$

then by (4) and (5), the condition (2) takes the form

$$
\begin{aligned}
z^{3}+A_{2} z^{5} & +A_{8} z^{7}+\ldots=\left(b_{0}+b_{1} z+b_{2} z^{2}+\ldots\right) \times \\
& \times\left[c_{1} z+c_{2} z^{2}+\ldots+A_{2}\left(c_{1} z+c_{2} z^{2}+\ldots\right)^{2}+\ldots\right] \\
& =b_{1} c_{1} z+\left[b_{0}\left(c_{2}+A_{2} c_{1}^{2}\right)+b_{1} c_{1}\right] z^{2}+ \\
& +\left[b_{0}\left(c_{3}+2 A_{2} c_{1} c_{2}+A_{3} c_{1}^{3}\right)+b_{1}\left(c_{2}+A_{2} c_{1}^{2}\right)+b_{2} c_{1}\right] z^{3}+\ldots
\end{aligned}
$$

By equating corresponding coefficients we obtain the following system of equations:

$$
\begin{align*}
& \mathbf{0}=b_{0} c_{1} \tag{8}\\
& \mathbf{0}=b_{0}\left(c_{2}+A_{2} c_{1}^{2}\right)+b_{1} c_{1} \\
& 1=b_{2}\left(c_{3}+2 A_{2} c_{1} c_{2}+A_{3} c_{1}^{3}\right)+b_{1}\left(c_{2}+A_{2} c_{1}^{2}\right)+b_{2} c_{1}
\end{align*}
$$

The first equation implies one of the following possibilities:
(i) $b_{0}=0, c_{1} \neq 0 ;$
(ii) $b_{0} \neq 0, c_{1}=0$;
(iii) $b_{0}=0, c_{1}=0$.

We start with the discussion of the case (i). The second equation in (8) yields $b_{1}=0$ and this gives, in view of the third equation in (8), $b_{2} c_{1}=1$. By Lemma 2 we see that

$$
\begin{equation*}
\varphi_{2}(z)=\eta z^{2}, \omega_{1}(z)=\eta z, \text { where }|\eta|=1 . \tag{9}
\end{equation*}
$$

The equality $z F\left(z^{2}\right) \equiv \eta z^{2} F(\eta z)$, where $F(z)$ has the form (4), implies $A_{2}=A_{3}=\ldots=0$, or $F=$ id. (ii). The second equation in (8) gives $b_{0} c_{2}=0$ and consequently $c_{2}=0$. Thus the third equation in (8) takes the form $b_{0} c_{1}=1$. By Lemma 2 we see that $\varphi_{2}(z)=\eta, \omega_{1}(z)=\eta z^{3}$. Again $z F\left(z^{2}\right) \equiv \eta F\left(\eta z^{3}\right)$ holds for $F=\mathrm{id}$ only.
(iii). The third equation in (8) has the form $b_{1} c_{2}=1$ and by Lemma 2 we obtain $\varphi_{2}(z)=\eta z, \omega_{1}(z)=\eta z^{2}$. On the other hand, $\eta z \equiv \varphi_{1}\left(\eta z^{2}\right)$ by (7) which is impossible since φ_{2} is even and odd while not vanishing identically.

Thus we have proved that for any F given by (4) the function $z F\left(z^{2}\right)$ that is quasisubordinate to F is quasimajorized by F, if $F=\mathrm{id}$.

In our counterexample quasisubordinate function f has a zero of order three at the origin. It would be interesting to find possibly a corresponding counterexample with $f^{\prime}(0) \neq 0$. Also the relation between quasisubordination and quasimajorization in case of univalent functions f and F remains an open question.

REFERENCES

[1] Robertson, M. S., Quasisubordinate functions, Mathematicul essays dedicated to A. J. Macintyre, Ohio Univ. Press, Athens, Ohio (1970), 311-330.
[2] Stankiowioz, J., Quasisubordination and quasimajorization of analytic functions, Ann. Univ. Marize Curie-Skłodowska, Sectio A (to appear).

STRESZCZENIE

W pracy tej podany jest pewien kontrprzykład na to, że pojęcia quasipodporzadkowania i quasimajoryzacji wprowadzone odpowiednio w pracy [1] i [2], nie są sobie równoważne.

РЕЗЮМЕ

В даннои работе представлен контрпример на то, что понятие квасиподчинения и квазимажорации введено соответствующим образом в работе [1] и [2] не являются эквивалентными.

