ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. XXIX, 11

SECTIO A

1975

State University of New York, Brockport, New York 14420, USA Babes-Bolyai University, Cluj, Romania University of Michigan, Ann Arbor, Michigan 48104, USA

SANFORD S. MILLER, PETRU T. MOCANU, MAXWELL O. READE

Janowski Alpha-Convex Functions

Funkcje alfa-wypukle Janowskiego Альфа — выпуклые функции Яновского

1. Introduction

In this paper we combine the notions of Janowski starlike functions [1] and alpha-convex functions [2] to obtain a new subclass of starlike functions.

Let $f(z) = z + a_2 z^2 + ...$ be regular in the unit disc D and for $a \ge 0$ let

We denote by \mathcal{M}_a the class of functions f(z) for which $\operatorname{Re} J(a, f(z)) > 0$ for $z \in D$. Note that $\mathcal{M}_0 = S^*$ the class of starlike functions. Functions in the class \mathcal{M}_a are called alpha-convex functions and such functions have been shown to be starlike [2].

In [1] W. Janowski investigated properties of the class $S^*(M)$ of regular functions $f(z) = z + a_2 z^2 + \ldots$ satisfying

(2)
$$\left| rac{zf'(z)}{f(z)} - M
ight| < M, \ (M \geqslant 1)$$

for $z \in D$. It is clear that $S^*(M) \subset S^*$ and $S^*(\infty) = S^*$.

¹ The first author acknowledges support received from the National Academy of Sciences through its exchange program with the Academy of the Socialist Republic of Romania, as does the third author. **Definition.** Let $a \ge 0$ and suppose that $f(z) = z + a_2 z^2 + ...$ is regular in D with $\frac{f(z) \cdot f'(z)}{z} \ne 0$ in 0 < |z| < 1. If

$$(3) |J(a,f(z))-M| < M, (M \ge 1)$$

for $z \in D$, then f(z) is said to be a Janowski alpha-convex function. We denote the class of such functions by $S^*(a, M)$.

Note that $S^*(M) = S^*(0, M)$, $\mathcal{M}_a = S^*(a, \infty)$ and $S^* = S^*(0, \infty)$. In addition we can prove that a Janowski alpha-convex function is both an alpha-convex function and is in Janowski's class $S^*(M)$.

Theorem 1. $S^*(\alpha, M) \subset \mathcal{M}_a \cap S^*(M), \ \alpha \ge 0, \ M \ge 1.$

Proof. Let $f(z) \in S^*(a, M)$. From (3) we can see that $\operatorname{Re} J(a, f(z)) > 0$ and hence $S^*(a, M) \subset \mathcal{M}_a$.

Suppose that $f(z) \notin S^*(M)$. Since at the point z = 0 condition (2) is satisfied there exists a point $z_0 = r_0 r^{i\theta_0}$ $(0 < r_0 < 1)$ of D such that

(4)
$$\left|\frac{zf'(z)}{f(z)} - M\right| \leq \left|\frac{z_0 f'(z_0)}{f(z_0)} - M\right| = M$$

for all $|z| \leq r_0$. If we let p(z) = zf'(z)/f(z) then (4) becomes

$$|p(z)-M| \leq |p(z_0)-M| = M,$$

and from (1) we obtain

(6)
$$\left|J\left(a,f(z)\right)-M\right| = \left|p\left(z\right)+a\frac{zp'\left(z\right)}{p\left(z\right)}-M\right|.$$

If $p'(z_0) = 0$ then by (5) and (6) we obtain

 $|J(a, f(z_0)) - M| = M$

If $p'(z_0) \neq 0$ then we must have $\arg z_0 p'(z_0) = \arg(p(z_0) - M) = \varphi$, and by (5) and (6) we obtain

$$\left|J\left(a,f(z_0)
ight)-M
ight|=\left|\left|M+rac{a\left|z_0p'\left(z_0
ight)
ight|}{M+Me^{iarphi}}
ight|\geqslant M$$

In both cases we obtain $|J(a, f(z_0)) - M| \ge M$, which contradicts (2). Hence we must have |zf'(z)|f(z) - M| < M for all $z \in D$, and $f(z) \in S^*(M)$.

The previous theorem shows that $S^*(a, M) \subset S^*(0, M)$. We can show more than this.

Theorem 2. If $f(z) \in S^*(a, M)$, then $f(z) \in S^*(\beta, M)$ for all $0 \le \beta \le a$. **Proof.** We need only consider the case $0 < \beta < a$. Suppose $f(z) \notin S^*(\beta, M)$. Then there exists $\zeta \in D$ such that

$$(7) $\left|J\left(\beta,f(\zeta)\right)-M\right| \geqslant M.$$$

Since $f(z) \in S^*(a, M)$ we have

$$(8) |J(a, f(\zeta)) - M| < M$$

We will show that (7) and (8) imply that $|\zeta f'(\zeta)|/f(\zeta) - M| \ge M$, which contradicts Theorem 1. If we let $A = \zeta f'(\zeta)/f(\zeta) - M$ and $B = \zeta f''(\zeta)/f'(\zeta) - \zeta f'(\zeta)/f(\zeta) + 1$, then (7) and (8) become

$$|A + \beta B|^2 \ge M^2 \text{ and}$$

$$(10) M^2 > |A + aB|^2.$$

After multiplying (9) by a and (10) by β and adding we obtain

 $(a-\beta)|A|^2 > a\beta(a-\beta)|B|^2 + (a-\beta)M^2$

Since $a - \beta > 0$ we obtain

$$|A|^2 > aeta\,|B|^2 + M^2 \geqslant M^2,$$

that is, $|\zeta f'(\zeta)|/f(\zeta) - M| \ge M$, which is the desired contradiction.

If $f(z) \in S^*(1, M)$, then f(z) must be a convex function. We see by Theorem 2 that if $f(z) \in S^*(a, M)$, $a \ge 1$, then f(z) is a convex function.

2. Integral Representation

Theorem 3. If $f(z) \in S^*(a, M)$, a > 0, and if for $0 < \beta < a$ we choose the branch of $[zf'(z)/f(z)]^{\beta}$ which is equal to 1 when z = 0, then the function $F_{\beta}(z) = f(z)[zf'(z)/f(z)]^{\beta}$ is in $S^*(M)$.

Proof. A simple calculation yields

$$rac{zF_{eta}^{'}(z)}{F_{eta}(z)}=Jig(eta,f(z)ig)$$

Since $f(z) \in S^*(a, M)$, by Theorem 2 we have

$$\left| rac{z F_eta'(z)}{F_eta(z)} \!-\! M
ight| = \left| J\left(eta, f(z)
ight) \!-\! M
ight| < M \,,$$

for $0 < \beta \leq a$. Hence $F_{\beta}(z) \in S^*(M)$.

Now consider the converse problem. Given the function $F(z) \in S^*(M)$ and a > 0. Is the solution f(z) of the differential equation

(11)
$$F(z) = f(z) \left[\frac{zf'(z)}{f(z)} \right]^a,$$

with boundary condition f(0) = 0, a function in $S^*(\alpha, M)$? The answer is yes, and our solution provides us with an integral representation formula for functions in $S^*(\alpha, M)$. **Theorem 4.** If $f(z) \in S^*(M)$ and if a > 0, then a solution of (11) with boundary condition f(0) = 0 is given by

(12)
$$f(z) = \left[\frac{1}{\alpha} \int_{0}^{z} \frac{F(\zeta)^{1/\alpha}}{\zeta} d\zeta\right]^{a},$$

and this function is in $S^*(\alpha, M)$.

The proof of this theorem consists of showing that f(z) is well defined, regular in D and is in $S^*(\alpha, M)$. The technique is similar to the one employed before [3, Theorem 5] and is omitted.

3. Distortion Properties

We will set m = 1 - 1/M and denote by $h(M, \tau; z)$ the function defined by

$$h(M, \tau; z) = egin{pmatrix} z \ \overline{(1 - au m z)^{(1 + m)/m}} & ext{if } m > 0, \ z e^{ au z} & ext{if } m = 0, \end{cases}$$

where $|\tau| = 1$. The function $h(M, \tau; z)$ is in $S^*(M)$ and is the extremal function for many problems in this class [1]. If in (12) we take F(z) to be $h(m, \tau; z)$ then we obtain the Janowski alpha-convex function

$$f(a, M, \tau; z) = egin{cases} \left[rac{1}{a} \int\limits_{0}^{z} \zeta^{1/a-1} (1+\tau m \zeta)^{(1+m)/am} d\zeta
ight]^{a}, & ext{if } m > 0 \ \left[rac{1}{a} \int\limits_{0}^{z} \zeta^{1/a-1} e^{\tau \zeta/a} d\zeta
ight]^{a}, & ext{if } m = 0. \end{cases}$$

These functions will serve as the extremal functions for the class $S^*(a, M)$.

In what follows, use will be made of the hypergeometric functions

(13)
$$G(a, b, c; z) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} \sum_{k=0}^{\infty} \frac{\Gamma(a+k)\Gamma(b+k)z^{k}}{\Gamma(c+k)k!}$$
$$= \frac{\Gamma(c)}{\Gamma(a)\Gamma(c-a)} \int_{0}^{1} u^{a-1}(1-u)^{c-a-1}(1-zu)^{-b}du,$$

where Re a > 0 and Re(c-a) > 0. These functions are regular for $z \in D$ [4, pp. 611]. In addition we define the functions

(14)
$$K(a, M; r) = \begin{cases} r[G(1/a, (1+m)/am, 1/a + 1; mr]^a, & \text{if } m > 0, \\ r\left[\frac{1}{a}\int_0^1 u^{1/a-1}e^{ru/a}du\right]^a, & \text{if } m = 0 \end{cases}$$

Theorem 5. If $f(z) \in S^*(a, M)$, a > 0, then for |z| = r (0 < r < 1) we have

(15)
$$-K(a, M; -r) \leq |f(z)| \leq K(a, M; r).$$

Equality holds in both cases for the function $f(a, M, \tau; z)$.

Proof. By Theorem 4 there exists a function $F(z) \in S^*(M)$ such that

$$f(z)=igg(rac{1}{a}\int\limits_{0}^{z}rac{[F(\zeta)]^{1/a}}{\zeta}\,d\zetaigg)^{a},$$

and if we take z = r and integrate along the positive real axis we obtain

$$f(r) = \left(\frac{1}{a}\int_{0}^{r}F(x)^{1/a}x^{-1}dx\right)^{a}.$$

Since $F(z) \in S^*(M)$ we have [1, Theorem 7],

$$(16) \qquad rac{x}{(1+mx)^{(1+m)/m}} \leqslant |F(x)| \leqslant rac{x}{(1-mx)^{(1+m)/m}}, \quad ext{if } m>0,$$

(17)
$$xe^{-x} \leq |F(x)| \leq xe^{x}, \quad \text{if } m = 0,$$

and hence

$$|f(r)|^{1/a} \leq \begin{cases} rac{1}{a} \int\limits_{0}^{r} x^{1/a-1} (1-mx)^{-(1+m)/am} dx, & ext{if } m > 0, \\ \[1.5ex] rac{1}{a} \int\limits_{0}^{r} x^{1/a-1} e^{x/a} dx, & ext{if } m = 0. \end{cases}$$

Making the change of variables x = ru and raising both sides to the *a* power and using (13) and (14) we obtain $|f(r)| \leq K(a, M; r)$ And applying the above argument to $e^{-i\theta}f(ze^{i\theta})$, which is in $S^*(M)$ if $f(z) \in S^*(M)$, we obtain $|f(z)| \leq K(a, M; r)$.

Consider the straight line L joining 0 to $f(z) = Re^{i\varphi}$. Since f(z) is starlike, L is the image of a Jordan arc γ in D connecting 0 and $z = re^{i\vartheta}$. The image of γ under the mapping $f(z)^{1/a}$ will in general consist of many line segments emanating from the origin, each of length

$$R^{1/a} = |f(z)|^{1/a} = \int\limits_{\gamma} |df(\zeta)^{1/a}/d\zeta| \, |d\zeta| \, = S_{\gamma} |df(\zeta)^{1a}|.$$

Since $f(z) \in S^*(a, M)$, there exists a function $F(z) \in S^*(M)$ such that

 $df(\zeta)^{1/a}/d\zeta = F(\zeta)^{1/a}/a\zeta$. Thus if $\varrho = |\zeta|$, we obtain from (16)

(18)
$$R^{1/a} = \frac{1}{a} \int_{\gamma} \left| \frac{F(\zeta)^{1/a}}{\zeta} \right| |d\zeta| \ge \frac{1}{a} \int_{\gamma} x^{1/a-1} (1+mx)^{-(1+m)/am} |d\zeta|$$
$$\ge \frac{1}{a} \int_{0}^{r} x^{1/a-1} (1+mx)^{-(1+m)/am} dx$$

for m > 0. By substituting x = ru and using (13) and (14), we obtain $|f(z)| \ge -K(a, M; -r)$. The case m = 0 makes use of (17) and (18) and is omitted.

Note that functions in $S^*(a, M)$ are bounded for $a \ge 0$ and $M \ge 1$. Corollary 5.1. If $f(z) \in S^*(a, M)$ and $f(z) = z + a_2 z^2 + ...,$ then $|a_2| \le (2 M - 1)/M(1 + a)$, and this inequality is sharp.

BIBLIOGRAPHY

- [1] Janowski W., Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 23 (1970), 159-177.
- [2] Miller S.S., Mocanu P.T., and Reade M.O., All a-convex functions are starlike and univalent, Proc. Amer. Math. Soc., 37, No. 2 (1973), 553-554.
- [3] ,, , Bazilevič functions and generalized convexity, Rev. Roum. Math. Pures et Appl., 19, No. 2 (1974), 213-224.
- [4] Sansone G., and Gerretsen J.C.H., Lectures on the theory of functions of a complex variable, Vol. II, Wolters-Noordhoff Publishing, Groningen (1969).

STRESZCZENIE

W pracy tej autorzy wprowadzają nową rodzinę funkcji gwiaździstych $S^*(a, M)$ określoną warunkiem (3). Dla klasy tej otrzymali m. in. dokładne oszacowania |f(z)| od dołu i od góry oraz dokładne oszacowanie od góry dla $|a_2|$.

PESIOME

В данной работе авторы ввели новый класс $S^*(\alpha, M)$ звёздообразных функций определённых условием (3).

Для этого класса получили точные оценки |f(z)| снизу и сверху и точную оценку сверху для $|a_2|$.

98