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1. The purpose of this paperis to present an application of the Lezanski
method [1], [2] to generalized solving an ordinary differential equation
of the form:

N
- dj
(1) D=1 Zfilpy ()0 @), 1) +a() =0 1e0,1)
j=0

with boundary conditions:

(2) @) =2”1) =0 fors =0,1,...,N—1

where the real-valued functions p,eC%, j =0,1,..., N satisfy the
conditions:

(3) p;(()>0 for te0,1)

(4) mes{t € (0, 1): p;(1) =0} =0

(the symbol ‘“mes” denotes the Lebesgue measure) and the real-valued
functions f; € %, 0., j =0,1,..., N fulfil the foilowing assumptions:

1
(5) B; =f}m|fj(0,t)|’dt< )

L]

(6) there exists a positive constant u; such that
f(81, 1) —f(82, V)] < py* |81 — 85|  for 8,8, R and te(0,1)

(7) there exists a positive constant a; such that

[f(81, ) —F(85,1)]-(8,—82) = a;* (3, —8,)* for 8,8, € R and te0,1).
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Moreover, we assume that it is possible to find such real-valued continuous
functions a,, @,, ..., ay that

N
(8) a(t) = Y a(t) for te(0, 1)
=0
1 t
_ [ lay(0)® r 1 T -
f g < omd —ofp_,(t) of(t 8)1a,(s)ds| 0 dt <

for j =1,2,...,N
In the sequel the equation (1) with the boundary condition (2) where the
functions f;,p, j =0,1,..., N and a(-) satisfy the conditions (3), (4),
(5), (6), (7), (8), (9) shall be called the boundary value problem (1), (2).
Later on we shall prove that the boundary value problem (1), (2) has a uni-
que generalized solution.

2. Now we shall quote (see [1],[2]) the fundamental theorems on
which our consideration will be based.

Theorcm 1. Let (M,( .,. )x) be a unitary space and let
Y: MxM>s(z,h)—>P(z,h)eR
be a real functional which satisfies the following conditions:

1) A ¥z, -) is a linear functional defined on M
zeM

2) AV A ¥, k)| <C, bl

zeM C;>0 heM

3) V A 1"”(3! h)— gj(yv h)| < ,‘"H-r—‘y”t'”k]':s

#>0 x,y,he M

4) V. A Y(@+h,h)—¥ (@, h)> a-|hl]

a>0 z,heM
If (H,(.,.)s) denotes the completion of (M, (.,.)s) then there exists a unique

extension ¥ of W which is defined on H x H and 3satisfies analogous to 1),
2), 3), 4) conditions. More over there exists a unique element z € H such that
for all he H ¥Y(Z, h) = 0.

Theorem 2. Let (H, (.,.)s) be a Hilbert space and let ¥ be a real-valued
Sfunctional defined on the set H x H and satisfying conditions 1), 2), 3), 4) of
Theorem 1. Ife e H k = 0,1, ... i3 an orthonormal linearly dense sequence
of elements of the space (H, (.,.)*) i.e. the set

lin{e,e H: ¥k =0,1,...}
i8 dense in (H, (.,.).) and
H, =lin{e,, e, ...,6,), ¥, = P/ H,x H,
n=0,1,2,...
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then for every me {0,1,2,...} there exisis a unique element z, € H, such
that for all he H, ¥ (z,,h) = 0, moreover the sequence z,, n = 0,1, ...
converges to an element v € H which satisfies the condition ¥(x, h) = 0 for
all he H.

We shall also prove the following lemma expressing a property of
functionals fulfilling conditions 1), 2), 3), 4) of Theorem 1.

Lemma 1. Let M be a lincar space on which there are defined N + 1
scalar products (.,.);, j =0,1,..., N and N +1 real-valued functionals

V;: MxXM>(z,h) > ¥(z,h)eR j=0,1,...,N

satisfying in scalar products (.,.); the conditions 1), 2), 3), 4) of Thcorem 1
with the constants C;(x), p;, a; respectively. If d,,d,,...,dy are positive
real numbers the functional

N
(10) P(z,h) = D &;¥(z,h) for s, he M
j=o
fulfils in the scalar product
N
(11) (Tyth) = Z(x, k), for m,heM
j=0

the same conditions 1), 2), 3), 4).

Proof. The linearity of the functional ¥ is clear so it remains to prove
conditions 2),3),4). Let K = sup {d,,d,, ..., dy}and k¥ = inf{d,, d,, ..., d,);
both the numbers are positive. For a fixed 2 € M we have

N N
P(z, B)| < Y &%(@, ) < K- Y Cy()Ihl; <

i=0 j=0
o Y (P 11
<k Y r,';(.«-:)) -(Erlhu;\
‘im0 j=o :

for every vector h € M. Putting here
2 12
¢. = K-( 3 G(a)
j=0

we obtain condition 2). Denoting K -sup{y;: j =0,1,...,N} by s we
have

N N
¥ (2, b)— Py, D < E- 3 W@, 1) — Py, b < K- 3 -l =yl Ikl <
=0

j=0
. N Py
<p De—yi)" (3 )" = ueto— vl i
790 J=0
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for any vectors z, y, h € M. Similarly denoting k-inf{e;: j = 0,1,..., N}
by a we obtain for any vectors z, h € M

AV
V(@+h, h)—P(@, h) > k- > o [kl > a- [k
J=0
which concludes the proof.

3. We shall now use Theorem 1 and Theorem 2 as a tool for the investi-
gation of the boundary value problem (1), (2). Let L7, ,, denote the set
of classes of measurable and square-integrable functions (in the sense
of Lebesgue) defined on (0,1) with the scalar product

1
(@) = [a(t)-y(t)at

and let N be fixed natural number. Put
veM<xeCfr) and 29(0) =a2P(1) =0 for j=0,1,.,N—-1.

The set M is a linear subspace of tho space L} ,, moreover M is
densc in L7, ,, since it contains the set of functions infinitely differen-
tiable and vanishing in boundary strips.

We shall define a sequence of N 41 scalar products (.,.); 5 =0,1,...,
N on the space M. Let p;eC¥), j=0,1,...,N be functions satis-
fying (3) and (4). Define for z,y € M

(12) (@, 9 = [p(0)-aP))-yP @)@t j=0,1,...,N.

It is easy to see that these forms are scalar products defined on M — they
are bilinear, symmetric and non-negative. We shall only prove that

(z,z); =0 > =0 for vxe M and j =0,1,...,N.

Really, if for a fixed je{0,1,...,N} and z€ M (v, x); = 0 then owing
to the fact that p,(t)-[2’)(2)]> > 0 for all ¢ € <0, 1> we obtain
pi(t)-[#(1)]2 =0  for almost all ¢t e 0, 1).

Hence, by (4) and the continuity of ¥, we get 21)() = 0 for all t € (0, 1).
If j = 0 that means z = 0, if j > 0 we gather by " (0) = 0 that /=" (1)
= 0 for all ¢ € (0, 1). Continuing this process, if it is needed, we get after j
steps # = 0. Then (.,.);j = 0,1, ..., N are scalar products.

Let f,e 0%, 413 =0,1,..., N be functions satisfying (5), (6) and
(7). Using these functions we shall define N -1 real valued functionals
¥, j=0,1,..., N on the space M. Put

(13) (@, h) = [f;(ps(t)-a(1), 1) RO (),

where j =0,1,..., N and z,h e M. Obviously all the functionals aro
linear with respect to h. We shall prove that each functional ¥; is bounded



On a Oertain Boundary Value Problem... 59

in the norm ||+||; in the second variable when the first one is fixed. Let
us fix a natural number j € {0, 1, ..., N} and an element « € M. Then by (6)
we have for an arbitrary vector h e M

1®y(a, W) < [ 1f;(p; )P (0), 1) RO @)t < [ |fy (g (8) - a2 (1) 1) —
1 1
—f; (0, )] W@ dt+ [ 15,0, )i~ K@)t < [ pypy(0)l ()] K2 dt +

+ [ 1600, 01 WO @t < py [ (Vs () -13P))) - (Vi () - B9 (0)1) it +

o1 udhd
+ ( If, (O,t)l)- Vo (t) - 1R9(2))) dt
af o 10,0 V2, )

P (f]p,(t)la:‘”(t)lzdt)‘ v (j!pj(t)m(f)(t)lzdt)' +

1 a i ! i
([t s
H - 0

hence, by virtue of (5) we get
|Ylj(a7’ h)| < 12} Ilwllj'llh||/+ V’E J ”h”j = (llj' ||-"3||;+ VIE;— ) '”h"j'

Putting here

Cy(2) = py-llelly+ VB
we obtain

(14)  |¥(z, b)| < Cy(x)|-|kl; for z,he M and f=0,1,...,N.

Now we shall prove that for each number j € {0, 1, ..., N} and vectors
x,y,he M it holds the inequality

(16) [P, B) — ¥ (y, B)| < py- lle — gl (1A

where y; is the number which appears in (6). Let x,y, h € M. By virtue
of (6) and the Schwarz inequality we have

¥y (x, h)— ¥ (y, B < [ 1f;(p;(0)-a(t), ) —f, (p, (1) -y (1), §)| - RD(D)] e

<u [ (Vp,(t) - 1#2(t) =y ()1} (V;(8) - [ ()]}t <

1 ] 1
<u( [ py ()12 () —y P t)at) - ( [ py(0)- OO = pyllw —yly- 1kl

which completes the proof.
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Now we verify that for each je {0,1,..., N} and vectors z,he M
it holds the inequality

(16) Y (z+h, b)—¥)(z, h) > o;-|hl}
where q; is the constant which appears in (7). Let us take z, h ¢ M. By (7)

we obtain

Wy (z+hy b)— ¥z, h) = [[f;(p; (1) (&) + WD), 1) =, (s (1) -2 (8),, 1)) x

W

X h(”(t) dt=

1
’ . 1
= f [7(ps(0) - (@ (&) + RO (®)) , 8] —F; (25 (0) -2 (), 1)) -m5 (8) - B (2) = ¥

i |
P;(?)

1 1
> [ 0,0 WO <t = o [ 2,(0)- 1Ot = oWl

Joining the extreme sides of this sequence of inequalities we get (16).
Let us denote (cf. (10) and (11))

N
(17) (@, 9) = ) (z,y); for ¢,y M
j=0
1\7
(18) V.(z,y) = ) ¥(a,y) for 2,y M
j=0

Lemma 1 and the inequalities (14), (15), (16) give immediately

Lemma 2. The functional ¥, satiefies conditions 1), 2), 3), 4) of
Theorem 1.

Now we consider a real-valued functional defined on M. Define the
functional ¢, where a € L, ,, as follows

1
(19) a(h) = (a, b) = [a(t)h(t)dt for he M.

0

The following lemma provides sufficient conditions for the boundedness
of ¢, in the norm |‘|,.

Lemma 3. Let a(-) be a real-valued continuous function defined on the
interval {0,1)>. If a () satisfies the conditions (8) and (9) then there exists
a constant y > 0 such that for all he M

lpa (R < v+ liklls
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Proof. It immediately follows from our assumptions that for h e M

N
@a(h) = D (ay b),

j=0
therefore we shall estimate the components (a;, k) j =0,1,...,N).If j =0
we have by (9)

h l h(t)|d ll! ) Vo, () -h@)))d
(@, )|<of|ao(t)1-| oY t=of.w, — a0} (Vo1 -t

l : . 1 —
< (! Po]it) |a, (t)lxd‘-)_; : (J Do(2)- |fl-(ﬂ)1=d£!)7 =Vé, - llhll,

Now, let us take a number j € {1, 2, ..., N}. By virtue of the continuity
of the function a,(-) we obtain for all ¢ € {0, 1)

L

a,(t)y =— fdtlf ..dt,_.,f a;(s)ds = (]——11)'_%{.[‘ (t—s]"’a,(s)ds}.

Using this identity and integrating j-times by parts we get

tj—ll)! fl(f ““3)"’“1(8>d3)'h"’(t)dt

0

(a5, B) = (j—1)’

because h®(0) = r¥(1) = 0 for 8 =0,1,..., N—1. Now, taking abso-
lute values and applying the Schwarz inequality we have by (9)

1 !
S L L i-1 (Vo) -1pP
l(a}’h)|< (J_l)!!(w ‘!(5"3) ﬂg(&‘)d&‘i) (Vp!(:) |h (t)l)dtg..

1
SG-n (!p,m

: g \L
J{z—s)’"'-a,(s)ds’ dc)! X
0

vy
G—1)!

x ( j p,(t)-mw(t)]’dt)% - -l

Let us denote

2 = ouplVa V3, .., Vor

then by virtue of the inequalities

[(@gy B)| < @ lIBlloy I(ay R)| < ||kl forj =1,2,..., N,
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we obtain

(@) B)] < b+ ,E iy < 0VNET:(3 S )" = 9 VTl
0
To end the proof it is enough to put y = 9 VN +1.
Now, let us put

(20) Y(z, h) = Pu(z, h)+¢(h) z,he M.

where a(‘) is a function satisfying the conditions (8), (9) and ¥, and ¢,
are functionals defined by (18) and (19). From Lemma 3 and Lemma 2
it immediately follows the following

Lemma 4 The functional ¥ defined on the space M by the formula (20)
satisfies in the norm |- ||, conditions 1), 2, 3), 4) of Theorem 1.

Now we shall derive a new representation of the functional ¥. This
new representation will be useful in our further consideration. Let us
take two elements z, h € M and a number j € {1,2,..., N}. Considering
that #/¥(0) = 2®(0) = «*(1) = h*'(1) =0 for & =0,1,...,N—1 and
integrating j-times by parts we obtain

[ 5iles0-22@, )19 0ar = E(‘”' 2002000, 9+

{=0
; b) ! i) j 7)
+f<—1) h(t) 553 (ps ()P (0), t)dt = (1) fw{f,(pj(t),w‘ (t), )} h(t)dt
hence

¥(a,h) — f 12(—1? & i 0, §+a(0)} bt

0 j=0

Let us define an operator U by the formula

N
Y @
(U (2))(t) = Z (=1 fylpy(0@(1), 8) +-a(t) for 2 e M
i=0

It is easy to see that U is an operator from the space M to the space of
all real-valued continuous functions defined on the interval (0,1), in
particular to the space L, ,,. Using the operation U we get the following
representation of the functional ¥

(21) Y(z,h) = (U(w), h) for z,he M.
Now we shall define a genecralized solution of the boundary value
problem (1), (2). Let (H, (.,.)s) denote a completion of the unitary space

(M, (.,.)s) (in the norm |- |/, (see (17)) and let ¥ denote the extension
of ¥ defined in Theorem 1.
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Definition 1. An element z e H is called u generalized solution of
the boundary value problem (1), (2) if fit satisfies the condition ¥ (z, k) = 0
for every h e H.

From this definition and from Lemma 4 and Theorem 1 we may deduce
the following

Theorem 3. The boundary value problem (1), (2) has always a unique
generalized solution.

We shall present two theorems expressing a connection between
a generalized solution and a classical one.

Theorem 4. If a generalized solution of the boundary value problem (1), (2)
belongs to the space M then it is a classical solution of the problem of the
class CGM).

Proof. Let € M be a generalized solution of the boundary value
problem (1), (2). From the condition ¥(z, k) = 0 for h € H follows that
¥Y(x, h) = 0 for every I € M. Hence, by (21) we obtain (U(x), h) =0
for h € M. Since the clement U(x) belongs to L7, ,, and it is orthogonal
to the space M which is dense in L, ,, in the usual norm we conclude
U(x) = 0. This means that the clement « is a solution of the equation (1).
The boundary conditions (2) and the relation z e C}Y) are satisfied vacu-
ously because ¢ € M. The theorem is proved.

Theorem 5. Let z € CY). If the element x is a classical solution of
the boundary value problem (1), (2) then = is a generalized solution of the
problem. If there exists a classical solution of the class O} it is unique.

Proof. If € C}™) is a classical solution of the boundary value problem
(1), (2) then # € M and U(x) = 0. From this and from the representation
(21) follows the first part of the thcorem, the second part is an immediate
consequence of the first part and Theorem 3. The proof is ended.

Now we shall prove that there exists an orthonormal and linearly
dense sequence in the space (M, (.,.)s). With the aid of the sequence it
is possible to construct a sequence of elements of the space M approximating
in the norm ||-|l. the generalized solution of the boundary value problem
(1), (2). We shall take advantage of the following

Remark (seec [3] p. 38) Let B: M — L}, ,, be a symmetric, positive
defined, linear operator. If ;e M ¢ =1,2,... is such a sequence that
the set lin{Bx;: i =1,2,...,} is dense in B(M) in the usual norm |||
then the set lin{x;: + =1,2,...} is dense in M in the scalar product
(.y.)p defined by the formula (z, y)y = (Bz,y) for =,y € M.
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We shall define an operator satisfying the conditions we have specified
in the above remark. Let

d21\'
(22) B: M aa:—>(—1)N~—d-£§ we Ly,
Integrating N-times by parts and observing that for z,ye M 2(0)
=a®(1) = y®(0) = y®¥(1) =0 s =0,1,...,N—1 we have
1
(23) (Bz,y) = [a™M(@)-yM(t)at = (=™, y™)
Q

8o the operator B is symmetric; we shall also prove that it is positive
defined. Let # € M and s€ {0,1,..., N —1}, then for ¢t € (0,1) it holds

t i ¢
18O = () — #(0)| < [ a4+ (x) e < ([ ar)" ([ 180 () 2] "

< I/t_ (f lw(”l)(t)lzdt)m
hence ,

(24) fllw“’(t)[zdtg(fl |m‘°+"(t)|‘-'dt)-(jtdt) = 2-1-f|w(8+*>(t)|2dt

Putting here successively s =0,1,..., N—1 we get a sequence of ine-
qualities

1 1 1
el = [lz@rat <2 f o' @rat<... <27V [ @) 2ar
(] 0 o

Joining the extreme sides of this sequence of inequalities we obtain
(25) (Bz,x)>2V-|z|2 for zxe M
8o the operator B is positive defined.
Now, let us put
(26) (zyy)g = (Bz,y) for z,ye M.

We shall show a connection between the scalar produets (.,.), and (.,.)5
Lemma 5. There exisis a constant C > 0 such that for he M

ihlls < C - |R]l5
Proof. Put
K = sup {sup {p;(t): te<0,1>}: j =0,1,..., N}
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— K is a positive number because the functions p, j = 0,1,..., N are
continuous and we exclude a trivial case when all functions p, are equal
to zero. Let # € M. By the inequality (24) we have

N
lzlls = Y [p@1a?@rat< K- \“ f #(t)]2dt < K- W"” f 1™ (1) dt

Putting here
4 =(K-Z\:2"N)"’
j=0

and using (23) and (26) we get the thesis of the lemma.
It follows from the above lemma that a linearly dense set in (M, (.,.)5)
is also linearly dense in the space (M, (.,.)s) therefore we shall prove

Lemma 6. The sequence
z (1) =tNtE )N teq0,1) k=0,1,...

of elements z, € M is linearly dense in the space (M, (.,.)z).

Proof. As it follows from the above Remark it is sufficient to show
that the sequence Bz, k = 0,1,... is linearly dense in the space L3,
in the usual norm |- |. We first find the form of the vectors Bz, k = 0, 1,....
Observing that the derivatives of the function {V**} of the order 2N —j,
1<j < N—k and the derivatives of the function {(1—1?)"} of the order
j=N+1,N+2,...,2N are equal to zero we get the formula

N1 (N +F)!

o6l i V’( ) —1y 4N, k+i-N
B s G e lCH g P28 =,
k=08,
where m = sup(0, N — k). Applying the Newton formula we¢ have
N N—-§ e
il 300 \ ] (2-\" (N—:i - NP (N+RD
o ,Z,.‘Z [ L 2 i s T

JeA =il !

It is easy to see that Bz, is a polynomial of the order k because the coeff-
icient at t* is equal to

>‘3"1_,2N\|_N! (Nt
f__:\il(N—j)! (k+j—N)!
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80 it doesn’t vanish. Consequently we may write the formula

k
Bz, = ) it (Ry j =10,1,.0iyk ¢f £0) k=0,1,...
J=0
where ¢ j =0,1,...,% denotes coefficients of the polynomial Bz,
k =0,1,.... We shall show that the functions y, = {t*} ¥ =0,1,...
belong to the set

L =lin{Bx, € L{,,,: k =0,1,...}

Obviously y, € L since y, = Bw,; moreover if k£ is a natural number and
y; € L for natural numbers j < % then y, € L because

k-1
i 4
Y _7,’§-Bm"— Z—oﬁ—y’

7=0
hence y, € L fork = 0,1,.... Using the Weierstrass approximation the-
orem we conclude that the set L is dense in the space B(M) in the scalar
product (.,.) which completes the proof.

From the above lemma and Theorem 2 it follows that a generalized
solution of the boundary value problem (1), (2) may be approximated
by elements of the space A7.

Theorem 5. If x € H i3 a generalized soluiion of the boundary value
problem (1), (2) then there exists a sequence of elements z, e M k = 0,1, ..
such that lim |z —z,), = 0.

k— o0

Proof. The sequence 2, ¥ = 0, 1, ... which has been defined in Lomins 6
is linearly densein the space (H, (.,.)s) Which is a completion of the space
(M, (.y.)s). Realizing the Schmidt orthogonalization of the sequence
z, k=0,1,... in the space (M, (.,.)s) We get the sequence e¢,e M
k= 0,1, ... which is orthonormal and linearly dense in the space (H ,(.,.)s).
Observing that H, =lin{e,, €,,...,6,} < M for every ¥ =0,1,... and
using Theorem 2 we immediately obtain the thesis of the theorem.

4. A generalized solution of the boundary value problem (1), (2)
may belong to the set H\ M and in this case it isn’t usually even a func-
tion. It is interesting when the space H may be considcred as a subset
of the space L, ,,. If such an embedding is possible then every genera-
lized solution of the boundary value problem (1), (2) is a function defined
on the interval (0, 1). In this passage we show that in order that the
embedding be possible it is sufficient that

(27) 8=|—<
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The above assumption shall be valid in all this passage. We first prove
the following

Lemma 7. If the condition (27) i8 fulfilled then the norms ||-||s and |||y
in the space M are equivalent.

Proof. By (17), it is sufficient to prove that the norm ||y is not
weaker than the norm |-|; for j =0,1,...,N—1. Let ze M and
je{0,1,...,N—1} then

fllx‘“(t)|dt =flla:(”(t)—w”’(0)|dt =f‘fa:““)(s)ds| dtg}l' [#+0 (1) dt
0 0 0 o 0
Hence for every z € M and i € {0,1,..., N —1} we get
(28) f o ar < [ ooy
0 0
Using this inequality we obtain for x € M and j € {0,1, ..., N—1}

1 1
ol = [ pyiaP @)t = [ py(e)1a(0) — () 2t

ngp}{t)- (f lz{i+l)(s)|ds)2dt<(flpj(t)dt) (fl lw(m(t)ldt)’
(e[ o]

<{ f py(1)d)- ( f p\u)) ( f P(®) 18V (O)2dt) =8 U PO ) Il

so the norm | ‘[ is not weaker than the norm ||-|;. The proof is ended.
As it follows from the above lemma the scalar product (.,.), defined
on the space M may be extended over the entire space H (the extension
shall be denoted by the same symbol (.,.)y), besides the space (H, (.,.)x)
is complete and the norms |- ||, and ||-||y in H are equivalent.
Now let us consider the operation

, Ay o ay o\
A: Maw—>(—1)¥ 2 oy — 2| e It
ay Yy ay 0,1

Integrating by parts we obtain
(29) (@, y)v = (4z,y) forz,yeM
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8o we infer that A is symmetric. Moreover we shall show that A is positive
defined. Let z, y € M. Using (27) and (28) we get

llli* = fllw(t)l*dt = fllw(t)—w(O)I*dt< fl(fllw'(s)ldsrdt

1 . 1 1 iy 2
<( f lw‘”’(t)ldt) = { f Vor it -VpN(t)-lw‘”’(t)ldt)

<8 ( f pN(t)lw‘N’(t)lzdt) = 8@l

hence by (29) we have
(Az, z) = 87 |=|? for x e M

thus the operator A4 is positive defined.

Let (H, (.,.)4) denote the Friedrichs space generated by A (obviously
(cy-)al M xM = (.,.)y). Since the spaces (H,,(.,.),) and (H,(.,.)y)
are completions of the unitary space (M, (.,.)y), they are equivalent
i.e. there exists a unitary operator V mapping H , onto H and satisfying
the condition (Vz, Vy)y = (v,y), for z,ye H, and VM = idy,.

Let us define

(#, ) = (Va, Vy). for 2,y e H,,,

then the spaces (H, (.,.)o) and (H,(.,.).) are equivalent. Consequently
we may assume that the functional ¥ is defined on the set H, xH,.
We shall prove

Theorem 6. If the condition (27) is fulfilled and x € H , is a generalized
solution of the boundary value problem (1), (2) then x € O )" and #9(0) = 2
(1) for 8 =0,1,..., N—1.

Proof. It suffices to prove that every element z € H , fulfils the condi-
tion z e ¢4 " and 2 (0) = 2*(1) for s = 0,1, ..., N—1. First we shall
prove an auxiliary inequality. Let ze M, je{0,1,...,N—1} and
te (0,1>. By (27) and (28) we have

¢ 1 1
2 (8)] = ()~ (0)] =| [ 2 (s)ds|< [P WIaL< [ 1o (1) a

1 1 1
= 1 16 e 7 I Ae™@year)
_(f Vot PO “"d'““(;‘ =) e ey

= V8- ja||y
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whence

(a) o) < V8- ||y for te<0,1>, ze M, je{0,..., N—1}.

Let us take an element z € H,. It follows from the properties of the
Friedrichs space H, that there exists a sequence y, e M k =1,2,...
such that

(b) lim ||y, —ylly = 0 and lim|ly, —x|| = 0.

k,l-+o0 k—+00

Letje{0,1,..., N—1}. By (a) and (b) we get

lim sup |9 (1) — 3 (t) = 0
k,l—00 te0,1)

8o the sequences y{) ¥k =1,2,... forj = 0,1,..., N—1 are convergent
uniformly on the interval {0, 15. Since »{(0) = {"(1) = 0for I =1, 2,...
and 8 =0,1,..., N—1 there exists a function y € €} ;,"’ such that 4 (0)
=yP1) =0 for j =0, 1,..., N—1 and the sequence v{’ ¥ =1,2,...
is convergent uniformly to ¥ forj = 0,1,..., N—1. From the uniform
convergence of the sequence y, ¥ =1,2,... to ¥y we obtain

lim |ly, —yll = 0

k—eoc0

Hence, by (b) we obtain # = y which completes the proof.
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STRESZCZENIE

W niniejszej pracy rozpatrywane jest réwnanie rézniczkowe zwyczajne
(1) z warunkiem brzegowym (2), przy zalozeniu, Ze funkcje wystepujace
w tym réwnaniu spelniajag warunki: (3), (4), (5), (6), (7), (8), (9). Dla tego
problemu brzegowego sformulowano definicje rozwigzania uogélnionego
oraz wykazano jego istnienie i jednoznaczno§é. Wykazano r6wniez pewne
zwigzki zachodzace miedzy rozwijzaniem klasyecznym i uogdlnionym.
Ponadto udowodniono, ze rozwigzanie uogélnione powyzszego problemu
brzegowego moze by¢é aproksymowane w normie (17) funkejami klasy %)
o pochodnych rzedu 0,1,..., N —1 r6wnych zero na koncach przedziaiu
{0,1>. W dalszej cze$ci pracy podano warunek dostateczny na to aby
rozwigzanie uogélnione problemu brzegowego (1), (2) bylo funkecjg klasy
0%5Y o pochodnych rzedu 0,1,...,N—1 réwnych zero na koricach
przedzialu ¢0,1).
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PE3IOME

B pa6ore paccmarpuBaercA OOGHKHOBEHHO nHPPcpeHuHanbHOE ypas-
HeHue (1) ¢ KpaeBHIM ycioBMeM (2), NIPM IPeRINONIOMKEHNH, 9TO OYHKUMK
BHICTYNAlollMe B 3TOM ypaBHEHUH MCHOIHAIOT yciaoBuA (2), (4), (5), (6),
(7), (8), (9). OnAa 3roit KpaeBoit 3amaum cPopMyIMPOBAHO OMpeneelne
006006111eHHOTO pPelleHNA U TOKa3aHO ero CYIleCTBOBAHUE U € IMHCTBEHHOCTb.
VKasaHO TaKiKe HEKOTODHE CBA3M MEMKIY KIacCHYeCKHM PpelleHueM
i 06061eHHBM peltenneN. Hpome Toro moxasano, uro o6061enHoe pelienye
aToit KpaeBolf 3amauu MoKeT OWITh aNNMpOKCMMMpPOBaHHOe B HopMe (17)
npr nomouwy ¢yuxumm kiaacca Clgyy, KOTOPHX NPOU3BOAHEE TOPAIKA
0,1,...,N—1 wusvesaor B KoHnmax Hurepnana <0,1>. B naubueifmem
RaHH JOCTAaTOYHLIE YCIOBHA JJIA TOro, 9To0Bl 00001IeHHOE pellleHHe Kpae-
Boit 3apmaum (1), (2) Gouro ¢ynxumeit kmacca CY ), KoTopoit mnpowsso-
RHule nopAxka 0, 1, ..., N —1 uayesalor B KoHIax uHrepsana {0, 1).



