ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA

VOL. XXIX, 11
SECTIO A

State University of Now York, Brockport, New York 14420, USA
Babes-Bolyai University, Cluj, Romania
Univeraity of Michigan, Ann Arbor, Michigan 48104, USA

SANFORD S. MILLER, PETRU T. MOCANU, MAXWELI, O. READE

Janowski Alpha-Convex Functions

Funkcje alfa-wypukle Janowskiego
Альфа - вьпуклые функции Яновского

1. Introduction

In this paper we combine the notions of Janowski starlike functions [1] and alpha-convex functions [2] to obtain a new subclass of starlike functions.

Let $f(z)=z+a_{2} z^{2}+\ldots$ be regular in the unit dise D and for $\alpha \geqslant 0$ let

$$
\begin{equation*}
J(\alpha, f(z))=(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right) \tag{1}
\end{equation*}
$$

We denote by \mathscr{M}_{a} the class of functions $f(z)$ for which $\operatorname{Re} J(\alpha, f(z))>0$ for $z \in D$. Note that $\mathscr{M}_{0}=S^{*}$ the class of starlike functions. Functions in the class \mathscr{M}_{a} are called alpha-convex functions and such functions have been shown to be starlike [2].

In [1] W. Janowski investigated properties of the class $S^{*}(M)$ of regular functions $f(z)=z+a_{2} z^{2}+\ldots$ satisfying

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-M\right|<M,(M \geqslant 1) \tag{2}
\end{equation*}
$$

for $z \in D$. It is clear that $S^{*}(M) \subset S^{*}$ and $S^{*}(\infty)=S^{*}$.

[^0]Definition. Let $\alpha \geqslant 0$ and suppose that $f(z)=z+a_{2} z^{2}+\ldots$ is regular in D with $\frac{f(z) \cdot f^{\prime}(z)}{z} \neq 0$ in $0<|z|<1$. If

$$
\begin{equation*}
|J(a, f(z))-M|<M,(M \geqslant 1) \tag{3}
\end{equation*}
$$

for $z \in D$, then $f(z)$ is said to be a Janowski alpha-convex function. We denote the class of such functions by $\mathbb{S}^{*}(\alpha, M)$.

Note that $S^{*}(M)=S^{*}(0, M), \mathscr{M}_{\alpha}=S^{*}(a, \infty)$ and $S^{*}=S^{*}(0, \infty)$. In addition we can prove that a Janowski alpha-convex function is both an alpha-convex function and is in Janowski's class $S^{*}(M)$.

Theorem 1. $S^{*}(\alpha, M) \subset \mathscr{M}_{a} \cap S^{*}(M), a \geqslant 0, M \geqslant 1$.
Proof. Let $f(z) \epsilon S^{*}(\alpha, M)$. From (3) we can see that ReJ $(\alpha, f(z))>0$ and hence $S^{*}(a, M) \subset \mathscr{M}_{a}$.

Suppose that $f(z) \& S^{*}(M)$. Since at the point $z=0$ condition (2) is satisfied there exists a point $z_{0}=r_{0} r^{i 0_{0}}\left(0<r_{0}<1\right)$ of D such that

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-M\right| \leqslant\left|\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}-M\right|=M \tag{4}
\end{equation*}
$$

for all $|z| \leqslant r_{0}$. If we let $p(z)=z f^{\prime}(z) \mid f(z)$ then (4) becomes

$$
\begin{equation*}
|p(z)-M| \leqslant\left|p\left(z_{0}\right)-M\right|=M, \tag{5}
\end{equation*}
$$

and from (1) we obtain

$$
\begin{equation*}
|J(\alpha, f(z))-M|=\left|p(z)+\alpha \frac{z p^{\prime}(z)}{p(z)}-M\right| . \tag{6}
\end{equation*}
$$

If $p^{\prime}\left(z_{0}\right)=0$ then by (5) and (6) we obtain

$$
\left|J\left(\alpha, f\left(z_{0}\right)\right)-M\right|=M
$$

If $p^{\prime}\left(z_{0}\right) \neq 0$ then we must have $\arg z_{0} p^{\prime}\left(z_{0}\right)=\arg \left(p\left(z_{0}\right)-M\right) \equiv \varphi$, and by (5) and (6) we obtain

$$
\left|\mathcal{J}\left(a, f\left(z_{0}\right)\right)-M\right|=\left|M+\frac{a\left|z_{0} p^{\prime}\left(z_{0}\right)\right|}{M+M e^{i \varphi}}\right| \geqslant M
$$

In both cases we obtain $\left|J\left(a, f\left(z_{0}\right)\right)-M\right| \geqslant M$, which contradicts (2). Hence we must have $\left|z f^{\prime}(z)\right| f(z)-M \mid<M$ for all $z \in D$, and $f(z) \in S^{*}(M)$.

The previous theorem shows that $S^{*}(a, M) \subset S^{*}(0, M)$. We can show more than this.

Theorem 2. If $f(z) \epsilon \mathbb{S}^{*}(\alpha, M)$, then $f(z) \epsilon \mathbb{S}^{*}(\beta, M)$ for all $0 \leqslant \beta \leqslant \alpha$.
Proof. We need only consider the case $0<\beta<\alpha$. Suppose $f(z) \notin \mathbb{S}^{*}$ (β, M). Then there exists $\zeta \in D$ such that

$$
\begin{equation*}
|J(\beta, f(\zeta))-M| \geqslant M . \tag{7}
\end{equation*}
$$

Since $f(z) \epsilon S^{*}(\alpha, M)$ we have

$$
\begin{equation*}
|J(\alpha, f(\zeta))-M|<M \tag{8}
\end{equation*}
$$

We will show that (7) and (8) imply that $\left|\zeta f^{\prime}(\zeta)\right| f(\zeta)-M \mid \geqslant M$, which contradicts Theorem 1. If we let $A=\zeta f^{\prime}(\zeta) / f(\zeta)-M$ and $B=$ $\zeta f^{\prime \prime}(\zeta) / f^{\prime}(\zeta)-\zeta f^{\prime}(\zeta) / f(\zeta)+1$, then (7) and (8) become

$$
\begin{gather*}
|A+\beta B|^{2} \geqslant M^{2} \text { and } \tag{9}\\
M^{2}>|A+\alpha B|^{2} . \tag{10}
\end{gather*}
$$

After multiplying (9) by α and (10) by β and adding we obtain

$$
(\alpha-\beta)|A|^{2}>\alpha \beta(\alpha-\beta)|B|^{2}+(\alpha-\beta) M^{2}
$$

Since $\alpha-\beta>0$ we obtain

$$
|A|^{2}>\alpha \beta|B|^{2}+M^{2} \geqslant M^{2}
$$

that is, $\left|\zeta f^{\prime}(\zeta)\right| f(\zeta)-M \mid \geqslant M$, which is the desired contradiction.
If $f(z) \in \mathbb{S}^{*}(1, M)$, then $f(z)$ must be a convex function. We see by Theorem 2 that if $f(z) \in S^{*}(\alpha, M), a \geqslant 1$, then $f(z)$ is a convex function.

2. Integral Representation

Theorem 3. If $f(z) \epsilon S^{*}(a, M), \alpha>\mathbf{0}$, and if for $0<\beta<\alpha$ we choose the branch of $\left[z f^{\prime}(z) / f(z)\right]^{\beta}$ which is equal to 1 when $z=0$, then the function $F_{\beta}(z) \equiv f(z)\left[z f^{\prime}(z) / f(z)\right]^{\beta}$ is in $S^{*}(M)$.

Proof. A simple calculation yields

$$
\frac{z F_{\beta}^{\prime}(z)}{F_{\beta}(z)}=J(\beta, f(z))
$$

Since $f(z) \in S^{*}(a, M)$, by Theorem 2 we have

$$
\left|\frac{z F_{\beta}^{\prime}(z)}{F_{\beta}(z)}-M\right|=|J(\beta, f(z))-M|<M
$$

for $0<\beta \leqslant \alpha$. Hence $F_{\beta}(z) \in S^{*}(M)$.
Now consider the converse problem. Given the function $F(z) \in \mathbb{S}^{*}(M)$ and $a>0$. Is the solution $f(z)$ of the differential equation

$$
\begin{equation*}
F(z)=f(z)\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{a}, \tag{11}
\end{equation*}
$$

with boundary condition $f(0)=0$, a function in $S^{*}(\alpha, M)$? The answer is yes, and our solution provides us with an integral representation formula for functions in $\mathbb{S}^{*}(\alpha, M)$.

Theorem 4. If $f(z) \in S^{*}(M)$ and if $\alpha>0$, then a solution of (11) with boundary condition $f(0)=0$ is given by

$$
\begin{equation*}
f(z)=\left[\frac{1}{a} \int_{0}^{z} \frac{F(\zeta)^{1 / a}}{\zeta} d \zeta\right]^{a} \tag{12}
\end{equation*}
$$

and this function is in $S^{*}(\alpha, M)$.
The proof of this theorem consists of showing that $f(z)$ is well defined, regular in D and is in $S^{*}(\alpha, M)$. The technique is similar to the one employed before [3, Theorem 5] and is omitted.

3. Distortion Properties

We will set $m=1-1 / M$ and denote by $h(M, \tau ; z)$ the function defined by

$$
h(M, \tau ; z)= \begin{cases}\frac{z}{(1-\tau m z)^{(1+m) / m}} & \text { if } m>0 \\ z e^{\tau z} & \text { if } m=0\end{cases}
$$

where $|\tau|=1$. The function $h(M, \tau ; z)$ is in $S^{*}(M)$ and is the extremal function for many prgblems in this class [1]. If in (12) we take $F(z)$ to be $h(m, \tau ; z)$ then we obtain the Janowski alpha-convex function

$$
f(a, M, \tau ; z)= \begin{cases}{\left[\frac{1}{a} \int_{0}^{z} \zeta^{-1 / a-1}(1+\tau m \zeta)^{(1+m) / a m} d \zeta\right]^{a},} & \text { if } m>0 \\ {\left[\frac{1}{a} \int_{0}^{z} \zeta^{1 / a-1} e^{\tau / / a} d \zeta\right]^{a},} & \text { if } m=0 .\end{cases}
$$

These functions will serve as the extremal functions for the class $S^{*}(a, M)$.
In what follows, use will be made of the hypergeometric functions

$$
\begin{align*}
G(a, b, c ; z) & =\frac{\Gamma(c)}{\Gamma(a) \Gamma(b)} \sum_{k=0}^{\infty} \frac{\Gamma(a+k) \Gamma(b+k) z^{k}}{\Gamma(c+k) k!} \tag{13}\\
& =\frac{\Gamma(c)}{\Gamma(a) \Gamma(c-a)} \int_{0}^{1} u^{a-1}(1-u)^{c-a-1}(1-z u)^{-b} d u
\end{align*}
$$

where $\operatorname{Re} a>0$ and $\operatorname{Re}(c-a)>0$. These functions are regular for $z \epsilon D$ [4, pp. 611]. In addition we define the functions

$$
K(a, M ; r)= \begin{cases}r\left[G(1 / a,(1+m) / a m, 1 / a+\mathbf{1} ; m r]^{a},\right. & \text { if } m>0 \tag{14}\\ r\left[\frac{1}{a} \int_{0}^{1} u^{1 / a-1} e^{r u / a} d u\right]^{a}, & \text { if } m=\mathbf{0}\end{cases}
$$

Theorem 5. If $f(z) \epsilon \mathbb{S}^{*}(a, M), a>0$, then for $|z|=r(0<r<1)$ we have

$$
\begin{equation*}
-K(a, M ;-r) \leqslant|f(z)| \leqslant K(a, M ; r) . \tag{15}
\end{equation*}
$$

Equality holds in both cases for the function $f(a, M, \tau ; z)$.
Proof. By Theorem 4 there exists a function $F(z) \in S^{*}(M)$ such that

$$
f(z)=\left(\frac{1}{a} \int_{0}^{z} \frac{[F(\zeta)]^{1 / a}}{\zeta} d \zeta\right)^{a}
$$

and if we take $z=r$ and integrate along the positive real axis we obtain

$$
f(r)=\left(\frac{1}{a} \int_{0}^{r} F(x)^{1 / a} x^{-1} d x\right)^{a}
$$

Since $F(z) \in \mathbb{S}^{*}(M)$ we have [1, Theorem 7],

$$
\begin{gather*}
\frac{x}{(1+m x)^{(1+m) / m}} \leqslant|F(x)| \leqslant \frac{x}{(1-m x)^{(1+m) / m}}, \quad \text { if } m>0, \tag{16}\\
x e^{-x} \leqslant|F(x)| \leqslant x e^{x}, \quad \text { if } m=0, \tag{17}
\end{gather*}
$$

and hence

$$
|f(r)|^{1 / a} \leqslant \begin{cases}\frac{1}{\alpha} \int_{0}^{r} x^{1 / a-1}(1-m x)^{-(1+m) / a m} d x, & \text { if } m>0 \\ \frac{1}{\alpha} \int_{0}^{r} x^{1 / a-1} e^{x / a} d x, & \text { if } m=0 .\end{cases}
$$

Making the change of variables $x=r u$ and raising both sides to the a power and using (13) and (14) we obtain $|f(r)| \leqslant K(a, M ; r)$ And applying the above argument to $e^{-i \theta} f\left(z e^{i \theta}\right)$, which is in $\mathbb{S}^{*}(M)$ if $f(z) \epsilon \mathbb{S}^{*}(M)$, we obtain $|f(z)| \leqslant K(\alpha, M ; r)$.

Consider the straight line L joining 0 to $f(z)=R e^{i \varphi}$. Since $f(z)$ is starlike, L is the image of a Jordan arc γ in D connecting 0 and $z=r e^{i t}$. The image of γ under the mapping $f(z)^{1 / a}$ will in general consist of many line segments emanating from the origin, each of length

$$
R^{1 / a}=|f(z)|^{1 / a}=\int_{\gamma}\left|d f(\zeta)^{1 / a}\right| d \zeta| | d \zeta\left|=S_{\gamma}\right| d f(\zeta)^{1 a} \mid
$$

Since $f(z) \epsilon \mathbb{S}^{*}(a, M)$, there exists a function $F(z) \epsilon \mathbb{S}^{*}(M)$ such that
$d f(\zeta)^{3 / \alpha} / d \zeta=F^{\prime}(\zeta)^{1 / \alpha} / a \zeta$. Thus if $\varrho=|\zeta|$, we obtain from (16)

$$
\begin{gather*}
\left.\left.R^{1 / a}=\frac{1}{\alpha} \int_{\gamma}\left|\frac{F^{\prime}(\zeta)^{1 / \alpha}}{\zeta}\right||d \zeta| \geqslant \frac{1}{\alpha} \int_{\gamma} x^{1 / \alpha-1}(1+m x)^{-(1+m) / a m} \right\rvert\, d \zeta\right\} \tag{18}\\
\geqslant \frac{1}{\alpha} \int_{0}^{\zeta} x^{1 / a-1}(1+m x)^{-(1+m) / a m} d x
\end{gather*}
$$

for $m>0$. By substituting $x=r u$ and using (13) and (14), we obtain $|f(z)| \geqslant-K(\alpha, M ;-r)$. The case $m=0$ makes use of (17) and (18) and is omitted.

Note that functions in $S^{*}(a, M)$ are bounded for $a \geqslant 0$ and $M \geqslant 1$.
Corollary 5.1. If $f(z) \epsilon S^{*}(a, M)$ and $f(z)=z+a_{2} z^{2}+\ldots$, then $\left|a_{2}\right|$ $\leqslant(2 M-1) / M(1+a)$, and this inequality is sharp.

BIBLIOGRAPHY

[1] Janowski W., Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 23 (1970), 159-177.
[2] Miller S.S., Mocanu P.T., and Reade M.O., All a-convex functions are starlike and univalent, Proc. Amer. Math. Soc., 37, No. 2 (1973), 553-554.
[3] ", Bazilevic functions and generalized convexity, Rev. Roum. Math. Pures et Appl., 19, No. 2 (1974), 213-224.
[4] Sansone G., and Gerretsen J.C.H., Lectures on the theory of functions of a complex variable, Vol. II, Wolters-Noordhoff Publishing, Groningen (1969).

STRESZCZENIE

W pracy tej autorzy wprowadzają nową rodzinę funkcji gwiaździstych $S^{*}(\alpha, M)$ określona warunkiem (3). Dla klasy tej otrzymali m. in. dokładne oszacowania $|f(z)|$ od dołu i od góry oraz dokładne oszacowanie od góry dla $\left|a_{2}\right|$.

PEЗЮME

В данной работе авторы ввели новый класс $S^{*}(\alpha, M)$ звёздообразных функций определённых условием (3).

Для этого класса получили точные оценки $|f(z)|$ снизу и сверху и точную оценку сверху для $\left|a_{2}\right|$.

[^0]: 1 The first author acknowledges support received from the National Academy of Sciences through its exchange program with the Academy of the Socialist Republic of Romania, as does the third author.

