ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. XXIX, 17	SECTIO A	1975
VOL. AAIA, II	DHOITO A	1010

Instytut Matematyki, Uniwersytet Maril Curle-Skłodowskiej, Lublin

ZBIGNIEW ŚWIĘTOCHOWSKI

Some Remarks on the Wave Operator in a Curvilinear Coordinate System

Pewne uwagi o operatorze falowym w krzywoliniowym układzie współrzędnych

Некоторые замечания о волновом операторе в криволинейных координатах

In this paper we shall study some properties of the differential operator of second order, the characteristic form of which has a signature (+, -, ..., -) (it is called wave operator), acting in a suitable chosen coordinate system.

I. Definitions and notions.

Let M be a smooth (class C^{∞}) real manifold of dimension n+1. If $x \in M$, then by $T_x(M)$ and $T_x^*(M)$ we denote the tangent and the cotangent spaces of M at the point x respectively.

Consider the differential operator with the variable coefficients, the action of which on function is described by the formula

(1)
$$(P(D)u)(x) = \sum_{i,k=0}^{n} a^{ik}(x) \frac{\partial^2 u(x)}{\partial x_i \partial x_k}$$

where (x_0, \ldots, x_n) are the coordinates in some local coordinate system on *M*. We assume that $a^{ik}(x) = a^{ki}(x)$.

The characteristic quadratic form of P(D) at the point $x \in M$ is defined by the formula

(2)
$$F_x(f,f) = \sum_{i,k=0}^n a^{ik}(x) \langle f, e_i(x) \rangle \langle f, e_k(x) \rangle; f \in T_x^*(M)$$

where $e_s(x) = \left(\frac{\partial}{\partial x_s}\right)_x \epsilon T_x(M)$ and the symbol $\langle f, a \rangle$ denotes the value of the form $f \epsilon T_x^*(M)$ at the vector $a \epsilon T_x(M)$. The operator P(D) will be called wave operator if its characteristic form F_x has the signature

(+, -, ..., -) for any $x \in M$. Everywhere throughout this paper it is assumed that P(D) is the wave operator.

The characteristic cone Γ_x at the point $x \in M$ is defined by formula

(3)
$$\Gamma_x = \{ f \in T^*_x(M) : F_x(f, f) > 0 \}.$$

It consists of two connected parts, one of which we denote by Γ_x^+ . The future light cone K_x^+ at $x \in M$ is defined by the formula

(4)
$$K_x^+ = \{a \in T_x(M) \colon \langle f, a \rangle > 0, \text{ for every } f \in \Gamma_x^+ \}.$$

Remark 1. Let $(f_0(x), \ldots, f_n(x))$ be the basis in $T_x^*(M)$, biorthonormal to a basis $(e_0(x), \ldots, e_n(x))$ in $T_x(M)$ and let $A^{ik}(x)$ be the inverse matrix to $a^{ik}(x)$. It is easy to see that the following equalities hold

(5)

$$\Gamma_{x} = \left\{ f = \beta_{0} f_{0}(x) + \dots + \beta_{n} f_{n}(x) : \sum_{i,k=0}^{n} a^{ik}(x) \beta_{i} \beta_{k} > 0 \right\},$$

$$K_{x} = K_{x}^{+} \cup (-K_{x}^{+}) \cup \{0\}$$

$$= \Big\{ a = a_0 e_0(x) + \ldots + a_n e_n(x) : \sum_{i,k=0}^n A^{ik}(x) a_i a_k \ge 0 \Big\}.$$

By (5), one can see that Γ_x and K_x are in one-to-one correspondence (up to a constant positive multiplier) with the coefficients of P(D) in the coordinate system (x_0, \ldots, x_n) .

Remark 2. In the sequel we'll need a continuous family of halfcones K_x^+ . The choosing of such family will be possible under some additional assumptions on M.

We say that the hyperplane P in $T_x(M)$ has the space-like orientation if P lies outside K_x^+ and has time-like one, if P intersects interior K_x^+ . Let P be a hyperplane in $T_x(M)$ and let $0 \neq p \in T_x^*(M)$ be a form vanishing on P. One can easy prove the following

Lemma 1.

(a) {the orientation of P is time-like} \Leftrightarrow { $p \notin \Gamma_x$ }

(b) {the orientation of P is space-like} $\Leftrightarrow \{p \in \Gamma_r\}$.

Let N be a smooth submanifold of dimension n of the manifold M. We say that the orientation of N at the point x is time-like (space-like) if the orientation of the hyperplane $T_x(N)$ is time-like (space-like).

II. The equation P(D)u = 0.

Assume that there is a local coordinate system $(x_0, ..., x_n)$ given on M, satisfying the following conditions: $1^{\circ} e_0(x) \in \operatorname{Int} K_x^+$, 2° the orientation of the hyperplane $P(x) = \ln(e_1(x), \ldots, e_n(x))$ is space-like, for any $x \in M$, where $e_i(x) = \left(\frac{\partial}{\partial x_i}\right)_x$ (Fig. 1)

Fig. 1

Lemma 2. In the above mentioned coordinate system there is $a^{00}(x) > 0$ and the form $\left(-\sum_{i,k=1}^{n} a^{ik}(x)a_ia_k\right)$ is positive-defined.

Proof. Fix $x \in M$. Let $(f_0(x), \ldots, f_n(x))$ be a biorthonormal basis in $T_x^*(M)$ with respect to the basis $(e_0(x), \ldots, e_n(x))$. Each form which is different to 0 and vanishes on P(x), has the form $af_0(x)$, $a \neq 0$. Since the orientation of P(x) is space-like, thus by Lemma 1, $f_0(x) \in \Gamma_x$. Hence $a^{00}(x) = F_x(f_0(x), f_0(x)) > 0$. Consider the sequence a_1, \ldots, a_n ; $\sum_{i=1}^n a_i^2 > 0$, and the form $f(x) = \sum_{i=1}^n a_i f_i(x)$. The form f(x) vanishes on $e_0(x)$, thus the hyperplane on which vanishes f(x) contains $e_0(x)$, hence intersects $\operatorname{Int} K_x^+$. Hence, by Lemma 1, $f(x) \notin \Gamma_x$ and it shows that $\sum_{i,k=1}^n a^{ik}(x) a_i a_k = F_x(f(x), f(x)) < 0$. So, in the coordinate system satisfying 1°, 2°, the equation P(D)u = 0 can be written in the form

(6)
$$\frac{\partial^2 u(x)}{\partial x_0^2} + \sum_{k=1}^n b^k(x) \frac{\partial^2 y(x)}{\partial x_0 \partial x_k} - \sum_{i,k=1}^n b^{ik}(x) \frac{\partial^2 u(x)}{\partial x_i \partial x_k} = 0$$

where $b^{ki}(x) = b^{ik}(x)$ and the form $\sum_{i,k=1}^{n} b^{ik}(x) a_i a_k$ is positive-defined.

Construction. Now we shall give some sufficient conditions for the possibility of the construction of a coordinate system satisfying $1^{\circ}-2^{\circ}$ conditions and the following one:

3° in a such coordinate system, the coordinates of points from M compose the set $\langle 0, \infty \rangle \times \Omega_1, \Omega_1$ being a bounded domain in \mathbb{R}^n .

Assumptions. Let Ω be a domain in \mathbb{R}^{n+1} , the boundary of which consists of two parts: the space-like oriented, smooth, compact surface Σ and the time-like oriented, smooth surface (or finitely many of surfaces) σ . Assume, that there exists a functional ψ of class C^2 defined on some neighbourhood Ω_0 of $\overline{\Omega}, \psi(x) \ge 0$, such that

(i) $\operatorname{grad} \psi(x) \, \epsilon \, \Gamma_x$ for any $x \, \epsilon \, \Omega_0$,

(ii) the surface Σ takes the form: $\Sigma = \{x \in \overline{\Omega} : \psi(x) = 0\}$

Assume furthermore that the wave operator, acting on Ω_0 has the coefficients of class C^{∞} .

Let us denote $\Sigma_c = \{x \in \overline{\Omega} : \psi(x) = c\}, \ \Omega_c = \{(x \in \overline{\Omega} : \psi(x) > c\}, (\text{Fig. 2})\}$

Fig. 2

Remark 3. Condition (i) arises from the paper of Hormander (cf. [1], p. 108). In other words condition (i) means that the surfaces Σ_c are space-like oriented.

Hereafter, by Γ_x^+ we denote this part of Γ_x , such that $\operatorname{grad} \psi(x) \in \Gamma_x^+$. And so, we have a continuous family of half-cones Γ_x^+ and a continuous family of K_x^+ on Ω_0 .

We shall construct a coordinate system on $\overline{\Omega}$ satisfying $1^{\circ}-3^{\circ}$.

The set $Q = Q \setminus \Sigma_c$, c — some constant < 0, is a smooth manifold with the boundary in σ . We shall construct a smooth vector field on Qsuch that $e_0(x) \in \operatorname{Int} K_x^+$ and $e_0(x) \in T_x(\sigma)$ for $x \in \sigma$. To do this we shall use partition of the unity.

Let $x \in Q$ and let U be the coordinate neighbourhood of x with the coordinate homeomorphism φ mapping U into $\mathbb{R}^{n+1}_+ = \{(x_0, \ldots, x_n) \in \mathbb{R}^{n+1}: x_n \ge 0\}$. By φ_* we denote the map of tangent spaces induced by φ . On $\varphi(U)$ we define a constant field v such that $\varphi_{*,\varphi(x)}^{-1} v \in K_x^+$. If $\varphi(x) \in \partial \mathbb{R}^{n+1}_+$, then we choose an arbitrary $v \in \partial \mathbb{R}^{n+1}_+$; on the contrary, if $\varphi(x) \notin \partial \mathbb{R}^{n+1}_+$, then we take a sufficiently small U such that $\varphi(U) \cap \partial \mathbb{R}^{n+1}_+ = \emptyset$.

The continuous changing of K_x^+ assures that if U is sufficiently small, then the image of v by φ_*^{-1} still belongs to $\operatorname{Int} K_x^+$ for $x \in U$.

The image of v by φ_*^{-1} composes the required vector field η on U.

Let $\{U_i\}$ be a such covering of Q, $\{\eta_i(x)\}$ — such a vector field on U_i and let $\{\varphi_i\}$ be a smooth partition of the unity subordinates to $\{U_i\}$. We take:

 $\tau_i(x) = \begin{cases} \varphi_i(x) \eta_i(x), \text{ for } x \in U_i \\ 0, \text{ for } x \notin U_i \end{cases}$

and $e_0(x) = \sum_i \tau_i(x)$.

Thus we obtain the smooth vector field on Q, non-vanishing at any $x \in Q$. The theorem of Piccard assures the integrability of that field.

Let $x \in \overline{\Omega}$, $\psi(x) = c_0$, and let γ be an integral curve passing through x and intersecting σ at the point having the coordinates (x_0, \ldots, x_n) . We set a new coordinates of the point x as follows: (c_0, x_1, \ldots, x_n) . The obtained coordinate system satisfies conditions $1^{\circ}-3^{\circ}$, the coordi-

nates of the points of $\overline{\Omega}$ compose the set $\langle 0, \infty \rangle \times \Sigma$. **Remark 4.** Conversely, if a such coordinate system is given, then

taking $\psi(x_0, ..., x_n) = x_0$, we see that the functional ψ satisfies (i) -(ii).

On the other hand, one can easy construct an example of continuous family of K_x^+ defined on $\overline{\Omega}$ such that there is no functional ψ satisfying (i) -(ii).

REFERENCES

- Hörmander L., Uniqueness theorems and estimates for normally hyperbolic partial differential equations of the second order, Tolfte Skand. Matematikerkongressen 1953. Lund 1954, 105-115.
- [2] Kisynski J., On a mixed problem for the wave operator, University of Warsaw, 1972, preprint.

STRESZCZENIE

W pracy zawarte są pewne uwagi dotyczące operatora falowego P(D), działającego w krzywoliniowym układzie współrzędnych w obszarze $\Omega \subset \mathbb{R}^{n+1}$. Jeśli układ współrzędnych jest stosownie dobrany, wtedy równanie P(D)u = 0 można zapisać w postaci:

$$\frac{\partial^2 u}{\partial x_0^2} + \sum_{k=1}^n b^k(x) \frac{\partial^2 u}{\partial x_0 \partial x_k} - \sum_{i,k=1}^n b^{ik}(x) \frac{\partial^2 u}{\partial x_i \partial x_k} = 0,$$

gdzie forma $\sum_{i,k=1}^{n} b^{ik}(x) a_i a_k$ jest dodatnio określona. Przy pewnych założeniach odnośnie do Ω podaje się metodę konstrukcji takiego układu.

РЕЗЮМЕ

Настоящая работа содержит некоторые замечания, касающиеся волнового оператора действующего в криволинейных координатах в области Ω с \mathbb{R}^{n+1} . Если система координат подобрана подходящим способом, тогда уравнение $P(D)_{u} = 0$ можно записать в виде:

$$\frac{\partial^2 u}{\partial x_0^2} + \sum_{k=1}^n b^k(x) \frac{\partial^2 u}{\partial x_0 \partial x_k} - \sum_{i,k=1}^n b^{ik}(x) \frac{\partial^2 u}{\partial x_i \partial x_k} = 0,$$

где форма $\sum_{i,k=1}^{n} b^{ik}(x) a_i a_k$ положительно определена. При некоторых предположениях относительно Ω приводится метод построения такой системы.