ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. XXIX, 2

SECTIO A

1975

Queon Elizabeth College, London W8 7AH England State University of New York at Albany, New York 12203, USA

D. A. BRANNAN, L. BRICKMAN

Coefficient Regions for Starlike Polynomials

Obszar zmienności współczynników dla wielomianów gwiaździstych

Область изменения коэффициентов звёздных полиномов

1. Introduction

Let T_n, P_n , and P_n^* denote the classes of polynomials

$$p_n(z) = z + a_2 z^2 + \ldots + a_n z^n$$

which are typically real, univalent, and starlike univalent in |z| < 1. Rogosinski [7] and Hummel [5] have completely determined the coefficient regions for typically real and starlike functions respectively in |z| < 1; however their determination for T_n and P_n^* would have a number of useful applications. We note also the recent important work of T. J. Suffridge on the coefficient regions for starlike functions [8], which depends on the approximation of starlike functions by polynomials; this is closely related to the corresponding results for P_n^* .

In this note we discuss the coefficient regions for polynomials in T_3 and P_3^* ; special cases of our results may be compared with the following observation of W. E. Kirwan:

Lemma 1. Suppose $f(z) = z - \sum_{n=2}^{\infty} c_n z^n$, $c_n \ge 0$. Then the necessary and sufficient condition that f(z) be univalent, starlike, or typically real in |z| < 1 is that $\sum_{n=1}^{\infty} nc_n \le 1$.

The sufficiency is an immediate consequence of a result of Alexander [1], and the necessity follows since f'(z) cannot vanish in -1 < z < 1.

¹ The second author was supported by N.S.F. grant GP 5714.

Notice that $z + a_2 z^2$ is starlike univalent in |z| < 1 if and only if $|a_2| \leq 1/2$, and typically real if and only if $-1/2 \leq a_2 \leq 1/2$.

Our fundamental tool will be:

Lemma 2. Let λ_1 and λ_2 be real. Then the necessary and sufficient conditions that $1 + \lambda_1 \cos \theta + \lambda_2 \cos 2\theta$ be non-negative for $0 \le \theta \le 2\pi$ are: (a) $|\lambda_1| \le 1 + \lambda_2$ if $-1 \le \lambda_2 \le 1/3$, and

(b) $|\lambda_1| \leq V [8\lambda_2(1-\lambda_2)]$ if $1/3 \leq \lambda_2 \leq 1$.

Proof. Putting $c = \cos \theta$, the result follows at once by examining the behaviour of

 $f(c) = 1 - \lambda_2 + \lambda_1 c + 2\lambda_2 c^2$

and its derivative in the range $-1 \leq c \leq 1$.

2. Coefficient regions for T_3

First of all, we note the following:

Lemma 3. Suppose $p_n(z) = z + a_2 z^2 + \ldots + a_n z^n$, where all the a_k are

real, and

 $\sin \theta \cdot \operatorname{Im} p(e^{i\theta}) \ge 0$ for $0 \le \theta \le 2\pi$.

Then $p_n(z) \in T_n$.

This follows from the definition of the class T, and the fact that $T_n \subset T$. We use this in the proof of

Theorem 1. Suppose $p(z) = z + a_2 z^2 + a_3 z^3$, where a_2 and a_3 are real. Then the necessary and sufficient conditions that $p(z) \in T_3$ are:

(a) $|a_2| \leq \frac{1}{2}(1+3a_3)$ if $-\frac{1}{3} \leq a_3 \leq \frac{1}{5}$, and

(b)
$$|a_2| \leq 2V[a_3(1-a_3)]$$
 if $\frac{1}{5} \leq a_3 \leq 1$.

In particular:

(c) if
$$-\frac{1}{4} \leq a_3 \leq \frac{1}{3}$$
, $p(z) \in T_3$ if and only if it also $\in P_3$; and

(d) if $p(z) \in T_3$, $|a_2| \leq 1$, with equality only for $z \pm z^2 + \frac{1}{2}z^3$ (which $\notin P_3$, by [2, Theorem 2]).

Proof. The results follow from Lemmata 2 and 3, after some computation.

3. Coefficient regions for P_3^* , with a_2 and a_3 real

It is known [6] that a function is starlike univalent in |z| < 1 if and only if so are all its de la Vallée Poussin means; starting from $K(z) = z//(1-z)^2$, this shows that $z + \frac{4}{5}z^2 + \frac{1}{5}z^3 \epsilon P_3^*$. Further, if $z + a_2 z^2 + a_3 z^3 \epsilon P_3^*$, then $|a_3| \leq \frac{1}{3}$, with equality only if $a_2 = 0$, [3]. This might have suggested that $|a_2| \leq \frac{1}{3}$ for P_3^* . However we will show that, even for real a_2 and a_3, a_2 may be as large as 0.85...; this may be compared with the sharp inequality $|a_2| \leq \sqrt{\frac{8}{9}} = 0.94...$ for P_3 .

Suppose p(z)/z does not vanish in $|z| \leq 1$. Then the condition that $p(z) = z + a_2 z^2 + a_3 z^3 \epsilon P_3^*$ (for real a_2 and a_3) is that

$$\mathrm{Re} \; rac{e^{i heta} p'(e^{i heta})}{p(e^{i heta})} \geqslant 0 \; ext{ for } \; 0 \leqslant heta \leqslant 2\pi,$$

which reduces to $P_2(\theta) \ge 0$, where

$$P_2(\theta) = 1 + 2a_2 + 3a_3 + a_2(3 + 5a_3)\cos\theta + 4a_3\cos2\theta$$

This may be compared with Lemma 2, with

$$\lambda_1 = a_2(3+5a_3)/(1+2a_2+3a_3)$$
 and $\lambda_2 = 4a_3/(1+2a_2+3a_3)$.

Doing this at once leads to impossible complication; consequently we use a little geometrical intuition to cut the Gordian knot.

Suppose the radius of starlikeness of p(z) is unity, and let D be the domain of variation of w = zp'(z)/p(z) for $|z| \leq 1$. Then D is symmetric about the real axis, since a_2 and a_3 are real; and so either (A) ∂D meets the imaginary axis in two distinct points, one above and one below the real axis, or (B) ∂D passes through the origin.

Case A. Here $P_2(\theta) = L_0 + L_1 \cos \theta + L_2 \cos 2\theta$ has at least one real zero, and that where $\theta \neq 0, \pi$; hence $P_2(\theta) = 2L_2(A + \cos \theta)(B + \cos \theta)$ for some A, -1 < A < 1, and some real B. But then $P_2(\theta) \ge 0$ only if A = B, and so

$$egin{aligned} P_2(heta) &= 2L_2(A + \cos heta)^2 \ &= L_2[(2A^2 + 1) + 4A\cos heta + \cos 2 heta] \end{aligned}$$

We can now apply Lemma 2 with

$$\lambda_1 = 4A/(2A^2+1) \text{ and } \lambda_2 = 1/(2A^2+1).$$

Here $\frac{1}{3} < \lambda_2 \leq 1$, and so we must have $\lambda_1^2 = 8\lambda_2(1-\lambda_2)$; putting this in terms of a_2 and a_3 , we find the condition

$$1 = rac{32a_3(1 - 3a_3)}{9 - 25a_2} \ \ ext{for} \ rac{1}{5} < a_3 \! \leqslant \! rac{1}{3}.$$

Case B. Here p'(z) has at least one zero on |z| = 1 and one in $|z| \ge 1$. If both are on |z| = 1, we already know that $p(z) = z \pm \frac{1}{3}z^3$, [3]. In the other case, since a_2 and a_3 are real, both zeros must be real, and so p'(z) is either of the form (1+z)(1+Bz) or (1-z)(1-Bz) for some B, -1 < B < 1. In fact we restrict ourselves to the case

$$p'(z) = (1+z)(1+Bz)$$

from which we may deduce the other; and, by Lemma 1, we may assume that B > 0. Hence we deal with

$$p(z) = z + \frac{1}{2}(B+1)z^2 + \frac{1}{3}z^3$$
 (0 < B < 1).

In the corresponding non-negative trigonometric polynomial, we have

$$\lambda_2 = rac{8B}{5B^2+6B+1} \ \ ext{and} \ \ \lambda_1 = rac{5B^2+14B+9}{5B^2+6B+9} = 1+\lambda_2$$

Then $\frac{1}{3} \leq \lambda_2 \leq 1$ if $\frac{3}{5} \leq B < 1$, and so $P_2(\theta) \geq 0$ and $p(z) \epsilon P_3^*$ only if $\lambda_1^2 \leq 8\lambda_2(1-\lambda_2)$, which is satisfied only if $\lambda_2 = \frac{1}{3}$ and $B = \frac{3}{5}$. Finally, $0 < \lambda_2 < \frac{1}{3}$ if $0 < B < \frac{3}{5}$, and then $p(z) \epsilon P_3^*$ only if $|\lambda_1| < 1 + \lambda_2$, which is also satisfied.

This completes the proof of the necessity part of

Theorem 2. Suppose $p(z) = z + a_2 z^2 + a_3 z^3$, where a_2 and a_3 are real. Then the necessary and sufficient conditions that p(z) have radius of starlikeness unity are:

(a) if
$$-\frac{1}{3} \leq a_3 \leq \frac{1}{5}$$
, $a_2 = \pm \frac{1}{2}(1+3a_3)$; in particular $z \pm \frac{4}{5}z^2 + \frac{1}{5}z^3 \epsilon P_3^*$;

(b) if
$$\frac{1}{5} \leqslant a_3 \leqslant \frac{1}{3}$$
, $a_2^2 = 32a_3(1-3a_3)/(9-25a_3)$; and moreover

(c) $\max_{p \in P_3^*} |a_2| = \frac{4}{25} (3\sqrt{6} - 2)$, and this is attained only for

 $z \pm \frac{4}{25}(3\sqrt{6}-2)z^2 + \frac{1}{25}(9-\sqrt{6})z^3.$

On the other hand, both (a) and (b) imply $|a_2| < 1 + a_3$, and so

$$|a_2(1-a_3)| < 1-a_3.$$

Hence, by the Cohn Rule [2, Lemma C], p(z)/z cannot vanish in $|z| \leq 1$. The sufficiency part of the theorem then also follows from the above discussion.

The coefficient region (a_2, a_3) of Theorem 2 is convex. On the other hand, we now establish

Theorem 3. The coefficient region (Re a_2 , Im a_2 , Re a_3 , Im a_3) for polynomials $z + a_2 z^2 + a_3 z^3$ in P_3^* is not convex.

Proof. Suppose $V(z) = z + \frac{4}{5}z^2 + \frac{1}{5}z^3$ (which ϵP_3^* , by Theorem 2). It follows from Lemma 2 that $\operatorname{Re} V'(\frac{9}{10}e^{i\theta})$ vanishes for some θ_0 in

 $[0, 2\pi]$. Let $z_0 = \frac{9}{10}e^{i\theta_0}$. Now let

$$V_1(z) = e^{2i\theta_0}V(e^{-2i\theta_0}z), \text{ and }$$

$$V_{\star}(z) = \frac{1}{2} [V(z) + V_{1}(z)].$$

Then $V_*(z_0) = 0$, since

$$V'_1(z_0) = V'(\bar{z}_0) = V'(z_0).$$

Consequently $V_{*}(z) \notin P_{3}^{*}$, and the result follows.

4. Coefficient regions for P_3^* , with a_3 real

We now consider the class of starlike cubic polynomials

$$p\left(z
ight)=z+a_{2}z^{2}+Bz^{3}$$

where $0 < B < \frac{1}{3}$, $a_2 = re^{i\varphi} = u + iv$, whose radius of starlikeness is unity.

Suppose p(z)/z does not vanish in $|z| \leq 1$; by the Cohn Rule [2, Lemma 0] a necessary and sufficient condition for this is that

$$1 - B^2 > |a_2 - \overline{a}_2 B|$$
 .

Under this assumption, $p(z) \in P_{3}^{*}$ if and only if

$$egin{aligned} &0\leqslant & \operatorname{Re}_{\mathfrak{g}< heta<2\pi}[1+2re^{i(arphi+ heta)}+3Be^{2i heta}][1+re^{-i(arphi+ heta)}+Be^{-2i heta}]\ &=1+2r^2+3B^2+4B\cos 2 heta+3r\cos (arphi+ heta)+5rB\cos (arphi- heta)\ &=Q(r,\,B,\,arphi,\, heta),\,\,\mathrm{say}. \end{aligned}$$

However, apart from a multiplicative constant, Q must be of the form [4]

$$[1 + \cos(\theta - \theta_1)][1 + t\cos(\theta - \theta_2)]$$

for 0 < t < 1, $0 \leq \theta_1$, $\theta_2 \leq 2\pi$. Comparing this with the terms in Q, we deduce that

$$\frac{1+2r^2+3B^2}{1+\frac{1}{2}t\cos 2\theta_1} = \frac{(3+5B)u}{(1+t)\cos\theta_1}$$
$$= \frac{(5B-3)v}{(1-t)\sin\theta_1} = \frac{8B}{t}$$

for -1 < t < 1, $0 < \theta_1 < 2\pi$. Hence, after some computation, we may establish

Theorem 4. Suppose $p(z) = z + a_2 z^2 + Bz^3$, where $0 \le B \le \frac{1}{3}$. Then the necessary and sufficient conditions that p(z) have radius of starlikeness unity are:

(a)
$$1-B^2 > |a_2| \cdot |B-e^{2i \arg a_2}|; and$$

(b)
$$a_2 = \pm \frac{8B(1+t)}{(3+5B)t} \cdot \delta(B,t) \pm i \frac{8B(1-t)}{(3-5B)t} \cdot \sqrt{[1-\delta^2(B,t)]}$$

where $0 \leqslant \delta(B, t) \leqslant 1$ for $-1 \leqslant t \leqslant 1$, and $\delta^2(B, t) = \frac{N}{D}$ where

$$N = 8Bt - 4Bt^2 - t^2 - 3B^2t^2 - 128B^2 \left(rac{1-t}{3-5B}
ight)^2,$$

and

$$D = 128B^2 \left\{ \left(rac{1+t}{3+5B}
ight)^2 - \left(rac{1-t}{3-5B}
ight)^2
ight\} - 8Bt^2.$$

Note 1. We may replace condition (a) by the requirement that $p(z) \epsilon P_3$, and so a_2 and B satisfy [2, Theorem 2].

Note 2. Similar arguments may be used to establish the coefficient region for quartic polynomials in P_{*}^{*} with real coefficients.

REFERENCES

- [1] Alexander J.W., Functions which map the interior of the unit circle upon simple regions, Ann. of Math., 17 (1915), 12-22.
- [2] Brannan D.A., Coefficient regions for univalent polynomials of small degree, Matematika 14 (1967), 165-169.
- [3] ,, , On Univalent Polynomials, Glasgow Math. J., 11 (1970), 102-107
- [4] Fejér L., Über trigonometrische Polynome, J. de Crelle, 146 (1916), 53-82.
- [5] Hummel J.A., The coefficient regions of starlike functions, Pacific J. Math., 7 (1957), 1381-1389.
- [6] Polya G. and Schoenberg I.J., Remarks on de la Vallée Poussin means and convex conformal maps of the circle, Pacific J. Math., 8 (1958), 295-334.
- [7] Rogosinski W.W., Über positive harmonische Entwicklungen und typischreele Potensreihen, Math. Z., 35 (1932), 93-121.
- [8] Suffridge T.J., Starlike functions as limits of polynomials, Advances in Complex Function Theory Maryland 1973/74, Berlin-Heidelberg Nev York 1976, 164-203.

STRESZCZENIE

W pracy tej autorzy rozważają następujący problem: jakie warunki muszą spełniać współczynniki a_2 , a_3 wielomianu $P(z) = z + a_2 z^2 + a_3 z^3$, żeby jego promień gwiaździstości był równy jedności lub żeby wielomian ten był typowo-rzeczywisty w kole jednostkowym.

РЕЗЮМЕ

В данной работе авторы решают следующую проблему: Какие условия должны выполнить коэффициенты a_2 , a_3 многочлена $P(z) = z + a_2 z^2 + a_3 z^3$, чтобы его радиус звёздности равнялся единству или чтобы многочлен тот являлся типично-реальный в единичном круге.