UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA

VOL. XXX, 11

SECTIO A

1976

Department of Mathematics and Statistics, Marquette University, Milwaukee, Wisconsin 53233, USA

MICHAEL R. ZIEGLER

An Extremal Problem for Functions of Positive Real Part with Vanishing Coefficients

Pewien problem ekstremalny dla funkcji o dodatniej części rzeczywistej ze znikającymi współczynnikami

Экстремальная проблема для функции с положительной действительной частью с угасающими коэффициентами

- 1. Introduction. Let P(a, n) represent the class of functions $p(z) = 1 + \sum_{m=n}^{\infty} P_m z^m$, $n \ge 1$, which are analytic in |z| < 1 and satisfy $\operatorname{Re}\{p(z)\}$ > a, $0 \le a < 1$, |z| < 1, and let $P^*(a, n)$ represent the subclass of P(a, n) consisting of n-fold symmetric functions. In a recent article Bernardi [1] determined the sharp upper bound of $\operatorname{Re}\{zp'(z)/p(z)\}$, $p(z) \in P(a, n)$, and used this to obtain some results concerning the partial sums of convex univalent functions. In this paper we determine the sharp lower bound of $\operatorname{Re}\{zp'(z)/p(z)\}$, $p(z) \in P(a, n)$, and apply this to several problems, including one which extends an earlier result due to Sakaguchi [4].
- 2. The basic inequality. Theorem 1. If $p(z) \in P(a, n)$ and |z| = r < 1, then

$$(2.1) \operatorname{Re}\left\{\frac{zp'(z)}{p(z)}\right\} \geqslant \begin{cases} \frac{-2n(1-a)r^n}{(1+r^n)[1-(1-2a)r^n]}, \ 0 \leqslant r \leqslant r_{a,n} \\ \frac{-n[\sqrt{1+(1-2a)r^{2n}} - \sqrt{a(1-r^{2n})}]^2}{(1-a)(1-r^{2n})}, \ r_{a,n} < r < 1 \end{cases}$$

where $r_{a,n}$ is the unique root in (0,1] of the equation

$$(2.2) 1 - 3r^n + 3(1 - 2a)r^{2n} - (1 - 2a)r^{3n} = 0.$$

For each $a, 0 \le a < 1$, and each positive integer n, equality is obtained in the first part of (2.1) for

(2.3)
$$p(z) = \frac{1 + (2\alpha - 1)z^n}{1 + z^n}$$

and in the second part for

$$p(z) = \frac{1 - 2\alpha\lambda z^{n} + (2\alpha - 1)z^{2n}}{1 - 2\lambda z^{n} + z^{2n}}$$

where λ satisfies the equation

$$rac{1-r^{2n}}{1-2r^n\lambda+r^{2n}}+rac{a}{1-a}=\sqrt{rac{a}{1-a}igg(rac{1+r^{2n}}{1-r^{2n}}+rac{a}{1-a}igg)}.$$

Proof. We first consider the case $\alpha = 0$. Lewandowski et al. [2] have shown that solutions to the extremal problem

$$\min_{p(z) \in P(0,n)} \min_{\|z\|=r} \operatorname{Re}\{\psi[p(z),zp'(z),\ldots,z^N p^{(N)}(z)]\}$$

where $\psi(w_0, w_1, \ldots, w_N)$ is analytic in $\text{Re}\{w_0\} > 0$, $|w_k| < \infty$, $k = 1, 2, \ldots, N$ are always functions in $P^*(0, n)$. Since $q(z) \in P(a, n)$ if and only if q(z) = (1-a)p(z) + a where $p(z) \in P(0, n)$, it is obvious that extremal problems over P(a, n) will also have solutions in $P^*(a, n)$. Furthermore, q(z) is in $P^*(a, n)$ if and only if $q(z) = p(z^n)$ for some p(z) in P(a, 1). Applying these remarks to the extremal problem under consideration here we have

(2.5)
$$\min_{q(s)\in P(a,n)} \min_{|s|=r} \operatorname{Re} \{zq'(z)/q(z)\} \\ = \min_{p(s)\in P(a,1)} \min_{|s|=r} \operatorname{Re} \{nz^n p'(z^n)/p(z^n)\}.$$

Zmorovič [6] has shown that if $p(z) \in P(\alpha, 1)$, then

$$(2.6) \quad \operatorname{Re}\left\{\frac{zp'(z)}{p(z)}\right\} \geqslant \begin{cases} \frac{-2r(1-a)}{(1+r)[1-(1-2a)r]}, & 0 \leqslant r \leqslant r_a\\ \frac{-[\sqrt{1+(1-2a)r^2}-\sqrt{a(1-r^2)}]^2}{(1-a)(1-r^2)}, & r_a < r < 1 \end{cases}$$

where r_a is the unique solution in (0, 1] of the equation

$$1-3r+3(1-2a)r^2-(1-2a)r^3=0.$$

Combining (2.5) and (2.6) immediately yields (2.1). The nature of the extremal functions follows from remarks in [6].

3. Applications.

Theorem 2. Let $f(z) = z + \sum_{m=n+1}^{\infty} a_m z^m$, $n \ge 1$, be analytic in |z| < 1 and satisfy $\text{Re}\{f(z)/z\} > \alpha$. Let a_0 be defined by the equation

$$rac{a_0}{1-a_0} = rac{(\sqrt[4]{3}n^2+1}{9n} -1)^2}{}.$$

Then f(z) is starlike and univalent in $|z| < \varrho_{a,n}$ where $\varrho_{a,n}$ is the unique solution in (0,1) of the equation

$$(3.1) 1 + [2a - 2n(1-a)]r^n - (1-2a)r^{2n} = 0$$

when $a \leq a_0$ and $a_{a,n}$ is the unique solution in (0,1) of the equation

$$(3.2) \qquad (1-a)(1-r^{2n}) - n\left[\sqrt{1+(1-2a)r^{2n}} - \sqrt{a(1-r^{2n})}\right]^2 = 0$$

when $a > a_0$. This result is sharp for all permissible values of a and n.

Proof. If we let p(z) = f(z)/z then p(z) is in $P(\alpha, n)$ and, applying theorem 1, we have

$$\operatorname{Re}\left\{rac{zf'(z)}{f(z)}
ight\} = \operatorname{Re}\left\{1 + rac{zp'(z)}{p(z)}
ight\} \geqslant \left|egin{array}{c} F_1(r), \ 0\leqslant r\leqslant r_{a,n} \ F_2(r), \ r_{a,n} < r < 1 \end{array}
ight.$$

where

$$\begin{split} F_1(r) &= \frac{1 + [2\alpha - 2n(1-\alpha)]r^n - (1-2\alpha)r^{2n}}{(1+r^n)[1-(1-2\alpha)r^n]}, \\ F_2(r) &= \frac{(1-\alpha)(1-r^{2n}) - n[\sqrt{1+(1-2\alpha)r^{2n}} - \sqrt{\alpha}(1-r^{2n})]^2}{(1-\alpha)(1-r^{2n})}, \end{split}$$

and $r_{a,n}$ is the solution of (2.2). If we define F(r) by $F(r) = F_1(r)$ on $[0, r_{a,n}]$ and $F(r) = F_2(r)$ on $(r_{a,n}, 1)$, then the radius of starlikeness of f(z) will be at least as large as the first zero of F(r). F(r) is continuous and decreasing on [0, 1), F(0) = 1, and $F(r) \to -\infty$ as $r \to 1^-$, hence F(r) has a unique zero in (0, 1) which we will denote by $\varrho_{a,n}$. It follows then that f(z) is starlike for $|z| < \varrho_{a,n}$. For a given a and n we must now determine if $\varrho_{a,n}$ is the solution of $F_1(r) = 0$ or of $F_2(r) = 0$. It is always true that $F_1(r_{a,n}) = F_2(r_{a,n})$. If we assume that this common value is also zero, i.e. $F_1(r_{a,n}) = 0$ and $F_2(r_{a,n}) = 0$ where $r_{a,n}$ satisfies (2.2), then after eliminating $r_{a,n}$ from these equations we find that a and n satisfy the following equation:

$$\frac{a}{1-a} = \frac{1}{9n} (\sqrt{3n^2+1} - 1)^2.$$

For a given n let a_0 be defined by (3.3). An examination of (2.2) shows that $r_{a,n}$ is a decreasing function of a if n is fixed. Hence if $a < a_0$ then $r_{a,n} > r_{a_0,n}$ and, since $F_1(r)$ is a decreasing function of r, it follows that $F_1(r_{a,n}) < F_1(r_{a_0,n}) = 0$. This implies that $\varrho_{a,n} < r_{a,n}$ and therefore $\varrho_{a,n}$ is given by (3.1). Similarly if $a > a_0$ then $\varrho_{a,n} > r_{a,n}$ and $\varrho_{a,n}$ is given by (3.2). Of course when $a = a_0$ then $\varrho_{a,n} = r_{a,n}$ and $\varrho_{a,n}$ is given by either (3.1) or (3.2).

Equality can occur in (3.1) when f(z) = zp(z) and p(z) is defined by (2.3) and in (3.2) when p(z) is defined by (2.4). In either case f'(z) has a zero on $|z| = \varrho_{a,n}$, so $\varrho_{a,n}$ is the radius of starlikeness and radius of univalence. This completes the proof.

Now let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be regular in the unit disc and define

$$f_k(z) = z + \sum_{n=1}^{\infty} a_{kn+1} z^{kn+1}, \ k = 2, 3, \dots$$

In [4] Sakaguchi showed that if f(z) is convex then $f_2(z)$ is starlike. The following theorem determines the radius of starlikeness for $f_k(z)$, $k \ge 4$.

Theorem 3. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is a convex univalent function in |z| < 1 and $f_k(z)$ is defined by (3.4), then $f_3(z)$ is starlike for $|z| < (3\sqrt{3} - 5)^{1/6}$ and $f_k(z)$ is starlike for $|z| < (k-1)^{-1/k}$, $k = 4, 5, \ldots$ This result is sharp for $k \ge 4$.

Proof. It follows from (3.4) that

$$f_k(z) = (1/k) \sum_{j=0}^{k-1} \overline{\omega}^j f(\omega^j z)$$

where $\omega^k = 1$, $\omega \neq 1$. Using Strohhäcker's well known result [5] that $\operatorname{Re}\{f(z)/z\} > \frac{1}{2}$, we have

$$\operatorname{Re}\{f_k(z)/z\} = (1/k)\sum_{j=0}^{k-1}\operatorname{Re}\{f(\omega^jz)/(\omega^jz)\} > rac{1}{2},$$

hence $f_k(z)/z$ is in P(1/2, k). Applying theorem 2 and noting that $1/2 \le a_0$ if and only if $k \ge 4$ yields the desired result. If f(z) = z/(1-z) then $f_k(z) = z/(1-z^k)$ and $f_k'(-(k-1)^{-1/k}) = 0$, hence, for $k \ge 4$, f(z) need not be starlike or univalent in any larger disc.

In [3] Robertson showed that if f(z) is convex in the direction of the imaginary axis and has real coefficients or if f(z) is an odd starlike function, then $\text{Re}\{f(z)/z\} > 1/2$, hence we immediately have the following

Theorem 4. If f(z) is convex in the direction of the imaginary axis and has real coefficients then $f_2(z)$ is starlike for $|z| < (8\sqrt{2} - 11)^{1/4}$, $f_3(z)$ is starlike for $|z| < (3\sqrt{3} - 5)^{1/6}$, and $f_k(z)$ is starlike for $|z| < (k-1)^{-1/k}$ when $k \ge 4$. This result is sharp for $k \ge 4$.

Theorem 5. If f(z) is an odd starlike function, then $f_k(z)$ is starlike for $|z| < (k-1)^{-1/k}$, k = 2, 4, 6, ... This result is sharp.

Notice that if f(z) is an odd function and k is an odd integer, then $f_k(z) = f_{2k}(z)$, so we need only consider k even. In particular, $f_2(z) = f(z)$, so the radius of starlikeness of $f_2(z)$ is 1. For $k = 4, 6, \ldots$ the result follows from theorem 2 and the extremal function is $f(z) = z/(1-z^2)$.

REFERENCES

- [1] Bernardi, S. D., New distortion theorems for functions of positive real part and applications to the partial sums of univalent convex functions, Proc. Amer. Math. Soc., 45 (1974), 113-118.
- [2] Lewandowski, Z., Miazga, J., Szynal, J., On an application of Sakaguchi's method to extremal problems for functions with positive real part with vanishing coefficients, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 21 (1973), 241-243.
- [3] Robertson, M. S., The theory of univalent functions, Ann. of Math., 37 (1936), 374-408.
- [4] Sakaguchi, K., On functions starlike in one direction, J. Math. Soc. Japan, 10 (1958), 260-271.
- [5] Strohhäcker, E., Beiträge zur Theorie der schlichten Funktionen, Math. Z., 37 (1933), 356-380.
- [6] Zmorovič, V. A., On the bounds of starlikeness and of univalence in certain classes of functions regular in the circle |z| < 1, Ukrain. Math. Z., 18 (1966), 28-39.

STRESZCZENIE

W pracy wyznaczono minimum $\operatorname{Re}\{zp'(z)/p(z)\}$ dla funkcji p(z) klasy Carathéodory'ego postaci $p(z)=1+p_nz^n+\ldots$, $\operatorname{Re}\{p(z)\}>a$, $0\leqslant a<1$, |z|<1. Wynik ten zastosowano do kilku klas funkcji analitycznych. W szczególności uzykano ugólnienie wyniku Sakaguchiego, dotyczącego k-symetrycznych funkcji wypukłych.

РЕЗЮМЕ

В этой работе получено минимум $\operatorname{Re}\{zp'(z)\,|\,p(z)\}$ для функций p(z) класса Каратеодори вида $p(z)=1+p_nz^n+\ldots$,

$$\operatorname{Re} \{ p(z) \} > a, \ 0 < a < 1, \ |z| < 1.$$

Этот результат применено к некоторым классам аналитических функций. В частности получено обобщение результата Сакагучи, относящегося к к-симметрическим выпуклым функциям.