ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA

VOL. XXIX, 21

SECTIO A

975

Instytut Matematyki, Uniwersytet Marii Curie-Sklodowskiej, Lublin

WOJCIECH ZYGMUNT

The Generic Property of Differential Equations with Compact Convex Valued Solutions

Własność generyczna równań różniczkowych, których rozwiązaniami są zbiory zwarte i wypukłe

Общее свойство уравнений в выпуклых компактных контингенциях

Introduction

Let \mathbb{R}^n be the real n-dimensional Euclidean space with the usual norm $|\cdot|$. By C we denote the family of all nonempty compact convex subsets of \mathbb{R}^n endowed with the Hausdorff metric d generated by the norm $|\cdot|$. It is known (see [4]) that (C,d) is a complete metric space. We shall denote by capital letters X, Y, Z, \ldots elements of C. In C we introduce the usual algebraic operations:

addition:
$$X + Y = \{x + y : x \in X, y \in Y\};$$

multiplication by nonnegative scalars $\lambda : \lambda X = \{\lambda x : x \in X\}.$

The following properties hold (see [2]):

$$X+\{\theta\}=\{\theta\}+X=X$$
 $1\cdot X=X$ $X+(Y+Z)=(X+Y)+Z$ $\lambda(X+Y)=\lambda X+\lambda Y$ $X+Y=Y+X$ $\lambda(\mu X)=(\lambda\mu)X$ $(*)$ $(*)$ $\lambda(X+U,Y+U)\leqslant d(X,Y)+d(U,V)$ $\lambda(X+U,Y+U)=d(X,Y)$ $\lambda(X+U,Y+U)=d(X,Y)$ $\lambda(X+U,Y+U)=\lambda(X,Y)$ $\lambda(X+U,Y+U)=\lambda(X,Y)$ $\lambda(X+U,Y+U)=\lambda(X,Y)$

where $\beta = \max(\lambda, \mu)$, λ , μ are nonnegative real numbers, θ is the origin of R'' (i.e. $\theta = (0, 0, ..., 0)$) and $\{\theta\}$ denotes the set, whose unique element is θ .

Let I = [0, 1] be an unit interval of the real line R. We shall say that a mapping $F: I \times C \to C$ is bounded if there is a positive number M such that $d(F(t, X), \{\theta\}) \leq M$ for each $(t, X) \in I \times C$.

Let us denote by \mathscr{F} the collection of all continuous bounded maps $F: I \times C \rightarrow C$. For $F, G \in \mathscr{F}$ we put

$$Dist(F, G) = \sup \{d(F(t, X), G(t, X)) : (t, X) \in I \times C\}.$$

Then the space (F, Dist) is a complete metric space.

In the present note we shall deal with the following differential problem of the type

(1)
$$\begin{cases} X(t) = F(t, X(t)), \\ X(0) = X_0, \quad X_0 \in C \end{cases}$$

where $F \in \mathscr{F}$ and X denotes the Hukuhara derivative (see [5]) of the set valued function $X: I \rightarrow C$. By a solution of this problem we mean any continuous function X which satisfies (1) on I.

Using the Costello technique [3] we shall show that the set of mappings F for which the problem (1) has not an unique solution is a set of the first category in the space $(\mathcal{F}, \text{Dist})$ (this property is called generic). We recall that a set is said to be of the first category if it is the countable union of nowhere dense and closed sets.

Main Theorem

Let (1, F) denote the problem (1) with the right hand side F. Consider the set $\mathscr X$ defined by

$$\mathscr{X} = \{F \in \mathscr{F} : (1, F) \text{ has nonunique solutions}\}.$$

 ${\mathscr X}$ consists of all mappings in ${\mathscr F}$ for which (1) has at least two solutions.

Theorem. The set \mathscr{X} is of the first category in \mathscr{F} .

Before proving this theorem we shall state two lemmas that will be used in the proof.

Lemma 2. Let $F \in \mathcal{F}$ and let $\delta > 0$ be given. Then there exists a locally Lipschitz mapping $G \in \mathcal{F}$ such that $Dist(F, G) < \delta$.

A mapping $G\colon I\times C\to C$ is called locally lipschitzean if for each point $p\in I\times C$ there is open neighbourhood \mathcal{O}_p of p and L_p such that $d(G(t,X),G(s,Y))\leqslant L_p\,\varrho\,((t,X),(s,Y))$ for all $(t,X),(s,Y)\in\mathcal{O}_p$ where $\varrho\,((t,X),(s,Y))=\max\big(|t-s|,d(X,Y)\big)$. Since the proof of this lemma is essentially the same as the proof of Lemma 1 in [6] given by A. Lasota and J. Yorke, we only sketch it briefly here.

Define

$$egin{aligned} Nig(\delta,(t,X)ig) &= ig\{(s,Y)\,\epsilon I imes C\colon \,arrhoig((t,X),(s,Y)ig)\} < 1 \,\, ext{and} \ dig(F(t,X),\,F(s,Y)ig) < \deltaig\}. \end{aligned}$$

There is a locally finite refinement $\{Q_a\}_{a\in A}$ of $\{N(\delta/2,(t,X)):(t,X)\in I\times C\}$ where each Q_a is nonempty and open.

For $a \in A$ we define $\mu_a: I \times C \rightarrow [0, \infty), p_a: I \times C \rightarrow I$ as follows

$$\mu_a(t,X) = egin{cases} 0 & ext{if } (t,X)
otin Q_a \ & ext{inf} \ (s,Y)
otin Q_a \ & ext{denotes the boundary of } Q_a), \end{cases}$$

$$p_a(t,X) = \mu_a(t,X) \Big(\sum_{eta \in \mathcal{A}'} \mu_eta(t,X)\Big)^{-1}.$$

Then each p_a is locally lipschitzean.

Let $\{(t_a, X_a)\}$ be a set of points such that $(t_a, X_a) \in Q_a$ for all a.

Define now $G: I \times C \rightarrow I$ by

$$G(t,X) = \sum_{a_a,\mathscr{A}} p_a(t,X) \cdot F(t_a,X_a).$$

It is easy to verify that G is well defined, because $\{Q_a\}$ is locally finite, and locally lipschitzean in view of formulas (*).

For each $(t, X) \in I \times C$ we have

$$egin{aligned} dig(F(t,X),G(t,X)ig) &= dig(\sum_{a\in\mathscr{A}}p_a(t,X)F(t,X),\sum_{a\in\mathscr{A}}p_a(t,X)F(t_a,X_a)ig)\ &\leqslant \sum_{a\in\mathscr{A}}p_aig((t,X)d(F(t,X),F(t_a,X_a)ig)\leqslant \sum_{a\in\mathscr{A}}ig(p_a(t,X)ig)\cdot\delta = \delta. \end{aligned}$$

Hence it follows that $Dist(F, G) < \delta$.

Lemma 2. If $F \in \mathcal{F}$ is locally lipschitzean, then the problem (1) has exactly one solution.

To prove this lemma, let us recall the fact the space (C, d) may be embedded as a closed positive convex cone of a Banach space $(\mathcal{B}, \|\cdot\|)$ (see [1]) in such way that the embedding J is an isometric isomorphism, i.e.

$$J(\lambda X + \mu Y) = \lambda J(X) + \mu J(Y)$$
 $\lambda, \mu \geqslant 0$

and

$$||J(X)-J(Y)||=d(X,Y), \text{ where } X,Y \in C.$$

From that, using the embedding of equation (1) in the Banach space we obtain, in our hypotheses, the existence and uniqueness of the solution $X: I \rightarrow C$.

Proof of the theorem. By De Blasi and Iervolino Theorem (see [2]) each (1, F) has at least one solution. Define

$$\gamma(F) = \sup \{ \sup_{t \in I} d(X_1(t), X_2(t)) \colon X_1, X_2 \text{ solutions of } (1, F) \}$$

and

$$T_n = \Big\{ F \, \epsilon \, \mathscr{F} \colon \, \gamma(F) \geqslant rac{1}{n} \Big\}, \hspace{0.5cm} n = 1, \, 2, \, \ldots$$

Then we have $\mathscr{X} = \bigcup_{n=1}^{\infty} T_n$.

It is easy to verify that each T_n is a closed set in \mathscr{F} . Now we shall show that each T_n is also a nowhere dense set. Let $F \in T_n$ be arbitrary. Fix $\varepsilon > 0$ arbitrarily and consider a neighborhood $\mathcal{O}_{\varepsilon}(F)$ of F of radius ε . By lemma 1 there is a locally Lipschitz mapping G_{ε} such that $G_{\varepsilon} \in \mathcal{O}_{\varepsilon}(F)$. This implies that each neighbourhood of F contains a mapping locally lipschitzean. In view of lemma 2, $(1, G_{\varepsilon})$ has the unique solution. Hence no point of T_n has a neighbourhood contained in T_n , that is, T_n is a nowhere dense set in \mathscr{F} .

So \mathcal{X} is a set of the first category in \mathcal{F} .

REFERENCES

- [1] Banks H.T., Jacobs M.Q., A differential calculus for multifunctions, J. Math. Anal. Appl., 29, 2 (1970), 246-272.
- [2] De Blasi F.S., Iervolino F., Equazioni differenziali con soluzioni a valore compatto convesso, Boll. Un. Mat. Ital., S. IV, 2, 4-5 (1969), 491-501.
- [3] Hukuhara M., Integration des applications mesurables dont la valeur est un compact convexe, Funkcial. Ekvac., 10 (1967), 205-223.
- [3] Costello T., Generic properties of differential equations, SIAM J. Math. Anal., 4, 2 (1973), 245-249.
- [4] Hukuhara M., Sur l'application semicontinue dont la valeur est un compact convexe, Funkcial. Ekvac., 10 (1967), 43-66.
- [5] ,, Integration des applications mesurables dont la valeur est un compact convexe, ibiden, 10 (1967), 205-223.
- [6] Lasota A., Yorke J.A., The Generic Property of Existence of Solutions of Differential Equations in Banach Space, J.D.E., 13, 1 (1973), 1-11.

STRESZCZENIE

W pracy udowodniono, że zbiór tych przekształceń ${\it F}$, dla których problem

$$X(t) = F(t, X(t)),$$

gdzie X oznacza pochodną w sensie Hukuhary funkcji wieloznacznej $X\colon I\to C$ ma przynajmniej dwa rozwiązania, jest zbiorem pierwszej kategorii w przestrzeni (\mathscr{F} , Dist).

РЕЗЮМЕ

В работе доказано, что множество тех отображений F, для которых проблема

$$\begin{cases} \dot{X}(t) = F(t, X(t)) \\ X(0) = X_0, X_0 \in C, \end{cases}$$

где X обозначает производную по Фукухару многозначной функции $X\colon I \to C$ имеет неединственное решение, является множеством первой категории в пространстве (\mathscr{F} , Dist).