ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. XXX, 4

SECTIO A

1976

Instytut Matematyki, Uniwersytet Marii Curie-Sklodowskiej, Lublin

MARIA FAIT, ELIGIUSZ ZŁOTKIEWICZ

Convex Hulls of Some Classes of Univalent Functions

Otoczki wypukłe pewnych klas funkcji jednolistnych

Выпуклые оболочки некоторых классов однолистных функций

1. Introduction. Some forty years ago P. Montel [4] proposed studying properties of functions f, analytic and univalent in the unit disc D subject to the conditions

(1.1) $f(0) = 0, f^{(k)}(a) = 1, k = 0, 1, ...$

where a, 0 < |a| < 1, is a fixed point.

Functions satisfying these conditions with k = 0 have been investigated recently by many authors while there are a few results concerning others cases.

Recently L. Brickman, T. H. MacGregor and D. R. Wilken [1] and others developed a very interesting theory of so-called extreme points of a given family of analytic functions and gave many applications to extremal problems.

We will be concerned with classes of analytic functions that map D onto convex, starshaped or close-to-convex domains. We want here to establish some results concerning extreme points and convex hulls of classes of functions subject to (1.1) with either k = 0 or k = 1.

2. Main Results. We shall start with starlike functions. Let $\mathfrak{M}_{a}(a)$ denote the class of functions f analytic in D satisfying the conditions

(1.2)
$$f(0) = 0, f(a) = a, \operatorname{Re} \frac{zf'(z)}{f(z)} > a$$

where $0 \leq a < 1$, and let

$$\mathfrak{M}_{a}(0) = S_{a}^{*} = \Big\{f\colon f(z) = z + a_{2}z^{2} + \dots, \operatorname{Re}rac{zf'(z)}{f(z)} > a, \ |z| < 1\Big\}.$$

We prove a formula which defines a one-to-one transformation of S_a^* onto $\mathfrak{M}_a(a)$.

Theorem 1. If $f \in S_a^*$, then

1782

$$F(z) = \frac{z(1-|a|^2)^{2(1-\alpha)}}{(z-a)(1-\bar{a}z)^{1-2\alpha}} f\left(\frac{z-a}{1-\bar{a}z}\right)$$

is in $\mathfrak{M}_{a}(a)$, and conversely.

Proof. It is easy to see that F(0) = 0, F(a) = a. There is no loss of generality in assuming that f is analytic in closed unit disc. Then it is sufficient to check the condition $\operatorname{Re} \frac{zF'(z)}{F(z)} > a$ on the unit circumference.

For, setting $\omega(z) = (z-a)(1-\overline{a}z)^{-1}$, |z| = 1 we have

$$\frac{zF'(z)}{F(z)} = \frac{-a(1-\overline{a}z)+z\overline{a}(z-a)(1-2a)}{(z-a)(1-\overline{a}z)} + z\omega(z)\frac{F'(\omega(z))}{F(\omega(z))}$$

After some straightforward computations it gives

$$\operatorname{Re} \frac{zF'(z)}{F(z)} > \frac{2a(|a|^2 - \operatorname{Re}(\bar{a}z))}{|z-a|^2} + a\frac{1-|a|^2}{|z-a|^2} = a$$

Hence $G \in \mathfrak{M}_{a}(a)$.

One can repeat the above considerations starting with a function F, $F \in \mathfrak{M}_a(a)$ to end up with the conclusion that f,

$$f(z)\,=\,rac{z}{(z+a)(1+ar a z)^{1-2a}}\,Figg(rac{z+a}{1+ar a z}igg), \hspace{1em} |z|<1$$

is in S_{α}^{*} .

Theorem 1 has been proved.

Corollary 1. The variability region of F(z) for a fixed z and F ranging over the whole class $\mathfrak{M}_a(a)$ is given by the inequality

$$\left|\left(\frac{z}{|F(z)|}\right)^{1/2(1-a)} - \frac{1-\overline{a}z}{1-|a|^2}\right| \leqslant \left|\frac{z-a}{1-\overline{a}z}\right|$$

Proof. It is easy to see that $\varphi(z) = z \left(\frac{f(z)}{z}\right)^{-\alpha+1}$ is in $\mathfrak{M}(0)$ iff f is

in $\mathfrak{M}_0(0)$. The rest follows from Theorem 1 and the inequality $\left| \sqrt{\frac{z}{f(z)}} - 1 \right| \leq |z|$ which is due to A. Marx [3].

26

Corollary 2. If f(z) = z + ... is a convex function in the unit disc D, then for each fixed point w in D the function

$$g(z) = z \left(rac{f(z) - f(w)}{z - w}
ight)^a, \quad 0 \leqslant a \leqslant 2$$

is univalent and starlike of order (1-a/2) in D.

Proof. If f satisfies the hypothesis then so does

$$\varphi(z) = \frac{f\left(\frac{z+a}{1+\overline{a}z}\right) - f(a)}{(1-|a|^2)f'(a)}$$

and, moreover $\operatorname{Re} \{ zf'(z)/f(z) \} > \frac{1}{2}$. Let us now apply Theorem 1 with $a = \frac{1}{2}$ to $\varphi(z)$. We have

$$F(z) = \frac{z}{z-a} \cdot \frac{f(z)-f(a)}{f'(a)} \in \mathfrak{M}_{k}(a)$$

Some simple computations yield

$$rac{1}{2} < \operatorname{Re} rac{z F'(z)}{F(z)} = \operatorname{Re} \left\{ 1 - rac{z}{z-a} + rac{z f'(z)}{f(z) - f(a)}
ight\}.$$

which is equivalent to

Illi 142 5 Class

$$a \mathrm{Re} \left\{ rac{z f'(z)}{f(z) - f(a)} - rac{z}{z-a}
ight\} > - rac{a}{2}$$

and the result follows.

The above corollary was known to hold for $\alpha = 1, 2$ [7].

Corollary 3. A necessary and sufficient condition for f(z) = z + ...to be convex in D is the inequality

$$\operatorname{Re}\left\{\frac{2z_{1}f(z_{1})}{f(z_{1})-f(z_{2})}-\frac{z_{1}+z_{2}}{z_{1}-z_{2}}\right\} \ge 0$$

for any two points z_1, z_2 in D. [5].

Let $\mathscr{E}(\mathfrak{M}_a(a))$ denote the convex hull of the class $\mathfrak{M}_a(a)$, X stand for the unit circumference and let \mathscr{P} be the set of all probability measures on X.

Theorem 2. Suppose

$$\mathscr{F} = \left\{ f \colon f(z) = \int\limits_{X} \frac{z(1-ax)^{2(1-a)}}{(1-xz)^{2(1-a)}} \, d\mu(x) \,, \, \mu \in \mathscr{P}, \, z \in D \right\}$$

then $\mathcal{F} = \mathscr{E}(\mathfrak{M}_a(a))$ and the functions

$$z \mapsto z(1-ax)^{2(1-a)}(1-xz)^{-2(1-a)} = k(z;x;a)$$

are the extreme points of $\mathfrak{M}_a(a)$.

Proof. The set \mathscr{P} is convex and the mapping $\mathscr{P} \to \mathscr{F}$ defined by $\int_{X} k(z; x; a) d\mu(x)$ is linear. Hence the set \mathscr{F} is convex, $\mathscr{F} \subset \mathscr{E}(\mathfrak{M}_{a}(a))$ Suppose $F \in \mathfrak{M}_{a}(a)$. Then there exists a function g in S_{a}^{*} such that (Theorem 1)

$$F(z) = rac{z(1-|a|^2)^{2(1-lpha)}}{(z-a)(1-ar a z)^{1-2lpha}}gigg(rac{z-a}{1-ar a z}igg)$$

This formula defines a linear mapping of S_a^* onto $\mathfrak{M}_a(a)$. The convex hull of S is given by the formula [2]:

$$g(\zeta) = \int\limits_X \frac{\zeta}{(1-x\zeta)^{2-2a}} \, d\mu(x), \ \zeta \in D$$

Thus the functions

$$F(z) = (1 - |a|^2)^{2(1-a)} \int\limits_X rac{z}{[1 - ar{a}z - x(z-a)]^{2(1-a)}} \, d\mu(x)$$

belong to $\mathscr{E}(\mathfrak{M}_a(a))$.

The formula $x = (y-a)(1-\overline{a}y)^{-1}$ defines a one-to-one mapping of X onto itself.

We put

 $d\mu(x) = d\mu\left(rac{y-a}{1-y\,ar{a}}
ight) = d
u(y)$

where $v \in \mathcal{P}$, and we ultimately obtain

$$F(z) = \int_{X} \frac{z(1-ya)^{2(1-a)}}{(1-az)^{2(1-a)}} d\nu(y).$$

The uniquess of the extreme points follows from the fact that the transformation $\mathscr{P} \ni \mu \rightarrow F_{\mu} \in \mathfrak{M}_{a}(a)$ is one-to-one. Theorem 2 has been proved.

Corollary 4. The convex hull of the class of convex functions in $\mathfrak{M}_0(a)$ is given by the formula

$$F(z) = \int\limits_X rac{z(1-xa)}{1-zx} d\mu(x).$$

Proof. It follows from the fact that the class of convex functions normalized by the conditions F(0) = 0, F(a) = a is a subclass of $\mathfrak{M}_{\mathfrak{f}}(a)$ and, that the functions $z \to z(1-zx)^{-1}(1-ax)$, |x| = 1, are convex.

The above theorem may be used to obtain upper bounds for some functionals defined on $\mathfrak{M}_{a}(a)$.

This class is compact in a locally-convex topological space of all functions analytic in D so, according to a well-known Krein-Milman Theorem [6], any real linear functional on this class attains its supremum at an extreme point.

Hence we have

Corollary 5. Suppose $f(z) = \sum_{n=1}^{\infty} a_n z^n \in \mathfrak{M}_a(a)$. Then there are the follow-

ing sharp estimates

(i)
$$|f(z)| \leq |z| \frac{1 - |a|^2}{(|1 - z\overline{a}| - |z - a|)^{2(1 - a)}}$$

(ii) $|f'(z)| \leq \max_{\substack{|x|-1 \\ |x|-1}} k'(z; x; a)$ $\leq \frac{(1-|a|^2)^{2-2a}(1+|a|)[1+(1-2a)|z|]}{[|1-\overline{a}z|-|z-a|]^{3-2a}}$ (iii) $|a_1| \leq (1-|a|^2)^{2(1-a)}$

$$|a_n| \leqslant \frac{\prod\limits_{k=2}^n (k-2a)}{(n-1)!} (1-|a|^2)^{2(1-a)}.$$

A function $F(z) = a_1 z + ...$ is said to be close-to-convex in the unit disc *D* if there exists a univalent convex function $\varphi(z) = b_1 z + ..., z \in D$ such that f'/φ' is a function of positive real part.

Denote by $\mathcal{M}_L(a)$ the whole class of such functions F normalized by the condition

$$F'(a) = 1, \ 0 < |a| < 1.$$

Theorem 3. The set $\mathscr{E}(\mathscr{M}_L(a))$ consists of functions of the form

$$F(z) = \int\limits_{X imes X} rac{z - rac{x + y}{2} z^2}{(1 - yz)^2} \cdot rac{(1 - ay)^3}{1 - ax} d\mu(x, y)$$

where $\mu(x, y)$ is a probability measure on $X \times X$. The extreme points of $\mathcal{M}_L(a)$ are precisely functions

$$D \ni z \mapsto \frac{z - \frac{x + y}{2} z^2}{(1 - yz)^2} \cdot \frac{(1 - ay)^3}{1 - ax} \in \mathcal{M}_L(a)$$

Proof. Let us notice first that if f(z) = z + ... is a close-to-convex function, then F defined by

(*)
$$F(z) = (1 - |a|^2) \left[f\left(\frac{z-a}{1-\bar{a}z}\right) - f(-a) \right], \ F(a) = 1$$

is in $\mathcal{M}_{L}(a)$.

To see this is sufficient to notice that if f'/φ' has positive real part in Dso does F'/h', where $h = \varphi\left(\frac{z-a}{1-\overline{a}z}\right)$, φ being convex. It has been proved [1] that close-to-convex function normalized by the conditions f(0) = f'(0) - 1 = 0 have the representation

(**)
$$f(z) = \int_{X \times X} \frac{z - \frac{x + y}{2} z^2}{(1 - yz)^3} d\mu(x, y).$$

Suppose $F \in \mathcal{M}_L(a)$. Thus by (*) there exists exactly one close-to-convex function $f(z) = z + \dots$ such that

$$F(z) = (1 - |a|^2) \left[f\left(\frac{z-a}{1-\overline{a}z}\right) - f(-a) \right]$$

By (**) there exists exactly one probability measure on $X \times X$ for which derivatives of functions F in the convex hull of $\mathcal{M}_L(a)$ are of the form

$$(***) F'(z) = (1 - |a|^2) \int_{X \times X} \frac{1 - \overline{a}z - x(z - a)}{1 - \overline{a}z - y(z - a)^3} d\mu(x, y)$$

It follows by using the transformations

$$x \mapsto (x+\overline{a})(1+ax)^{-1}, \ y \mapsto (y+\overline{a})(1+ay)^{-1}$$

which map X^2 onto itself that (***) is equivalent to

$$F(z) = \int_{X \times X} \frac{(1-xz)(1-ay)^3}{(1-yz)^3(1-ax)} d\mu(x, y)$$

The rest follows by integrating and making use of the Fubini's theorem. Each function of the integrand in Theorem 3 belongs to $\mathcal{M}_L(a)$ and the set of probability measures is convex. Theorem 3 has been proved.

Let us notice, that the above considerations are valid in the case when $F(z) = a_1 z + ..., F'(a) = 1$ belongs to the class of convex and univalent functions in D. It gives us

40

Theorem 4. Suppose $\mathscr{M}_{K}(a)$ is the class of convex functions $F(z) = a_{1} + \ldots, F'(z) = 1, z \in D$. Then $\mathscr{E}(\mathscr{M}_{K}(a))$ consists of functions of the form

$$F(z) = \int_{X} \frac{z(1-ax)^2}{1-xz} d\mu(x),$$

where μ is a probability measure on X. The extreme points of the class $\mathcal{M}_{K}(a)$ are precisely the functions

$$z \mapsto z (1-ax)^2 (1-xz)^{-1}, \quad |x| = 1.$$

The last two theorems yield sharp upper bounds for |F(z)|, |F(z)| and $|a_n|$.

REFERENCES

- Brickman, L., MacGregor, T. H., and Wilken, D. R., Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91-107.
- [2] Brickman, L., Hallenbeck, D. J., MacGregor, T. H., and Wilken, D. R., Convex hulls and extreme points of families of starlike and convex mappings, Trans. Amer. Math. Soc. 185 (1973), 413-428.
- [3] Marx, A., Untersuchungen über schlichte Abbildungen, Math. Ann. 10 (1931), 40-67.
- [4] Montel, P., Lecons sur les fonctions univalentes ou multivalentes, Paris 1933
- [5] Pommerenke, Chr., Univalent functions, Göttingen 1975.
- [6] Royden, H.L., Real analysis, New York 1964.
- [7] Sheil-Small, T., On convex univalent functions, J. London Math. Soc. (2) 1 (1969), 483-492.

STRESZCZENIE

W pracy tej wyznaczono otoczki wypukłe i punkty ekstremalne dla klas $\mathfrak{M}_{a}^{*}(a)$ i $\mathscr{M}_{L}(a)$ funkcji jednolistnych w kole jednostkowym *D*, gdzie: $\mathfrak{M}_{a}^{*}(a)$ oznacza klasę funkcji *f* a-gwiaździstych z unormowaniem f(0) = 0, f(a) = a, $\mathscr{M}_{L}(a)$ oznacza klasę funkcji *F* prawie wypukłych z unormowaniem F(0) = 0, F'(a) = 1 (|a| < 1, 0 < a < 1)

РЕЗЮМЕ

В этой работе получено выпуклые оболочки и экспериментальные точки в классах $\mathfrak{M}_a^*(a)$ и $\mathscr{M}_L(a)$ однолистных функций в D, где $\mathfrak{M}_L^*(a)$ обозначает класс функции f,a-звездных для которых f(0) = 0, $f(a) = a, \mathscr{M}_L(a)$ – класс F почти выпуклых функций с нормировкой F(0) = 0, F'(a) = 1.