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On a Certain Boundary Value Problem and its Generalized Solution

0 pewnym problemie brzegowym i jego rozwiązaniu uogólnionym

О некоторой краевой задаче и ее обобщенном решении

1. The purpose of this paper is to present an application of the Lezanski 
method [1], [2] to generalized solving an ordinary differential equation 
of the form:

(1) =0 fe<O,l>

with boundary conditions:

(2) £r(s)(0) = a:6 7 (8)(l) = 0 for s = 0,1,..., A-l

where the real-valued functions j =0,1,..., A satisfy the
conditions:
(3) Py(0>0 forfe<0,l>

(4) mes{< e <0,1>: p}(t) = 0} = 0

(the symbol “mes” denotes the Lebesgue measure) and the real-valued 
functions fj e C^*x<0>1> j =0,1,..., A fulfil the following assumptions:

f 1(5) ft = -yu 1/^(0, f)|«d*<oo

(6) there exists a positive constant such that

|/(«i, <)— f(s2> 01 < — sal for s1,s2eH and <e<0,l>

(7) there exists a positive constant a,- such that

[/(«u <)-/(«„*)]• («i - «a) > a#-(«i-«»)2 for s1,s2eR and fe<O,l>.
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Moreover, we assume that it is possible to find such real-valued continuous 
functions a0aN that

N

(8) a(t) = for <g<0, 1>
y=o

(9) &0 ^^-dt< ooand Ó. (*-•/ 1 aj(s)ds
2
o dt < oo

for j = 1,2,..., N
In the sequel the equation (1) with the boundary condition (2) where the 
functions f},Pj j = 0,1,..., N and a(-) satisfy the conditions (3), (4), 
(5), (6), (7), (8), (9) shall be called the boundary value problem (1), (2). 
Later on we shall prove that the boundary value problem (1), (2) has a uni­
que generalized solution.

2. Now we shall quote (see [1], [2]) the fundamental theorems on 
which our consideration will be based.

Theorem 1. Let (df,( .,. )*) be a unitary space and let 
M x Jf 3 (x,h) -> '{'(x, h) 6 R

bs a real functional which satisfies the following conditions:
1) /\ Wlx, •) is a linear functional defined on M 

xzM
2) A V A №,&)|<Oe-|WI.

xeM Cx>0 HeM

3) V A
/4>0 X,ytheM

4) V A + A)>a-||<
a>0 X.heM

If [3, (.,.)*) denotes the completion of (M, (.,.)*) then there exists a unique 
extension ¥* of 'P which is defined on 3 x 3 and satisfies analogous to 1), 
2), 3), 4) conditions. More over there exists a unique element x e 3 stick that 
for all h e 3 W(x, A) — 0.

Theorem 2. Let (B, (.,.)*) be a Bilbert space and let W be a real-valued 
functional defined on the set 3 xB and satisfying conditions 1), 2), 3), 4) of 
Theorem 1. If e e 3 k = 0,1, ... is an orthonormal linearly dense sequence 
of elements of the space (3, (., .)*) i.e. the set

lin{efc e 3: k = 0,1,...} 
is dense in (3, (.,.)») and

3n = lin{e0,e1, ...,en}, 'Pn = T\BnxBn 
n — 0,1,2, ...
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then for every «e{0,l,2,...} there exists a unique element zn eHn such 
that for all h e Hn 'P (zn, h) = 0, moreover the sequence zn, n = 0,1, ... 
converges to an element x e IL which satisfies the condition 'P(x, h) = 0 for 
all h e H.

We shall also prove the following lemma expressing a property of 
functionals fulfilling conditions 1), 2), 3), 4) of Theorem 1.

Lemma 1. Let M be a linear space on which there are defined N + 1 
scalar products j = 0,1,..., N and W + l real-valued functionals

'I']-. MxM 3(x,h)^Pj(x,h)eR j=0,l,...,N

satisfying in scalar products (.,.)y the conditions 1), 2), 3), 4) of Theorem 1 
with the constants C}(x), Pj,aj respectively. If d0, dlf..., dN are positive 
real numbers the f unctional

N
(10) P(x, h) = ^djV^x, h) for x,h e M

j = 0
fulfils in the scalar product

N
(11) (x, ft)* = £(x, h)f for x, heM

j-o

the same conditions 1), 2), 3), 4).

Proof. The linearity of the functional *P is clear so it remains to prove 
conditions2),3),4).LetK = sup {<?„,<?!, djV}andfc = inf{d0, dlt<?„}; 
both the numbers are positive. For a fixed a: e If we have

N N
\V(x, h)\ < ^d^x, h)\ < K-£ CjW-WhU^ 

j-a j-o

'>=<> 'i=o 7

for every vector h e M. Putting here

oiB=K.(2,c?(®))1/2 
S'-o 7

we obtain condition 2). Denoting K-sup^: j = 0,1,..., N} by y we 
have

N N

IP(x,h) - P(y, h) I < K • J11 (X , ft) - (y ,h) I < K • £ y, • II® - y II, • W, <
i=o y=o

N N
< p •( II® - 3dl>)1/2 • (l|A|1>)'/2 = /* • II® - y II* ’ llftll*

'j-o 7 ' i-0 7
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for any vectors x,y,h& M. Similarly denoting k-inl{aj: j = 0,1,N} 
by a we obtain for any vectors x, h g M

N

'P(x + h, h) — 'P{x, h)^k-dj• H&IIJ > a-||fe||5,
J'=O

which concludes the proof.
3. We shall now use Theorem 1 and Theorem 2 as a tool for the investi­

gation of the boundary value problem (1), (2). Let i<0.i> denote the set 
of classes of measurable and square-integrable functions (in the sense 
of Lebesgue) defined on <0, 1> with the scalar product

i
= jx(t)-y(t)dt 

0
and let N be fixed natural number. Put

x e M o x e 0o" > and ®H,(0) = a(7)(l) = 0 for j = 0, 1 N —1.
The set M is a linear subspace of the space L20>v>, moreover Jf is 
dense in ■£<„.,> since it contains the set of functions infinitely differen­
tiable and vanishing in boundary strips.

We shall define a sequence of N +1 scalar products (.,.)/ J =0,1,..., 
N on the space M. Let g j = 0,1,..., N be functions satis­
fying (3) and (4). Define for x, y e M

i

(12) (x,y)f = f pjW-^^-y^^dt j=0,l,...,N.
0

It is easy to see that these forms are scalar products defined on M — they 
are bilinear, symmetric and non-negative. We shall only prove that

(x, x)j =0 => x = 0 for x e Jf and j =0,1,..., N.
Really, if for a fixed j e {0,1, ..., N} and x e M (x, x)j = 0 then owing 
to the fact that P/GPEa^G)]8 > 0 for all t e <0,1> we obtain

p?(<)• [aj(J,(i)]3 =0 for almost all Ze<0,l>.
Hence, by (4) and the continuity of x(i\ we get a/O(f) = 0 for all t e <0, 1>. 
Ifj =0 that means x = 0, if j > 0 we gather by (0) = 0 that ®w_1) (<) 
= 0 for all t g <0, 1>. Continuing this process, if it is needed, we get after j 
steps x — 0. Then j = 0,1,..., N are scalar products.

Let f} g = 0,1, ..., N be functions satisfying (5), (6) and
(7). Using these functions we shall define W + l real valued functionals

j = 0,1, ..., N on the space M. Put 
1

(13) ^(x, h) = f t)-№(t)dt,
0

where j = 0,1,..., N and x, h e M. Obviously all the functionals arc 
linear with respect to h. We shall prove that each functional !/< is bounded
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in the norm || • ||y in the second variable when the first one is fixed. Let 
us fix a natural number} e {0,1,..., N} and an element x e M. Then by (6) 
we have for an arbitrary vector h e M

WAx, h)\ < f ifAPi(t)-^(t),t)-^>(t)tdt  ̂f 
0 0

-fj f |£(0, t)\-\№(t)\dt  ̂f fiJ-pi(t)l^)(t)l-lh^(t)ldl+
0 0

+ f • I^’(OI)-^pAV -\^(t)\)dt+
0 0 

f |/,(0, f)|) -0^. |M«(f)l)

My (J* Py(<)|®W)(0l2^)l-Q' PjW\^W\2^

dt+

< +

+

hence, by virtue of (5) we get

|Szy(®, A)l < My 11*11/’W> + - UH = (ft- M,+ )• In­
putting here

Gi(x) = Pi-\\x\\i+Vpi
we obtain

(14) |tfzy(®, A)|< G>(®)|,||fe||y for x, h e M and / = 0,1, ..., N.

Now we shall prove that for each number j e {Q, 1N} and vectors 
x,y,heM it holds the inequality
(15) h)\ <
where pj is the number which appears in (6). Let x, y, h e M. By virtue 
of (6) and the Schwarz inequality we have

i
i^(®, mi < f i/>(p>«)^(n(<), tj-fAPtW-y^t), t)\-\h^(t)\dt

0
1 ___

<My/(6y(0’ \^(t)-y^(t)\)-^Pi(t) -\№(t)\)dt^
0

1 I 1
< Pi (f PjWlaVW-yV’WfM) ’ (Jpy(O ’ |AW)(f)|2df)* = Pi\\x-y\\,-\\h\\i 

0 0
which completes the proof.
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Now we verify that for each j e {0,1,..., N} and vectors x,h e M 
it holds the inequality

(16) y,(»+*,*)-!P,(®,fc)>^-||fc0

where a7- is the constant which appears in (7). Let us take x, h e M. By (7) 
we obtain

V) (x + A, h) - T} (x, h) = f [/, (p} (t) • (x(i) (<) + (*)),/) -fj (pj(t) • x(i) (i), t)] x

x/iw(f) =

= f [/j (Pj W • W + ’ *) ~fi [P}W , /)] Pi(t) ■ h^(t) ■ dt

Joining the extreme sides of this sequence of inequalities we get (16).
Let us denote (cf. (10) and (11))

v
(17) (x,y), = £(x,y)} for x,y 6 Jf

>-0

(18) ^*(x,y) = ^Tj{x,y) for x,y e M
j~Q

Lemma 1 and the inequalities (14), (15), (16) give immediately

Lemma 2. The functional T+ satiefies conditions 1), 2), 3), 4) of 
Theorem 1.

Now we consider a real-valued functional defined on J/. Define the 
functional <pa where a e L<0>1> as follows

i
(19) <PaW — (ai h) = f a(t)h(t)dt for h e M.

0

The following lemma provides sufficient conditions for the boundedness 
of cpa in the norm || • ||*.

Lemma 3. Let «(•) be a real-valued continuous function defined on the 
interval <0,1>. If a ( •) satisfies the conditions (8) and (9) then there exists 
a constant y > 0 such that for all h e M

\VaW\ < r 11*11*
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Proof. It immediately follows from our assumptions that for hell
N

<PaW = £ (aJ> A),
3=0

therefore we shall estimate the components (ajfh)j = 0,1,..., N). If j — 0 
we have by (9)

|(a0,fc)|< f \a0(t)\-\k(t)\dt = ( I—=-|a0(Z)| .(Vp„(<) -\k(t)\)dt^
Jo o' WPeW I

1 1 1(ITw • ( I P"(/)‘• IIAIIo-

Now, let us take a number j e {1,2,..., N}. By virtue of the continuity 
of the function a;( •) we obtain for all Z e <0,1>

d’ • <l <y_1 1 d1 ‘

aj(t} =~d?$dtl f a^s)ds = (1-1)! dz* {J
0 0 0 '** z * 0

Using this identity and integrating j-times by parts we get
i t

(a,,*) =(j-l)'—- j(J (t-s^a^d^-k^^dt,
* 0 0

because A(8)(0) = №(1) — 0 for s = 0,1, ...,N — 1. Now, taking abso­
lute values and applying the Schwarz inequality we have by (9)

|(an fe)| < (j2i)ï/(y^zf 1 f -\^i}(t)\)dt <

x (Jp,(z)-|Ä(«(z)i2dz)i =

Let us denote
0 = sup{A,^,...,^|^}

then by virtue of the inequalities

|(«o, A)l < Wo, K«n V)\ < ^'Wy for j = 1, 2,N,



62 Janusz Kaptur

we obtain
N _____  N

|(a, A)| < + IIAlljf2 = d-^N + 1- IWI,

>=o i-o

To end the proof it is enough to put y — ■& +1.
Now, let us put

(20) ^(a;, h) = ^»(x, h) + <p(h) x, h e M.
where a( •) is a function satisfying the conditions (8), (9) and S'* and <pa 
are functionals defined by (18) and (19). From Lemma 3 and Lemma 2 
it immediately follows the following

Lemma 4 The functional ¥ defined on the space M by the formula (20) 
satisfies in the norm || • ||* conditions 1), 2, 3), 4) of Theorem 1.

Now we shall derive a new representation of the functional T. This 
new representation will be useful in our further consideration. Let us 
take two elements x, h e M and a number j e {1,2,..., N}. Considering 
that a/4)(0) = fe(s)(0) = a/8)(l) = A(s)(l) =0 for a = 0,1,..., N-l and 
integrating j-times by parts we obtain

1 ,_1 di
fi[Pi^-^^,t}-h^{t)dt = V(-i)i-^-1-1>(z)-^(pi(t)-^(t),t)|J +

0 i=0

+J( - 1/fc(0^ft[p.(t) • (t), t)dt = (-l / J~ {ft(Pi(t),at»(t),t)}h(*)dt

o o -

hence
T(x,h) = J {^’(-1/-^-/J^(0-^(*), *) + »(<)} ^{t)dt 

0 J-0
Let us define an operator U by the formula

(v(x))(t) = for SBeM
i-o

It is easy to see that U is an operator from the space Jf to the space of 
all real-valued continuous functions defined on the interval <0,l>, in 
particular to the space L<0,i>- Using the operation TJ we get the following 
representation of the functional T
(21) h) = (U(x), h) for x,h e M.

Now we shall define a generalized solution of the boundary value 
problem (1), (2). Let (U, (.,.)«) denote a completion of the unitary space 
(If, (.,.)♦) (in the norm ||• ||» (see (17)) and let T denote the extension 
of T defined in Theorem 1.
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Definition 1. An element x e H is called a generalized solution of 
the boundary value problem (1), (2) if/it satisfies the condition ^(x, h) = 0 
for every h e H.

From this definition and from Lemma 4 and Theorem 1 we may deduce 
the following

Theorem 3. The boundary value problem (1), (2) has always a unique 
generalized solution.

We shall present two theorems expressing a connection between 
a generalized solution and a classical one.

Theorem 4. If a generalized solution of the boundary value problem (1), (2) 
belongs to the space HI then it is a classical solution of the problem of the 
class

Proof. Let x e Hl be a generalized solution of the boundary value 
problem (1), (2). From the condition T(x, h) = 0 for h e E follows that 
^(x, h) =0 for every he HI. Hence, by (21) we obtain (U(x),h) = 0 
for h e HI. Since the element U(x) belongs to L<Oil> and it is orthogonal 
to the space HI which is dense in L20il> in the usual norm we conclude 
U (x) = 0. This means that the element a? is a solution of the equation (1). 
The boundary conditions (2) and the relation x e are satisfied vacu­
ously because x e HI. The theorem is proved.

Theorem 5. Let x e 0^}. If the element x is a classical solution of 
the boundary value problem (1), (2) then x is a generalized solution of the 
problem. If there exists a classical solution of the class it is unique.

Proof. If x e 0“’^ is a classical solution of the boundary value problem 
(1), (2) then x g HI and U(x) = 0. From this and from the representation 
(21) follows the first part of the theorem, the second part is an immediate 
consequence of the first part and Theorem 3. The proof is ended.

Now we shall prove that there exists an orthonormal and linearly 
dense sequence in the space (HI, (.,.)♦). With the aid of the sequence it 
is possible to construct a sequence of elements of the space HI approximating 
in the norm || • ||* the generalized solution of the boundary value problem 
(1), (2). We shall take advantage of the following

Remark (see [3] p. 38) Let B: HI -> L201> be a symmetric, positive 
defined, linear operator. If e HI i =1,2,... is such a sequence that 
the set lini =1,2,...,} is dense in jB(Af) in the usual norm || • || 
then the set linfo: i = 1,2,...} is dense in HI in the scalar product 
(.,.)B defined by the formula (x, y)B = (Bx, y) for x,y e HI.
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We shall define an operator satisfying the conditions we have specified 
in the above remark. Let

d2A
(22) B: M 3 x -> ( - 1)A’ • x e L20>1>

Integrating W-times by parts and observing that for x,yeM o/s)(O) 
= a/s)(l) = t/(s)(0) = y(s)(l) = 0 s = 0,1,..., N — 1 we have

(23) (Bx, y) = fx^(t)-y^(t)dt = (a**», y™)
0

so the operator B is symmetric; we shall also prove that it is positive 
defined. Let x e M and s e {0,1,..., N — 1}, then for t e <0,1> it holds

|a/s)(0l = |a^(0-a^(O)|<J|a/s+1)(T)|dT |£c<J’+1>(-r)|2dv)I/2
0 0 0

l®(*+1)(t)l2dt)1/2
0

hence

(24) f {x(s)(tf2dt < (J |a/a+1>(«)|2• (J tdt) = 2“1 • f \x{3+1)(t)\2dt 
0 0 0 0

Putting here successively s = 0,1,N — 1 we get a sequence of ine­
qualities

i i i
||®||2 = J \x(t)\2dt < 2-1 f |«'(4)|2dt< ... <2-^ J |a/A)(t)|2d<

0 0 0

Joining the extreme sides of this sequence of inequalities we obtain

(25) (Bx, x) > 2N-||£c||2 for x e M

so the operator B is positive defined.

Now, let us put

(26) (x, y)B = (Bx, y) for x, y e >.

We shall show a connection between the scalar products (.,.)* and (.,.)B 
Lemma 5. There exists a constant G > 0 such that for h e JH

Proof. Put

K = sup {sup (p; (i): <e<0,l>}: j = 0,1,..., N}
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— K is a positive number because the functions p} j = 0,1,..., N are 
continuous and we exclude a trivial case when all functions Pj are equal 
to zero. Let x e M. By the inequality (24) we have

VI VI VI
IMI* f ^»(t^dt^K- y^-Nf \^(t)\*dt

j-0 0 3-0 0 J-0 0

Putting here

C ^2j-Ny2 
J-o

and using (23) and (26) we get the thesis of the lemma.
It follows from the above lemma that a linearly dense set in (M, (., .)B)

is also linearly dense in the space (Jf, (.,.)») therefore we shall prove 

Lemma 6. The sequence

xk(t) = tN+k(l-t)N t e <0,1> lc =0,1,...

of elements xke M is linearly dense in the space (M,

Proof. As it follows from the above Remark it is sufficient to show 
that the sequence Bxk k =0,1,... is linearly dense in the space L<0,i> 
in the usual norm || • ||. We first find the form of the vectors Bxk k — 0,1,.... 
Observing that the derivatives of the function {<Ar+fc} of the order 2N —j, 
1 < N — k and the derivatives of the function {(1 — t)N} of the order
j = N + 1, N + 2,..., 2N are equal to zero we get the formula

v
Bx, (N + k)l tk+j-

(k+j-N)l

k =0,1,...

where m — sup(0, N — k). Applying the Newton formula we have

j-m

V N-j

j-=m t —0

rVi)^-
1 ' (N-j)!(N-j)! (k+j — N)!

k =0,1, ...

It is easy to see that Bxk is a polynomial of the order k because the coeff­
icient at tk is equal to

N — 
i

N

Y>/22V\ A! (A + fc)!
2j\j J (N—j)! ' (fc+j-A)! 
j-m
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so it doesn’t vanish. Consequently we may write the formula
fc

Bxk = 2°}** J «= 0,1,..., fc <£ #0) k =0,1,...
j^o

where c% j = 0,1,... ,k denotes coefficients of the polynomial Bxk 
k = 0,1,.... We shall show that the functions yk = {Z*} k =0,1,... 
belong to the set

L = lin{J3rfc ei<Oil>: k = 0,1,...}
Obviously y,el since y0 = Bx0 ; moreover if fc is a natural number and 
y} e L for natural numbers j < fc then ykeL because

hence yk e L for fc =0,1,.... Using the Weierstrass approximation the­
orem we conclude that the set L is dense in the space B(HI) in the scalar 
product (.,.) which completes the proof.

From the above lemma and Theorem 2 it follows that a generalized 
solution of the boundary value problem (1), (2) may be approximated 
by elements of the space HI.

Theorem 5. If x e U is a generalized solution of the boundary value 
problem (1), (2) then there exists a sequence of elements zke HI fc =0,1,.. 
such that lim||ar —= 0.

&->oo

Proof. The sequence xkk =0,1,... which has been defined in Lemma C 
is linearly dense in the space (H, (.,.)») which is a completion of the space 
(HI, (.,.)♦). Realizing the Schmidt orthogonalization of the sequence 
xk fc =0,1,... in the space (HI, (.,.)♦) we get the sequence ek e M 
k — 0,1,... which is orthonormal and linearly dense in the space (H, (.,.)»). 
Observing that Hk = lin{e„, e1} ..., ek) <= HI for every fc =0,1,... and 
using Theorem 2 we immediately obtain the thesis of the theorem.

4. A generalized solution of the boundary value problem (1), (2) 
may belong to the set H\HI and in this case it isn’t usually even a func­
tion. It is interesting when the space H may be considered as a subset 
of the space L<0.i>- H such an embedding is possible then every genera­
lized solution of the boundary value problem (1), (2) is a function defined 
on the interval <0,1>. In this passage we show that in order that the 
embedding be possible it is sufficient that

s = f-*- 
/ PnW < oo(27)
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The above assumption shall he valid in all this passage. We first prove 
the following

Lemma 7. If the condition (27) is fulfilled then the norms ||-||* and IHlw 
in the space M are equivalent.

Proof. By (17), it is sufficient to prove that the norm HJly is not 
weaker than the norm || • ||y for j = 0,1,..., N — 1. Let x e M and 
j e {0,1,..., A —1} then
ii ii i
J \x{l)(t)\dt = f |^>(f)-a/J)(0)|dt = J | J^+1)(s)dsj dt < J' \^1+1\t)\dt
0 0 0 0 0

Hence for every x e M and i e {0,1,..., N — 1} we get

(28) /|®w(t)|d«</|®w(f)l<i<
0 0

Using this inequality we obtain for x e M and j e {0,1,—1}

ll< -/ Pj(t)\^(t)\*dt = J P,(t)\aP(t)-aP(O)\'dt 

0 0

\^i+1\s)\ds^dt^  ̂Pi(t)dt^ (J \x^(t)]dt^
0 0 0 0

“(J!><('»<«)•(/-p=

1 I 1 dt \ 1 1PjWdt^f ^—^fpN(t)-\x^(t)\»dtj =-8-(fp,(f)^)-lK

so the norm || • ||jV is not weaker than the norm || • ||3-. The proof is ended.
As it follows from the above lemma the scalar product (.,.)_v defined 

on the space hl may be extended over the entire space H (the extension
shall be denoted by the same symbol (.,.)iV), besides the space (H, 
is complete and the norms || • |[* and II ■ ILv in H are equivalent.

Now let us consider the operation

d I dN \

Integrating by parts we obtain

(29) (®, y)N = (A®, y) for®,yeJf
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so we infer that A is symmetric. Moreover we shall show that A is positive 
defined. Let x, y e M. Using (27) and (28) we get

i i ii
IMP = f |£c(t)|2<Zf = J* \x(t) — ®(O)pd/ < /(/ I®' (s)| dsj dt

0 0 0 0 
1 , 1 1 _____

< (J |®W(/)I^)2 = If -=.|/pjV(0-|®w(0l^

<s(J;p„(O|a^(t)l2<a) = s -IK,
0

hence by (29) we have
(Ax, x) S"1 ||®||2 for x e M

thus the operator A is positive defined.
Let (HA, (-,-)A) denote the Friedrichs space generated by A (obviously

(.,.)A\M xM = (,,.)N). Since the spaces (HA,(.,.)A) and (H,(.,.)N) 
are completions of the unitary space ,(.,.)N), they are equivalent
i.e. there exists a unitary operator V mapping HA onto 3 and satisfying 
the condition (Vx, Vy)N = (x, y)A for x,y e 3A and V/M = idM.

Let us define

(«i V)a = (Vx, vy)* for y 6 sa,

then the spaces (3A, (.,.)□) and (H, (.,.)♦) are equivalent. Consequently 
we may assume that the functional T is defined on the set HAx3A. 
We shall prove

Theorem 6. If the condition (27) is fulfilled and x e HA is a generalized 
solution of the boundary value problem (1), (2) then x e and ®w(0) = ®(8)
(1) for s = 0,1,..., 2^-1.

Proof. It suffices to prove that every element x e HA fulfils the condi­
tion x e and ®<4)(0) = a/*^(l) for s = 0,1,..., JT —1. First we shall 
prove an auxiliary inequality. Let x e , j e {0,1,..., N — 1} and 
t e <0,1>. By (27) and (28) we have

t i i
dt^ f l®(N)(t)|dt

0 0 0

|»°>(*)l = |®W)(0-»O)(0)| = |j ®w+1)(s)dsj< f |®w+1)(t)|
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whence
(a) |а/л(<)1 < for t 6 <0,1>, x e Jf, j e {0,N — 1}.
Let us take an element x e HA. It follows from the properties of the 
Friedrichs space HA that there exists a sequence yke M ft =1,2,... 
such that
(b) lim llÿfc-ÿjlbv = 0 and lim ||у* — a?|| = 0.

к ,l-*oo fc-*oo

Let j e {0,1,..., N — 1}. By (a) and (b) we get
lim sup |j/V)(O-y(/)(OI = 0

so the sequences jfij) ft =1,2,... for j = 0,1,..., N — 1 are convergent 
uniformly on the interval <0, 1>. Since yjs)(O) = у(гв)(1) = 0 for Z = 1, 2,... 
and 8 = 0,1,..., N — 1 there exists a function y e such that yw(0) 
= yw(l) =0 for j =0, 1,..., N — 1 and the sequence y$ ft =1,2,... 
is convergent uniformly to y{r> for j = 0,1,..., N — 1. From the uniform 
convergence of the sequence yk к = 1,2,... to у we obtain

lim||yfc-y|| = 0
fc-*oo

Hence, by (b) we obtain x = у which completes the proof.
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STRESZCZENIE

W niniejszej pracy rozpatrywane jest równanie różniczkowe zwyczajne
(1) z warunkiem brzegowym (2), przy założeniu, że funkcje występujące 
w tym równaniu spełniają warunki: (3), (4), (5), (6), (7), (8), (9). Dla tego 
problemu brzegowego sformułowano definicję rozwiązania uogólnionego 
oraz wykazano jego istnienie i jednoznaczność. Wykazano również pewne 
związki zachodzące między rozwiązaniem klasycznym i uogólnionym. 
Ponadto udowodniono, że rozwiązanie uogólnione powyższego problemu 
brzegowego może być aproksymowane w normie (17) funkcjami klasy 
o pochodnych rzędu 0,1, ..., N~ — 1 równych zero na końcach przedziału 
<0,1>. W dalszej części pracy podano warunek dostateczny na to aby 
rozwiązanie uogólnione problemu brzegowego (1), (2) było funkcją klasy

o pochodnych rzędu 0,1,..., N — 1 równych zero na końcach 
przedziału <0,l>.
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РЕЗЮМЕ

В работе рассматривается обыкновенно дифференциальное урав­
нение (1) с краевым условием (2), при предположении, что функции 
выступающие в этом уравнении исполняют условия (2), (4), (5), (6),
(7), (8), (9). Для этой краевой задачи сформулировано определение 
обобщенного решения и доказано его существование и единственность. 
Указано также некоторые связи между классическим решением 
и обобщенным решением. Кроме того доказано, что обобщенное решение 
этой краевой задачи может быть аппроксимированное в норме (17) 
при помощи функции класса С<оз>, которых производные порядка 

—1 изчезают в концах интервала <0,1>. В дальнейшем 
даны достаточные условия для того, чтобы обобщенное решение крае­
вой задачи (1), (2) было функцией класса которой произво­
дные порядка 0,1, У — 1 изчезают в концах интервала <0,1>.


