ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. XXIX, 13

SECTIO A

975

University of Delaware, Newark, Delaware 19711, USA

HERB SILVERMAN

Products of Starlike and Convex Functions

Iloczyny funkcji gwiaździstych i wypukłych Произведения звёздных и выпуклых функций

1. Introduction

Let S denote the class of functions of the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ that are analytic and univalent in the unit disk |z| < 1. A function $f \in S$ is said to be starlike of order a, $(0 \le a \le 1)$, denoted $f \in S^*(a)$, if

$$\operatorname{Re}\left\{zrac{f'}{f}
ight\} > a \; (|z| < 1)$$

and is said to be convex of order a, denoted $f \in K(a)$, if

$$\operatorname{Re}\left\{1+zrac{f''}{f'}
ight\}>lpha \; (|z|<1)\,.$$

We determine the order of starlikeness of

$$h(z) = z \prod_{i=1}^{n} \left(\frac{f_i(z)}{z} \right)^{a_i} \prod_{j=1}^{m} (g'_j(z))^{b_j},$$

where $f_i \in S^*(a)$, $g_j \in K(\beta)$ and $a_i, b_j \ge 0$. We also determine precise restrictions on a, β, a_i, b_j for which

$$H(z) = \int_{0}^{\infty} \frac{h(t)}{t} dt$$

is univalent and close-to-convex. Finally, we assume $a_i \equiv a_1$ and $b_j \equiv b_1$, and vary the orders of starlikeness of $f_i(z)$ for each i and the orders of

convexity of $g_j(z)$ for each j to obtain conditions for which H(z) is close-to-convex. These results generalize some of those of Kim and Merkes [2], Merkes and Wright [3], and Schild [5].

2. Orders of starlikeness and convexity theorems

Theorem 1. Suppose $f_i \in S^*(a)$ (i = 1, 2, ..., n) and $g_j \in K(\beta)$ (j = 1, 2, ..., m). Let

$$h(z) = z \prod_{i=1}^n \left(\frac{f_i(z)}{z} \right)^{a_i} \prod_{j=1}^m \left(g_j'(z) \right)^{b_j}, \ where \ a_i, b_j \geqslant 0,$$

and set $\sum_{i=1}^{n} a_i = a$, $\sum_{j=1}^{m} b_j = b$. Then $h(z) \in S^* \{1 - a(1-a) - b(1-\beta)\}$. This result is sharp.

Proof. Forming the derivative of

$$\log h(z) = \log z + \sum_{i=1}^{n} a_i (\log f_i(z) - \log z) + \sum_{j=1}^{m} b_j \log g'_j(z),$$

we obtain

$$\begin{aligned} (1) \quad & \frac{zh'}{h} = 1 + \sum_{i=1}^{n} a_i \left(z \frac{f_i'}{f_i} - 1 \right) + \sum_{j=1}^{m} b_j \frac{zg_i''}{g_j'} \\ & = 1 - a - b + \sum_{i=1}^{n} a_i \frac{zf_i'}{f_i} + \sum_{i=1}^{m} b_i \left(1 + \frac{zg_j''}{g_j'} \right). \end{aligned}$$

Taking real parts in (1) leads to

$$\operatorname{Re}rac{zh'}{h}\geqslant 1-a-b+a\sum_{i=1}^n a_i+eta\sum_{j=1}^m b_j=1-a(1-a)-b(1-eta).$$

This completes the proof. To show sharpness, set

$$f_i = rac{z}{(1-z)^{2(1-a)}} \quad ext{ and } \quad g_j = \int\limits_0^z rac{dt}{(1-t)^{2(1-eta)}}$$

for all i and j. Then

$$h(z) = \frac{z}{(1-z)^{2[(1-a)a+(1-\beta)b]}} \in S^* \{1-a(1-a)-b(1-\beta)\},$$

but is starlike of no greater order. Note that this function is not even univalent when $a(1-a)+b(1-\beta)>1$.

Setting $a_i \equiv 0$, $b = b_1 = 1$, and $g = g_1$, we obtain the well known Corollary 1. $g \in K(\beta)$ implies $zg' \in S^*(\beta)$.

Setting $a_1 \equiv 0$, $b = b_1$, and $g = g_1$, we get

Corollary 2. $g \in K(0)$ implies $z(g')^b \in S^*(1-b)$, a result of Schild [5]. Setting $a = a_1$, $f = f_1$ and $b_j \equiv 0$, we get

Corollary 3. $f \in S^*(0)$ implies $z \left(\frac{f(z)}{z} \right)^a \in S^*(1-z)$, also a result of Shild [5].

Theorem 2.

$$H(z) = \int\limits_0^z \left(\prod_{i=1}^n \left(\frac{f_i(t)}{t} \right)^{a_i} \prod_{j=1}^m \left(g_j'(t) \right)^{b_j} \right) dt \, \epsilon \, K \left\{ 1 - a \left(1 - a \right) - b \left(1 - \beta \right) \right\}.$$

Proof. This follows from Theorem 1 and the relationship $H \in K\{1-a(1-a)-b(1-\beta)\}$ if and only if $zH'=h \in S^*\{1-a(1-a)-b(1-\beta)\}$.

Remark. When $a_i \equiv 0$ and $b = b_1 + b_2 \leqslant 1$, this reduces to a result of Kim and Merkes [2].

3. A close-to-convex theorem

We will need the following:

Lemma. Suppose P(z) is analytic in |z| < 1 with P(0) = 1 and $\operatorname{Re} P(z) > \gamma$. Then for $z = re^{i\theta}$ and $0 \le \theta_1 \le \theta_2 \le 2\pi$, we have

$$\gamma(\theta_2 - \theta_1) \leqslant \int\limits_{\theta_1}^{\theta_2} \mathrm{Re} P(z) \, d heta \leqslant 2 \pi (1 - \gamma) + \gamma(\theta_2 - \theta_1).$$

Proof. The left hand inequality is immediate. The right hand inequality follows from

$$\int\limits_{ heta_1}^{ heta_2} \mathrm{Re} \Big\{ rac{P(z) - \gamma}{1 - \gamma} \Big\} d heta \leqslant \int\limits_{ heta}^{2\pi} \mathrm{Re} \Big\{ rac{P(z) - \gamma}{1 - \gamma} \Big\} d heta = 2\pi,$$

where this last equality is a consequence of the mean value theorem for harmonic functions.

We may now prove a theorem about H(z) without the restriction that the exponents a_i , b_j be positive.

Theorem 3. Suppose $f_i \in S^*(a)$ (i = 1, ..., n) and $g_j \in K(\beta)$ (j = 1, ..., m). Let

$$H(z) = \int\limits_0^z \left(\prod_{i=1}^n \left(rac{f_i(t)}{t}
ight)^{a_i} \prod_{j=1}^m \left(g_j'(t)
ight)^{b_j} dt \, ,$$

and set

$$a = \sum_{i=1}^{m} a_i = \sum_{i} a_{i+} + \sum_{i} a_{i-} = a_{+} + a_{-},$$

$$b = \sum_{j=1}^{m} b_j = \sum_{j} b_{j+} + \sum_{j} b_{j-} = b_{+} + b_{-},$$

where $\{a_{i+}\}$ and $\{b_{j+}\}$ are, respectively, the subsequences of $\{a_i\}$ and $\{b_j\}$ consisting of the positive terms, and $\{a_{i-}\}$ and $\{b_{j-}\}$ are the subsequences consisting of the negative terms. Then H(z) is close-to-convex if

$$-\frac{1}{2}\leqslant a_-(1-a)+b_-(1-\beta)\leqslant a_+(1-a)+b_+(1-\beta)\leqslant \frac{3}{2}.$$

This result is sharp.

Proof. By a criterion of Kaplan [1], H(z) is close-to-convex if

$$\int\limits_{ heta_{1}}^{ heta_{2}}\operatorname{Re}\left\{ 1+zrac{H^{\prime\prime}\left(z
ight)}{H^{\prime}\left(z
ight)}
ight\} d heta\geqslant
ight.-\pi$$

for all θ_1 , θ_2 satisfying $0 \leqslant \theta_1 \leqslant \theta_2 \leqslant 2\pi$ and 0 < r < 1. We have

(2)
$$1 + \frac{zH''}{H'} = 1 - a - b + \sum_{i=1}^{n} a_i \frac{zf'_i}{f_i} + \sum_{j=1}^{m} b_j \left(1 + \frac{zg''_j}{g_j}\right).$$

Taking real parts in (2), and integrating from θ_1 to θ_2 we get

(3)
$$\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re} \left\{ 1 + \frac{zH^{\prime\prime}}{H^{\prime}} \right\} d\theta = (1 - a - b)(\theta_{2} - \theta_{1})$$

$$+ \int_{\theta_{1}}^{\theta_{2}} \operatorname{Re} \left\{ \sum_{i} a_{i+} \frac{zf_{i+}^{\prime}}{f_{i+}} + \sum_{j} b_{j+} \left(1 + \frac{zg_{j+}^{\prime\prime}}{g_{j+}^{\prime}} \right) \right\} d\theta$$

$$+ \int_{\theta_{1}}^{\theta_{2}} \operatorname{Re} \left\{ \sum_{i} a_{i-} \frac{zf_{i}^{\prime}}{f_{i-}} + \sum_{j} b_{j-} \left(1 + \frac{zg_{j-}^{\prime\prime}}{g_{j-}} \right) \right\} d\theta .$$

Using the left hand inequality of the lemma on the first integral on the right side of (3), and the right hand inequality on the second integral, we obtain

$$\begin{split} \int_{\theta_1}^{\theta_2} & \text{Re} \left\{ 1 + \frac{z H^{\prime\prime}}{H^\prime} \right\} d\theta \geqslant (1 - a - b) (\theta_2 - \theta_1) + (a_+ a + b_+ \beta) (\theta_2 - \theta_1) + \\ & + (a_- a + b_- \beta) (\theta_2 - \theta_1) + 2\pi [a_- (1 - a) + b_- (1 - \beta)] \\ &= [1 - a(-a) - b(1 - \beta)] (\theta_2 - \theta_1) + 2\pi [a_- (1 - a) + b_- (1 - \beta)]. \end{split}$$

This last expression, denoted by $q(\theta_2 - \theta_1)$, is a linear function of $(\theta_2 - \theta_1)$ and assumes its minimum at either 0 or 2π , depending on whether $1 - a(1 - a) - b(1 - \beta)$ is positive or negative. We have

$$q(0) = 2\pi[a_{-}(1-a) + b_{-}(1-\beta)]$$

and

$$q(2\pi) = 2\pi[1-a_{+}(1-a)-b_{+}(1-\beta)].$$

Thus $q(0) \geqslant -\pi$ when

(4)
$$a_{-}(1-\alpha)+b_{-}(1-\beta)\geqslant \frac{1}{2},$$

and $q(2\pi) \geqslant -\pi$ when

(5)
$$a_{+}(1-\alpha) + b_{+}(1-\beta) \leqslant \frac{3}{2}$$
.

Now H(z) will be close-to-convex whenever $\min\{q(0), q(2\pi)\} \ge -\pi$, that is, when both (4) and (5) are satisfied. This completes the proof.

To show sharpness, set $f_i = \frac{z}{(1-z)^{2(1-a)}}$ and

$$g_j = \int\limits_0^z \frac{dt}{(1-t)^{2(1-\beta)}}$$

for all i and j. Then

$$H(z)=\int\limits_0^zrac{dt}{(1-t)^{2[(1-a)a+(1-eta)b]}}$$
 .

By a Theorem of Royster [4], H(z) is univalent if and only if $2[(1-a)a+(1-\beta)b] \in [-1,3]$. Thus H(z) is not univalent when $a_i,b_j \geqslant 0$ with $(1-a)a+(1-\beta)b > \frac{3}{2}$, or $a_i,b_j < 0$ with $(1-a)a+(1-\beta)b < -\frac{1}{2}$.

Remark. When $a=a_1$, $b_i\equiv 0$, and a=0 or $a=\frac{1}{2}$, we get results of Merkes and Wright [3]. When $a_i\equiv 0$, $b=b_1+b_2$, and $\beta=0$, we get a result of Kim and Merkes [2].

4. Related classes

By fixing the exponents in our previous classes, we may vary the orders of starlikeness and convexity to obtain results analogous to the previous theorems.

Theorem 4. Suppose $f_i \in S^*(\alpha)$ (i = 1, ..., n) and $g_j \in K(\beta_j)$ (j = 1, ..., m). Let

$$h(z) = z \prod_{i=1}^{n} \left(\frac{f_i(z)}{z} \right)^a \prod_{j=1}^{m} \left(g'_j(z) \right)^b,$$

where $a, b \ge 0$. Set

$$a^* = rac{\sum\limits_{i=1}^n a_i}{n}$$
 and $eta^* = rac{\sum\limits_{j=1}^m b_j}{m}$.

Then $h(z) \in S^* \{1 - an(1 - \alpha^*) - bm(1 - \beta^*)\}$. This result is sharp.

Proof. Forming the logarithmic derivative, we have

$$egin{align} rac{zh'}{h} &= 1 + a \sum_{i=1}^n \left(rac{zf_i'}{f_i} - 1
ight) + b \sum_{j=1}^m rac{zg_j''}{g_j'} \ &= 1 - na - mb + a \sum_{i=1}^n rac{zf_i'}{f_i} + b \sum_{j=1}^m \left(1 + rac{zg_i''}{g_j'}
ight). \end{split}$$

Taking real parts leads to

$$\operatorname{Re}\frac{zh'}{h}\geqslant 1-na-mb+ana^*+bm\beta^*,$$

and the result follows. To show sharpness, set

$$f_i = rac{z}{(1-z)^{2(1-a_i)}} \quad ext{ and } \quad g_j = \int\limits_0^z rac{dt}{(1-t)^{2(1-eta_j)}}$$

for all i and j.

Just as Theorem 2 followed from Theorem 1, so the next theorem follows from Theorem 4.

Theorem 5. Under the conditions of Theorem 4,

$$H(z) = \int\limits_0^z \left(\prod_{i=1}^n \left(\frac{f_i(t)}{t} \right)^a \prod_{i=1}^m \left(g_j'(t) \right)^b dt \, \epsilon \, K \left\{ 1 - an \left(1 - \alpha^* \right) - bm \left(1 - \beta^* \right) \right\}.$$

Finally, we prove a theorem analogous to Theorem 3.

Theorem 6. Under the same conditions as Theorem 5, except that we allow a, b to be any real numbers, H(z) is close-to-convex if

$$\begin{aligned} -\frac{1}{2} &\leqslant an(1-\alpha^*) + bm(1-\beta^*) \leqslant \frac{3}{2} \quad (ab \geqslant 0) \\ & \begin{cases} -\frac{1}{2} \leqslant an(1-\alpha^*) \leqslant \frac{3}{2} \\ -\frac{1}{2} \leqslant bm(1-\beta^*) \leqslant \frac{3}{2} \end{cases} \quad (ab < 0) \end{aligned}$$

This result is sharp.

Proof. We have

(6)
$$1 + \frac{zH''}{H'} = 1 - na - mb + a \sum_{i=1}^{n} z \frac{f'_i}{f_i} + b \sum_{j=1}^{m} \left(1 + \frac{zg''_j}{g'_j}\right).$$

In view of the lemma preceding Theorem 3,

$$(7) \qquad na^*(\theta_2-\theta_1)\leqslant \int\limits_{\theta_2}^{\theta_2}\operatorname{Re}\Big(\sum\limits_{i=1}^{n}\frac{zf_i'}{f_i}\Big)d\theta\leqslant 2\pi n(1-a^*)+na^*(\theta_2-\theta_1),$$

$$(8) \quad m\beta^*(\theta_2-\theta_1)\leqslant \int\limits_{\theta_1}^{\theta_2}\operatorname{Re}\left\{\sum_{j=1}^m\left(1+\frac{zg_j''}{g_j'}\right)\right\}d\theta\leqslant 2\pi m(1-\beta^*)+m\beta^*(\theta_2-\theta_1)\,.$$

Starting with the identity in (6), we minimize

$$\int\limits_{ heta_1}^{ heta_2} \Bigl\{ {
m Re} \, 1 + rac{z H^{\prime\prime}}{H^\prime} \Bigr\} d heta \quad ext{ over all } \quad 0 \leqslant heta_1 \leqslant heta_2 \leqslant 2\pi$$

by using either the left or right inequalities in (7) or (8) according as a and b are positive or negative. The result follows, as in Theorem 3, upon determining when the appropriate minimums are $\ge -\pi$. In all cases, sharpness is found by setting

$$f_i=rac{z}{(1-z)^{2(1-a_i)}}$$
 and $g_j=\int\limits_0^zrac{dt}{(1-t)^{2(1-eta_j)}}$

for all i and j.

REFERENCES

- , [1] Kaplan W., Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), 169-185.
 - [2] Kim Y.J., and Morkes, E.P., On certain convex sets in the space of locally schlicht functions, Trans. Amer. Math. Soc., 196 (1974), 217-224.
- [3] Merkes E.P., and Wright D.J., On the univalence of a certain integral, Proc. Amer. Math. Soc., 27 (1971), 97-100.

- [4] Royster W.C., On the univalence of a certain integral, Michigan Math. J., 12 (1965), 385-387.
- [5] Schild A., On a class of univalent, star shaped mappings, Proc. Amer. Math. Soc., 9 (1958), 751-757.

STRESZCZENIE

Przedmiotem noty jest podanie warunków na funkcję holomorficzną h(z), przy których funkcja $\int\limits_0^z t^{-1}h(t)\,dt$ jest wypukła lub prawie wypukła w kole jednostkowym.

РЕЗЮМЕ

Предметом данной работы является исследование условий для функций h(z) при которых функция $\int\limits_0^z t^{-1}h(t)\,dt$ является выпуклой или почти выпуклой в единичном круге.