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1. Introduction

In this paper we combine the notions of Janowski starlike functions [1]
and alpha-convex functions [2] to obtain a new subeclass of starlike funec-
tions.

Let f(z) = 2+ a,22 + ... be regular in the unit disc D and for a == 0 let

® Tay 1) = (=) T 5 a5 )

We denote by .#, the class of functions f(z) for which ReJ(a,f(z)) >0
for 2¢D. Note that .#, — 8" the class of starlike functions. Functions
in the class .#, are called alpha-convex functions and such functions have
been shown to be starlike [2].

In [1] W. Janowski investigated properties of the class S*(M) of
regular functions f(z) = z+a,2%+ ... satisfying

(2) @yl ow, 1)
f(z) |

for zeD. It is clear that 8*(M) < 8* and §8°(c) = 8"
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Definition. Let a > 0 and suppose that f(2) = 2+ a,22+ ... is regular

f(2)-f'(2)
4

in D with = #0in 0< [2|< 1. If

) I (a f(2) M

for ze D, then f(z) is said to be a Janowski alpha-convex function. We
denote the class of such functions by 8*(a, M).

Note that 8*(M) = 8*(0, M), #, = 8*(a, ) and 8* = §8%(0, o).
In addition we can prove that a Janowski alpha-convex function is both
an alpha-convex function and is in Janowski’s class S*(M).

Theorem 1. 8*(a, M) c #,n8° (M), a >0, M > 1.

Proof. Let f(z)eS"(a, M). From (3) we can see that Red (a, f(2)) > 0
and hence 8*(a, M) c #,.

Suppose that f(z)¢S*(M). Since at the point z = 0 condition (2) is
satisfied there exists a point z, = r,7*% (0 < r, < 1) of D such that

<M, (M=>1)

' (2) MED)
4 - —M < L _M| =M
I ft@) ! | e
for all 2| <r,. If we let p(z) = 2f'(2)/f(2) then (4) becomes
(5) Ip(2) — M| < |p(2) —M| = M,
and from (1) we obtain
(6) o, f(2) — 2| = {p(z)w"ﬁ;g) —u|.

If p’(2,) = 0 then by (5) and (6) we obtain

[J(a,f(zo))—MI =M
If p'(2,) # 0 then we must have argz,p’(2,) = arg(p(z,) — W) = ¢, and
by (5) and (6) we obtain

| a2, (2)
|
J{u,f{;.',,])—.’lfl = } M-+ m =

In both cases we obtain |J(a,f(2,))—M|=> M, which contradicts (2).
Hence we must have |zf'(2)/f(z) — M| < M for all zeD, and f(2)eS*(M).
The previous theorem shows that S°(a, M) < 8°(0, M). We can
show more than this.
Theorem 2. If f(z)eS*(a, M), then f(2)eS*(8, M) for all 0 < f < a.

Proof. We need only consider the case 0 < 8 < a. Suppose f(2)¢S8*
(8, M). Then there exists (eD such that

(7) (8, f(0)—M| > M.
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Since f(z)eS*(a, M) we have
(8) | (ay fQO))—M| < M
We will show that (7) and (8) imply that |(f'(¢)/f(¢)— M| > M, which
contradicts Theorem 1. If we let A = {f'(0)/f()—M and B =
(I ()= Lf (2) If(&)+1, then (7) and (8) become
(9) |4 +pB|2> M? and
(10) M2 > |A -+ aB2
After multiplying (9) by « and (10) by g and adding we obtain
(a—p)|A|* > ap(a—p)|B|*+ (a— B)M?
Since a—f > 0 we obtain
|A|2 > af|B2+ M2 > M,

that is, |If'({)/f({)—M| = M, which is the desired contradiction.
If f(z)eS*(1, M), then f(z) must be a convex function. We see by
Theorem 2 that if f(z)eS*(a, M), a = 1, then f(z) i8 a convex function.

2. Integral Representation

Theorem 3. If f(2)eS*(a, M), a > 0, and if for 0 < f < a we choose
the branch of [2f'(2)/f(2)) which is equal to 1 when z = 0, then the function
Fy(2) = f(2)[2f' (2)[f(2) P is in 8*(M).

Proof. A simple calculation yields

2Fy(2)

=dJ|(B, f(z
Ty~ P I0)

Since f(z)eS8*(a, M), by Theorem 2 we have
2F(2)

— A ]
Fy(2)
for 0 < B < a. Hence Fy(2)eS*(M).
Now consider the converse problem. Given the function ¥ (2)eS8* (M)
and a > 0. Is the solution f(z) of the differential equation
2" (871"
(11) F(z) = f(z [—
&) =165 |
with boundary condition f(0) = 0, a function in 8*(a, M)? The answer
is yes, and our solution provides us with an integral representation for-
mula for functions in S*(a, M).

=|J (8, f(2) —M|< M,
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Theorem 4. If f(z)eS*(M) and if a > 0, then a solution of (11)
with boundary condition f(0) = 0 is given by

i 1 » F(C)”a a
(12) 1) —[—- [ = d:],

and this function is in S*(a, M).

The proof of this theorem consists of showing that f(z) is well defined,
regular in D and is in 8*(a, M). The technique is similar to the one en-
ployed before [3, Theorem 5] and is omitted.

3. Distortion Properties

We will set m =1—1/M and denote by h(M, r;2) the function
defined by
z
‘(1 — tmz)t ™™

|zg'z if m =0,

if m>0,
h(M,r;2) =

where |z| = 1. The function h(M, 7;2) is in S*(M) and is the extremal
function for many problems in this class [1]. If in (12) we take F(z) to
be h(m, t;2) then we obtain the Janowski alpha-convex function

1 ;
[—J C”a—l(l+th)(Hm”de] y fm>0
a 3

: [ pa=tgritage | if m =o0.
Lo ;

These functions will serve as the extremal functions for the class 8°*(a, M).
In what follows, use will be made of the hypergeometric functions

fla, M, 7;2) =

S qie) oI I(a+ L)F(b+k)“
(13) G(a,by c; ?) _T(a)l’(b)’% F(C+k)k'

i
!‘{l"] - a-1(1 __ a\e—a—-1(1 _ g,
I'(a)T'(c—a) Gf u® (1 —u) (1 —zu)du,

where Re a > 0 and Re(¢—a) > 0. These functions are regular for zeD
[4, pp. 611]. In addition we define the functions

r[G(l/a (L+m)/am,1/a +1;mr]", if m >0,

14 K J[ 1‘ = e
(14) L) I [__ l/a—leru/adu] , ifm=0
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Theorem 5. If f(z)e8*(a, M), a > 0, then for |2| =7 (0 <7< 1) we
have

(15) —K(a, M; —r) < |f(2)| < K (a, M; 7).

Equality holds im both cases for the function f(a, M, 7;2).
Proof. By Theorem 4 there exists a function F(z)eS*(M) such that

1 = F =y 1l/a a
ﬂﬂ:FfL%”dﬂ,

a -
0

and if we take z = r and integrate along the positive real axis we obtain
1 r -
f(r) =‘——f F(m)"“w"dx\ .
\a. !
Since F(2)eS*(M) we have [1, Theorem 7],

T

(16) (1 ma) o < |F(2)| < A —marmin if m >0,
(17) ve™* < |F(x)| < xefy, if m =0,
and hence

g
1
- Jf g1 — ma)~Wt™lemgy if m >0,
a

0

If(r)1Me <

L[ pegeiegy, it m=0.

aJ

1]

Making the change of variables # = ru and raising both sides to the a
power and using (13) and (14) we obtain |f(r)| < K(a, M;r) And applying
the above argument to e *°f(z¢"®), which is in 8*(M) if f(z)eS* (M), we
obtain [f(2)| < K (a, M; 7).

Consider the straight line L joining 0 to f(z) = Re'®. Since f(2) is
starlike, L is the image of a Jordan arc y in D connecting 0 and z = re'".
The image of y under the mapping f(z)"/® will in general consist of many
line segments emanating from the origin, each of length

RV = |f@)" = [ |af(e)"/acide) = 8, 1af(s)!.

Since f(z)eS8*(a, M), there exists a function F(z)eS*(M) such that

7 — Annales t. XXIX, 1875
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df(¢)ejdt = F(L)"*/at. Thus if o = ||, we obtain from (16)

1 | P
18) BV e = P
(18) . B

1]
]dCl = .;; fx]/a——l(l L TRI)_‘1+M)/U"‘|dCI
7

= _1_fw1/0—1(1+mx)—(l+m)/amdw
a
0

for m > 0. By substituting # = ru and using (13) and (14), we obtain
|f(z) > —K(a, M; —r). The case m = 0 makes use of (17) and (18)
and is omitted.
Note that functions in 8*(a, M) are bounded for ¢ >0 and M > 1,
Corollary 5.1. If f(z)eS*(a, M) and f(z) =2+ a,2®+ ..., then |a,)
< (2 M—-1)/M(1+a), and this inequality is sharp.
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STRESZCZENIE

W pracy tej autorzy wprowadzaja nowa rodzine funkeji gwiazdzistych
S8*(a, M) okreilona warunkiem (3). Dla klasy tej otrzymali m. in. do-
kladne oszacowania |f(z)| od dolu i od géry oraz dokladne oszacowanie
od géry dla |a,|.

PESIOME

B nanHo#t paGoTe aBTOpH BBenM HOBHIA Kinacc S*(a, M) 3Bé3n006-
Pa3HbIX QYHKLMUIA onpelelléHHBIX yciioBueM (3).

Aaa 3Toro Kimacca MoJyYusiM TOYHBIe OLEHKM [f(2)| cHM3y U cBepxy
M TOYHYIO OLEHKY CBepXy MJIA [a,].



