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An Extremal Problem for Functions of Positive Real Part with Vanishing
Coefficients

Pewien problem ekstremalny dla funkeji o dodatniej czeéci rzeczywistej
ze znikajacymi wspélozynnikami

DxcTpeManbHas npobnemMa as GYHKUUH C [ONOXKHTETLHON NEACTBUTENLHOM YacThIO
¢ yracaromuMH koddduiHeHTaMKu

1. Introduction. Let P(«,n) represent the class of functions p(z)

=1+ Y P, 2™,n>1, which are analytic in |2| <1 and satisty Re{p(z)}
m=n

>a, 0<a<1, 2| <1, and let P*(a, n) represent the subclass of P(a, n)
consisting of n-fold symmetric functions. In a recent article Bernardi [1]
determined the sharp upper bound of Re{zp’(2)/p(2)}, p(2) € P(a, n), and
used this to obtain some results concerning the partial sums of convex
univalent functions. In this paper we determine the sharp lower bound
of Re{zp’'(2)/p(2)}, p(2) € P(a,n), and apply this to several problems,
including one which extends an earlicr result due to Sakaguchi [4].

2. The basic inequality. Theorem 1. If p(z) e P(a,n)and |2| =r < 1,
then

_Zn(l_a)rn -
(2.1) Re izp (Z)] L+ [1—1—2a)r"]’ <rgr,.,

1—a) 1= Pl <l

where r,, i3 the unique root in (0, 1] of the equation

(2.2) 1-3r"+3(1—2a)r*" — (1 —2a)7" =0
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For each a,0 < a <1, and each positive integer n, equality i3 obtained in
the first part of (2.1) for
1+ (2a-1)2"

2.3 Emeninobmm EVEd f
(2.3) e
and in the second part for
1—2alz" 4 (2a—1)2""

1-2"+2*"

p(z) =
where A satisfies the equation

1—r" a a (147" a \
= - i,
1—2r"/1+r2"+1—a }' 1—a'\1—r="+1—a/

Proof. We first consider the case a = 0. Lewandowski et al. [2]
have shown that solutions to the extremal problem

min min Re{y[p(2), 2p’(2), ..., 2" pV(2)]}
P(2)eP(0,n) |s|=r

where y(wg, w,, ..., wy) i8 analytic in Re{w,} > 0, |w,| < >, k = 1,2,
..., N are always functions in P*(0, n). Since ¢(z) € P(a, n) if and only
if g(2) = (1 —a)p(2)+ a where p(z) € P(0,n), it is obvious that extremal
problems over P(a, n) will also have solutions in P*(a, n). Furthermore,
q(z) is in P*(a,n) if and omnly if ¢(2) = p(2") for some p(z) in P(a,1).
Applying these rcmarks to the extremal problem under consideration
here we have

(2.5) min min Re{zq’(2)/q(2)}

a(#)eP(a,n) |o|=r
= min min Re{nz"p’ (") p (")}
p(e)eP(a,1) le|=r

Zmorovi¢ [6] has shown that if p(z) € P(a, 1), then

&

2L o<r<r
(2 6) R [zpl(z) (1+f)[1—(1—2a)r] ’ < a
. e\———( =
| p(2) —[V1+(1—2a)r*—Va(l—1r3)]

) AL .

(1—a)(1—r?)
where r, is the unique solution in (0, 1] of the equation
1—-3r4+3(1—2a)r*—(1—2a)r® = 0.

Combining (2.5) and (2.6) immediately yields (2.1). The nature of the
extremal functions follows from remarks in [6].
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3. Applications.

oo

Theorem 2. Let f(2) = z+ 3 a,z", n> 1, be analytic in |2| < 1 and

m=n+1

satisfy Re{f(z)/z} > a. Let a, be defined by the equation

a  (V3n*+1-1)
leagp, In .

Then f(2) is starlike and univalent in |2| < o, , where g,, i3 the unique
solution in (0, 1) of the equation

(3.1) 1+[2a—2n(1—a)]r"—(1—2a)r*" =0

when a < ay, and o, , 18 the unique solution in (0, 1) of the equation

32) (A—a)1—r")—nV1+(1—2a)r™" Va1 —r")] =0
when a > ay. This result is sharp for all permissible values of a and n.

Proof. If we let p(z) = f(2)/z then p(z) is in P(a, n) and, applying
theorem 1, we have

~f( )l _ l1-+ ”P i: Jy Ot S
f@) | 1 Wi 7), Tam <T <1
where
1+ [2a—2n(1—a)]r" — (1 —2u)r™
e 1+ [1—(1—2a)r™]
)(1—1'2”)—n[V1+(l 2a)7*" —Va (1 —r")
Fy(r) = 1 —a)(l—rz") ’

and r,, is the solution of (2.2). If we define F(r) by F(r) = F,(r) on
[0,7,,] and F(r) = F,(r) on (7,,,1), then the radius of starlikeness
of f(z) will be at least as large as the first zero of F(r). F(r) is continuous
and decreasing on [0, 1), F(0) = 1, and F(r)>—oc as r—1~, hence F(r)
has a unique zero in (0, 1) which we will denote by g, ,. It follows then
that f(2) is starlike for |2| < o, ,. For a given a and n we must now deter-
mine if g,, is the solution of F,(r) =0 or of F,(r) = 0. It is always
true that F,(r,,) = F,(r,,). If we assume that this common value is
also zero, i.e. F,(r,,) = 0 and F,(r,,) = 0 where 7, satifies (2.2), then
after eliminating r,, from these equations we find that a and » satisfy
the following equation:

- — (V3n2 1 —1)2.
—a 9In
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For a given n let a, be defined by (3.3). An cxamination of (2.2) shows
that 7, , is a decrecasing function of a if n is fixed. Hence if a < a, then
Tagn > Tayn aDd, since ¥,(r) is a decrecasing function of r, it follows that
Fy(7a,n) < Fy(7yy,,) = 0. This implies that g,, < r,, and therefore g, , i8
given by (3.1). Similarly if a > a, then o,,>7r,, and ¢,, is given by
(3.2). Of coursc when a = a, then g,, =7,, and g,, is given by either
(3.1) or (3.2).

Equality can occur in (3.1) when f(z) = 2p(2) and p(2) is defined
by (2.3) and in (3.2) when p(z) is defined by (2.4). In either case f’(2)
has a zero on |2| = g,,, 50 g,, i8 the radius of starlikeness and radius
of univalence. This completes the proof.

Now let f(z) =2+ ) a,2" be regular in the unit disc and define

N

fi(2) =2+ Zakn+lzk”+lr k=2,3,...
ne=1

In [4] Sakaguchi showed that if f(z) is convex then f,(2) is starlike. The
following theorem determines the radius of starlikeness for f.(z), k > 4.

Theorem 3. If f(2) =z+ Y a,2" is a convex univalent function in
n=2

12| < 1 and f,(z) i& defined by (3.4), then f,(2) is starlike for |2| < (3V3 —bB)!/¢
and f,(2) is starlike for |z| < (k—1)""", k = 4,5, ... This result is sharp
for k> 4.

Proof. It follows from (3.4) that

k-1
fi(2) = (1[k) Y @'f('2)
j=0
where o* =1, o # 1. Using Strohhicker’s well known result [5] that
Re{f(z)/z} > %, we have
k-1
Re{fi(2)/2} = (1/k) D Re{f(w’2)/(?2)} > },
J=0
hence f,(z)[/z is in P(1/2, k). Applying theorem 2 and noting that 1/2 < qa,
if and only if k > 4 yields the desired result. If f(z) = z/(1 —z) then f,(2)
=z[(1—2*) and fy(—(k—1)""*) =0, hence, for k> 4, f(z) need not be
starlike or univalent in any larger disc.
In [3] Robertson showed that if f(2) is convex in the direction of
the imaginary axis and has real coefficients or if f(2) is an odd starlike
function, then Re{f(2)/z} > 1/2, hence we immediately have the following
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Theorem 4. If f(z) is convex in the direction of the imaginary axis
and has real coefficients then f,(2) i8 starlike for |z| < (81/2_ —11)Y% fy(2)
is starlike for |2| < (3V3—5)"8, and f,(2) is starlike for |z| < (k—1)~1*
when k> 4. This result is sharp for k> 4.

Theorem 5. If f(2) s an odd starlike function, then f,(2) is starlike
for 2| < (k—1)""% ¥k —=2,4,6,... This result is sharp.

Notice that if f(2) is an odd function and k is an odd integer, then
fi(2) = fu(2), 80 we need only consider k even. In particular, f,(z) = f(2),
80 the radius of starlikeness of f,(z) is 1. For k = 4, 6, ... the result follows
from theorem 2 and the extremal function is f(z) = z/(1 —2%).
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STRESZCZENIE

W pracy wyznaczono minimum Re{zp’(¢)/p(z)} dla funkeji p(z) klasy Cara-
théodory'ego postaci p(z) = 1+ pae™+..., Re{p(s)} > a, 0<a< 1, |z] < 1. Wynik
ten zastosowano do kilku klas funkeji analityoznych. W szozegélnoéei uzykano uogél-
nienie wyniku Sakaguchiego, dotyoczacego k-symetryocznych funkeji wypukiyoch.

PE3IOME

B a70#t paboTe momydero MunumyM Re {zp’(2) | p(2)} ana dyuxunit p(z) knacca Kapateomopa
Bunap(s) = l+ppe™+...,
Re{p(2)} > a, 0<a<, g <.
3T0T pe3yJbTAT NPUMEHCHO K HEKOTOPLIM K/IaCCaM aHAHTHYeCKHX QyHkuuit. B wactHoctH mo-

myyeno o6obuieHne pedyabtata Cakaryys, OTHOCAIMErOoCS K K-CHMMETPHYECKHM BbINYKALIM QyH-
KLHMAM.






