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1. Introduction. Some forty years ago P. Montel [4] proposed studying
properties of functions f, analytic and univalent in the unit disc D subject
to the conditions

(1.1) f0) =0, fa) =1, k =0,1,...

wherea, 0 < |a] < 1, is a fixed point.

Functions satisfying these conditions with ¥ = 0 have been inve-
stigated recently by many authors while there are a few results concerning
others cases.

Recently L. Brickman, T. H. MacGregor and D. R. Wilken [1] and
others developed a very interesting theory of so-called extreme points
of a given family of analytic functions and gave many applications to
extremal problems.

We will be concerned with classes of analytic functions that map D
onto convex, starshaped or close-to-convex domains. We want here
to establish some results concerning extreme points and convex hulls
of classes of functions subject to (1.1) with either ¥ = 0 or k = 1.

2. Main Results. We shall start with starlike functions. Let I, (a)
denote the class of functions f analytic in D satisfying the conditions

(1.2) 7(0) = 0, f(a) = a, Re 2;(::) % a
where 0 < a < 1, and let
() = 8 = {1: flo) = 2o+ ooy Re TE > o <.

We prove a formula which defines a one-to-one transformation
of S onto M, (a).
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Theorem 1. If fe 85, then

Plz) = 2(1 — |a]?)?i f( z2—a )

(z—a)(1—az) ™

18 in M, (a), and conversely.

Proof. It is easy to see that F(0) = 0, F(a) = a. There is no loss
of generality in assuming that f is analytic in closed unit disc. Then it
z2F' ()

is sufficient to check the condition Re F2)

> a on the unit circum-

ference.
For, setting w(z) = (2—a)(1—82)"', |2] =1 we have

z2F' (2) _ —a(l1—az)+28(z—a)(1 —2a) N

F'(0(2))
F(2) (z2—a) (1 — @2) rzo(2)

F(w(2)

After some straightforward computations it gives

zF'(z) _ 2a(|a|*—Re(az)) 1—|al®
R =
“F@ 0 k—ar  “l—ap  °

Hence G € M, (a).
One can repeat the above considerations starting with a function F,
F e M,(a) to end up with the conclusion that f,

z+a\l
1+dz”

z [
= F

1@ = Graaray= T\ s

is in 8.

Theorem 1 has been proved.

Corollary 1. The variability region of F(z) for a fized z and F ranging
over the whole class M,(a) i8 given by the inequality

zZ—a

P 1/2(1—a) 1—az
F(2) ) T 1—lap

1—az

: (f(z)“"“ i ok : :
Proof. It is casy to see that ¢(z) = 2 —z—) is in M(0) iff f is
\

/
in M, (0). The rest follows from Theorem 1 and the inequality h/ _f__]_

J(2)

< |z| which is due to A. Marx [3].
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Corollary 2. If f(2) = z+... is a convex function in the unit disc D,

then for each fized point w in D the function
g(z}:z{M\’ 0<a<<?2
\ " z—w )
18 univalent and starlike of order (1—a/2) in D.

Proof. If f satisfies the hypothesis then so does

[ z4a

flira) @

(1—lal®)f’(a)
and, moreover Re{zf'(z)/f(2)} > 3.
Let us now apply Theorem 1 with ¢ = } to ¢(z). We have
2 f(z)—fla)
z—a  f'(a)

Some simple computations yield

1 ‘zF’(z) B | z zf' (=)
B ) o d—a ¥ T2 @)

which is equivalent to

p(2) =

F(2) = e M, (a)

aR

J_Aw e }>_g
\f(2)—fla) 2—a 2
and the result follows.

The above corollary was known to hold for a =1, 2 [7].

Corollary 3. A4 necessary and sufficient condition for f(z) =z+...

to be conver in D is the inequality

| 22,f(z) B +2,
elf(zl) —f(22) 21— 2, i

for any two points z,,2, in D. [5].

Let & (SUZ,,(a)) denote the convex hull of the class 9, (a), X stand
for the unit circumference and let 2 be the set of all probability measures

on X.
Theorem 2. Suppose

F = {fz 1) =

r 2(1—ax)—

J W“H(J’), peP,zeD
X a3
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then & = &(M,(a)) and the functions
2—->2(1 —ax)?=V(1 —22)~20-% = k(z; z; a)
are the extreme points of M,(a).

Proof. The set 2 is convex and the mapping #—+# defined by
[k(2; ©; a)du(x) is linear. Hence the set # is convex, # < £#(M,(a))
x

Suppose F € M, (a). Then there exists a function ¢ in 87 such that (The-
orem 1)

z(1—|a®)-? [ z2—a \
(2—a)(1 —az)'~* g\l—dz/

F(z) =

This formula defines a linear mapping of 8 onto M,(a). The convex
hull of § is given by the formula [2]:

¢
g(2) =Xf(l_—wc)2_2;d#(w)y teD

Thus the functions

q — e 243(1—a) Z
‘F (2) ™ (1 !ﬂl } “f [1—&2—50(2—“}]2(]_“’ d,u(.?:)

belong to &(M,(a)).

The formula z = (y —a)(1 —ady)~' defines a one-to-one mapping of X
onto itself.

We put

du(z) — d,,( . __;&) — dr(y)

where » € #, and we ultimately obtain

2(1 —ya)*t—2

AT e

dv(y).

The uniquess of the extreme points follows from the fact that the trans-
formation #3 u—>F, € M,(a) is one-to-one.
Theorem 2 has been proved.

Corollary 4. The convex hull of the class of convexr functions in M, (a)
18 given by the formula

F(z) = f%dﬂm).
X



Oonvex Hulls of Some Olasses of Univalent Funotions 39

Proof. It follows from the fact that the class of convex functions
normalized by the conditions F(0) = 0, F(a) = a is a subclass of M, (a)
and, that the functions z—z(1 —zz)~'(1—az), |z| = 1, are convex.

The above theorem may be used to obtain upper bounds for some
functionals defined on M, (a).

This class is compact in a locally-convex topological space of all functions
analytic in D 8o, according to a well-known Krein-Milman Theorem [6],
any real linear functional on this class attains its supremum at an extreme
point.

Hence we have

Corollary 5. Suppose f(z) = Ya,z" € M (a). Then there are the follow-
1

ing sharp estimates
1—|a|®

() 1f(z)I< I2l (1 —2a] — jo—a]) =2
(ii) |f'(2)] < max ¥'(2; ; a)

lzi=1

(1 - |a|2)2—20(1 + |a|) [1 + (1 _2a) Izl]_
[I1—az|— |z—al]~2

(iii) |a,| < (1 — [a]?)**=

==

ﬁ(k—2a)
laal < F 0y (L= lalfYO

A function F(z) = a,2+... i8 said to be close-to-convex in the unit
disc D if there exists a univalent convex function ¢(2) = b,2+4..., ze D
such that f'/p’ is a function of positive real part.

Denote by .#;(a) the whole class of such functions F normalized by
the condition

Fa)=1, 0<a] <1.
Theorem 3. The set & (.41 (a)) consists of functions of the form
o+y

z— 4
2  (Q—ayp
F(z)=xxfx A —y2): b du(z, y)

where u(x,y) i8 a probability measure on X x X.
The extreme points of 4 (a) are precisely functions

z+y ,
a1
2 (1 —ay)®

D -
A= (1 —y=2)? l—ax

€ A (a)
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Proof. Let us notice first that if f(z) =2z+... is a close-to-convex
function, then F defined by

a

z_
1—az

(*) F(z) = (l—lalz)[f( ) —J( -—a)], F(a) =1
i8 in 4, (a).
To see this is sufficient to notice that if f’/p’ has positive real part in D

b oxt z2—a :
so does F'[h, where h =q>(1 _;), ¢ being convex. It has been

proved [1] that close-to-convex function normalized by the conditions
f(0) =f'(0)—1 = 0 have the representation

(%*) f(z) =XXX—(1—_§;)5,—‘1F(‘0,3/)-

Suppose F € .#;(a). Thus by (*) there exists exactly one close-to-convex
function f(2) = z-+... such that

z—a
#e) = 0-to) 152 ) ~s(-a)]
—az
By (##) there exists exactly one probability measure on X x X for which
derivatives of functions F in the convex hull of .#,(a) are of the form

1—8z—x(z—
(o) F =0l [ (T )
XxX

It follows by using the transformations
o> (2+3)(1+ax)”", y>(y +a)(1 +ay)™
which map X° onto itself that (+++) is equivalent to

(1 —w2)(1 —ay)®
(1—92)*(1 —ax)

F(z) =

XxX

du(z,y)

The rest follows by integrating and making use of the Fubini’s theorem.
Each function of the integrand in Theorem 3 belongs to .#,(a) and the
set of probability measures is convex. Theorem 3 has been proved.

Let us notice, that the above considerations are valid in the case
when F(2) = a,z+..., F'(a) =1 belongs to the class of convex and
univalent functions in D.

It gives us
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Theorem 4. Suppose M (a) is the class of convex functions F(z)

=a,+..., F'(2) =1, ze D. Then J(ﬂx(a)) consists of functions of the
form

Pe = | k) Y SN

1l—az
X

where u i8 a probability measure on X.
The extreme points of the class .#g(a) are precisely the functions

2—2z(l—ax)(1—22)"', |z|] =1.

The last two theorems yield sharp upper bounds for |F(2)|, |F(z)|
and |a,|.
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STRESZCZENIE

W pracy tej wyznaczono otoczki wypukle i punkty ekstremalne dla klas M (a)
i 4 (a) funkeji jednolistnych w kole jednostkowym D, gdzie: M (a) oznacza klase
funkeji f a-gwiazdzistych z unormowaniem f(0) = 0, f(a) = a, .4 (a) oznacza klase
funkeji ¥ prawie wypuklych z unormowaniom F(0) = 0, F'(a) = 1(la|] <1, 0 < a< 1)

PE3IOME

B 310# paGoTe moay4eHo BbimykJible 060104KH M IKCIIEPHMEHTANLHbIE TOYKM B kaaccax MY (a)
H # p(a) onHonucTabix pyHkumit B D, roe ﬁRi(a) o6o3HavaeT KJacCc QGyHKuuM f,a-3Be3AHBIX UIA

xotopeix f(0) = 0, f(a) = a,.#7(a) — xnacc F noutu BHINYKNBIX (YyHKUMA C HOPMHPOBKOH
F@©)=0, F'@= 1.






