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Analytical Treatment of Isometries of Hyperbolic Space
Analityczne podejécie do izometrii przestrzeni hiperbolicznej

AHanuTHYecKUit NOAXOMd X M30OMETPUAM ruOoepO0IM4eCKOrOo OPOCTPAaHCTBA

A model of hyperbolic Lobachevskian stereometry which is a direct
generalization of a model of H. Poincaré was been presented in the pa-
per [2]. A group of motions of the metric under investigation is just
a group of complex homographies. A basic Riemannian space is {z € R®, 2*
> 0}. A hyperbolic plane is either a hemisphere which has a center at
the boundary a® = 0, or a vertical half-plane Az!'-+Bz? = 0. A hyper-
bolic straight line is an intersection of two such planes. In this paper
we prove some theorems on motions and on their invariants. Then we
investigate the generating of hyperbolic isometries by symmetries.

Let C and H denote respectively a field of complex numbers and
that of quaternions. Let ¢ denote a multiplicative group of those z € C
for which |2| = 1. Thus ¢ acts on H by the rule.

(1) (2, h)>2"1hz

Dcnote by N the orbit space with respect to the above action. There
is proved in [2], that N is homeomorphic to a closure of the manifold
of circles in Euclidean plane. In fact, if we present any quaternion k in
the form h = A’ +h''j, where h’, b'’ € C and j is the “third unity” in H,
then we have

6—h(h'+h" .)G‘a = h/ hlrezia .'
J J

We sec that the orbit of & may be identified with an Euclidean circle
with a center (reh’,imh’) and with a radius [A"|.
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Let A = [:3] be a complex non-singular matrix. The group L of

such matrices acts on H in the following manners

(2) (4, k)—>(ah+Db)(ch+d)7},
or
(3) (A, h)—>(akh +b)(ch+a)~".

Observe that transformation (3) is a product of a homography (2) and
the action h—k.
For any ¢“ € C we have

(a(e™he)+ D) (c(e” “he®) +d)' = e~ “(ah+b)(ch+d)'e"

Thus we conclude that the transformations (2) and (3) induces some
associative left action of L on N, [2].

Denote by A* a transformation which corresponds to the matrix A,
and by A an orbit of 2 by the action (1). Then we define z, 22, 23, (resp.
&', 2, 7%) by the decomposition h = A’ +h"j, and &' = reh’, 22 = imh’,
2 = |h"'| (resp. A*h =h'+h"”’j and &' = rek’, 32 = imh’, &® = |h")).

Proposition 1. The result of (2) may be written in local coordinates
as follows:

AR = [B, B, 5]
where
sL -%(re(ab‘)(_(a:‘)’+ (22)2 -+ (a)?) +re(ad + bE) 2 +
+re((a¢7—-bé)i)m’+re(b3)),
72 — % (im(aE)((wl)z +(22)2 + (ws)z) —i—im(aa—{-b(':).’v‘ +
+ im ((ad — b&)i) 2 + im (bd)),
= (- lad — be| 3,
m
m = |e|2((2?)? + (22)2 + (22)?) + (cd +Ed)x? +
+ ((cd —ed)i) z2 + |d)2.

A similar result holds for (3). Proof by a direct computing. The following
proposition may be also proved by a direct computing.

Proposition 2. A Jacobian determinant of the above considered mapping

[wl’ w2’ xSJ:_‘_‘) [él’ 5;2’ 573]

i8 equal to (lad — be|[m)3.



Analytical Treatment of Isomelries of Hyperbolic Space 7

Proposition 3. The above mapping A* is an isomelry of the space
X = int N which is provided with the following Riemanian meiric

5|1 12,3) = ((da') +(d2®)’ + (o)) (e/2®)
where p i8 some posilive constant.

Proof : Let t—[v!(t), v%(1), v*(t)] be a parametrisation of a curve
in Z. A® sends this curve into another one, t— [9'(t), 9*(t), 9*(t)] where
the components 9%, 62, ¥° may be computed be means of proposition 1.
Then the length of the curve described by o is equal to

b

J V(6" @F +5 @) + 7 @F (/@ () at

4

‘l 2,m2
== -4 b2 et (1302 (2’ (1))2 Y e m
J Y/t e OF (O 5 OF) s

by
= [V((o" ®F -+ (o 0) + (% (0))) (e/o* (1) dt.
4

Thus the right hand member yields the length of the origin curve, q. e. d.

The transformation (3) is also an isometry as a product (2) and the iso-
metry h—>h.

The following theorem is a corollary from the above propositions.

Theorem 4. There exists a homomorphism of the group of complex

homographies into the group of isometries of 3-dimensional hyperbolic
space.

In what follows we shall deal with those isometries which are
performed by complex homographies. We shall call them k-isometries.
We begin with the following

Theorem 5. Each L-isomelry sends hyperbolic planes to such planes.

Proof: A general form of an equation of a hyperbolic planes i8

(4) K((@1)2+ (a2)2 + (2)2) + 2mat + 2na? 4 p = 0

where k> 0. If we replace «!, 2%, z* respectively by #', #2, 2* which are
computed by means of Proposition 1. Then we obtain

() R ((3)2+ (82)2 + (5)2) + 2wt + 278+ = O
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where
s k|a|®+ 2mre(ac) 4 2nim (aé) + p|c|?
m = }k(ab+@b) - m-re(ad + bé) + n-im(ad 4 be) +
+1p(ed +2d),
(6) n = }k(ab—ab)i+ m-re((ad —bE)i)+n-im((ad — bE)i)

+%p(ca_ad)i’
p = k|b|2+2m-re(bd) + 2n-im(bd) + p |d|2.

If £ =0 then we have _the hyperbolic plane which is represented by
a vertical half-plane. If ¥ -~ 0 then we have to show that the equation
(5) is an equation of a hemisphere, hecause that we have

m24-nt > pk

This follows by a direct evaluation.
Since each straight line is an intersection of two planes, we have

Corollary 6. Each L-isometry sends straight lines to straight lines.

It is proved in [2] that if there are given the two distinct points a
and b in Z then there exists an Z-isometry which sends them respectively
to points with coordinates (0, 0, 1) and (0, 0, ¢), where ¢ > 1. We prove
some stronger theorem now.

Theorem 7. Let = be a hyperbolic plane, k be a straight line = n
and Q be a point on k. Thus there exist at least four L-isometries which send
7 to a plane x> = 0 so that k is sent to a line x* = 2% = 0 and Q s sent to
(0,0, 1).

Proof: We make use from the known fact, that for every circle
on the Z-planc there exist homographies which send this circle to an “un-
proper” circle 22 = 0. We apply this theorem to a case where the circle
is a set of improper points of Z-plane. Let us chose any such homography,
hy. Then all other ones are of the form k,0h, where either h,: z—(az+

)

h, sends the improper points of h,(k) to 0 and to oo respectively and that
hy(h,(Q)) = 4. This is also performable in two ways, [1]. In view of an
isomorphism of the group of hyperholic motions with the group of ho-
mographies our theorem is valid.

By an analogy with Euclidean geometry we distinguish here some
subgroups of isometries. The following theorem may be proved by simple
calculations.

+b)(cz+d)" or h,: z—>(az+b)(cz+ d)"'. Now we check la’ 2]‘ so that
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Theorem 8. A hyperbolic isometry which sends the two distinct

points to themselves is an identity mapping on the straight line joining
these points.

An analogical theorem is valid for a triple of points and a corre-
sponding plane.
By an analogy to Euclidean geometry we shall distinguish here some

special subgroups of isometries. The following theorem may be proved
by a direct calculation.

Theorem 9. If some isometry sends some pair of distinct points to

itself then this izomelry is an identity mapping of the straight line which
contains these points.

An analogical theorem ig valid for a triple of points which determines
a unique hyperbolic plane.

Definition 10. A homography of the form (2) which leaves fized a given
point P is called a rotation around P.

The following theorem may be proved a by direct calculation

Theorem 11. Let P = (z;, 3, x3), where z, = rep, 2 = imp, 3 = |q|
= |r|. Then a rotation around P is represented by a homography with a matric

<1 |l
=

+d

~q||~a|
oY I)Q!

cp +¢p (Ipl*+1q1*) +dp — dp—
s d
where [cdp —cdp + 4|2 + |e|2(|p|2+ |q|?)] =1

An equation

()

®  (o+rptratla—od (o tign) +ap-dpL = s(esa

has either one or two complex solutions. That means that a rotation around

P may have someone fixed point except P. In view of theorem 8 we
conclude the following

Corollary 12. If a determinant of the equation (8) i8 =+ 0, then there
exist two distinct points of the rotation in question. Thus the unique
straight line through these points may be considered as an awis of the
rotation.

An axial symmetry is a special rotation in the hyperbolic 3-space.

Theorem 13. Each axial symmelry is represented by a convenable
-1, 2p

homography. If its matrix is I 0 1
= ¥

|
] then the axis i3 a straight line
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which is represented in N by equations ' = rep, x* = imp. If the cor-
‘m4+n  —2mn

m—n’ m—n

2 —(m +mn)
. m—n m—mn
i8 represended in N by a semicircle which touches the boundary of N
in points (rem, imm, 0) and (ren, imn, 0).

responding matriz 18 then the corresponding aris

Definition 14. If the stable point P is unproper then the correspon-
ding homography will be called a translation. A central symmetry is —
by a definition — such an isometry which sends each vector v at the
stable point P to the vector —o.

Theorem 15. Each isometry represented by mappings (3) with matrices

of the form
[p, —Iplz—lql"]
17 —D

i8 a central symmetry with respect to the point (rep, imp, |q|).
Let us investigate the isometries (3) in details.

Definition 16. An isometry which sends some prefixed plane to
itself and sends each vector at n to the opposite one will be called a plane
syminetry.

Theorem 17. A mapping

(9) By S8 R ol

represents a symmetry with respect to the plane, which map in N is a half-
plane touching the improper points (rep, imp, 0) and (req, imgq, 0). Thus
the mapping

m\ (1. P\
(10) hH(l:-ﬁJrr— | r' )(——h——p—)

r r

i8 a plane symmetry with respect to a plane which map in N i8 a hemisphere
with a center (rem, imm, 0) and with ti8 radius r.

A proof is easy and purely computational.

A composition of the two symmetries of the form (9) is an isometry
represented by a homography
o =PV Pe—p0) +(a—P)P' T —F'q)

p q9—Pp
11 h— :
e -7 q-p (¢ —7')qg—p)
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and we see that the determinant of the corresponding matrix, 4, is equal
4 7P 97F rnys |detA| = 1.
e b AN

A main special case is if

to

g5 30 solmd
7-7 a-Pp
planes are parallel. Thus the composition takes the form h+>h + ¢ where ¢
depends on p, ¢q, p’, q¢’. The corresponding isometry may be viewed as
a translation. In other cases we obtain a rotation the axis of which is
a straight line common for both planes.

If we compose two planar symmetries of the form (10) then we
obtain the mapping

i.e. the both

(12) R ( 1

— (' T+ () — [ [2) Bt o (2 — [ m]?) —
r'r r'r

i ‘(r')z_ |m'|2) . _1_ (m—m')h - L (7' m + 72 — |m|?) -
r'r r'r 'y
80 that the corresponding determinant is equal to 1. (12) is an identity
if the both planes coincide. If they have not any common line in proper
then the composition of the symmetries yields some translation.
If we perform a composition of the two mappings, one being of the
form (9) and the other of the form (10) then we obtain a homography

) =

— 7D "1DHag — Do ‘|2
13) hH("f i=? , mqu PR | e il )
r q—p r'(¢—p) r
(. 9=P , Pa—pq __m_')“
7' (¢—p) rg—p) 7

Here also we have |[det A| = 1. (13) represents either a rotation or a trans-
lation.

Corollary 18. A composition of any two planar symmetries i3 either
the identity, either a rotation or a translation. In particular, a composition
of the two planar symmetries with respect to planes which are perpendicular
one to another is an axial symmetry.

Theorem 19. A composition of three symmelries with respect to the
three planes which are perpendicular one to another and intersect im one
point P i8 a symmetry with respect to P.

Proof: We shall prove the theorem in a case when the two planes
are represented by half-planes in N and the third one is represented by
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a hemisphere. (The proofs of other cases are analogous). In the just case
the planar symmetries are of the form

and
h>(ph + g|*— |p|*) (R —P)~".

The point of intersection is P = (rep, imp, |g|). A composition of these
symmetries yields

hi—(ph — (Ip12+ 1g12)) (R — D).

In view of theorem 14 this represents a central symmetry.
The following theorem follows by the above deduced formulas of
compositions of symmetries.

Theorem 20. Every hyperbolic isometry may be obtained by a compo-
sition of some planar symmetries. In other words the planar symmetries
generate the group of hyperbolic isometries.

Theorem 21. If an isometry j i8 a result of a composilion of an even
(resp. odd) sequence of planar symmetries then there does not exist any
odd (resp. even) sequence of planar symmetries, such that j i3 a result of
their composition.

Proof: We have secn that a result of an even (resp. odd) compo-
gition of planar symmetries is represented by a homography of the form
(2) (resp. by a mapping like (3)). Therc does not exist an isometry except
a planar symmetry h—>% which transforms a mapping of the form (2)
to a mapping of the form (3), and this ends the proof.

The above theorem gives a reason to distinguish even and odd iso-
metries. There hold

Proposition 22: The set of even isomelries is a subgroup in the group
of tsometries.

Proposition 23. Each rotation around a point P is an even isomelry
for which P is a stable point. The set of rotations around a point P forms
& subgroup in the subgroup of isomelries for which P is stable.
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STRESZCZENIE

W pracy podano szereg fundamentalnych twierdzen o grupie izometrii tréj-
wymiarowej przestrzeni Lobaczewskiego, wychodzgo od uogélnionego modelu Poin-
caré’go. W modelu tym rozwazana grupa wyraza si@ przez zespolone homografie
pierwszego i drugiego rodzaju, zachowujgce lub zmieniajace orientacje. Wyznaczono
rézne podgrupy i zbadano ich tranzytywnoéé.

PE3IOME

B pa6orte paerca psan ¢yHaaMeHTabHBIX TEOPEM O rpynne A3OMETPUH TPeXMepHOTO Opo-
crpaicrsa Jlo6auesckoro, Brxoas B3 0606mennoit Monem IMounkapa. B aroit Moaem m3ydaercs
rpynna BhIpaXeHHas KOMIUIEKCHRIMHA ApOOHO nAHCHHRIMR OoTO6paxeHASMA OCPBOro h BTOPOro
poaa, KOTOpHE COOMIONAOT WM H3MEHAIOT OpHeHTAUMIO. OnpefesieHW pa3’Hble DOATPYIIb
M HCCJICAOBANACh MX TPAH3IMTHBAOCTb.






