ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. XXVIII, 14

SECTIO A

1974

Instytut Matematyki, Uniwersytet Marii Curie-Sklodowskiel, Lublin

WOJCIECH ZYGMUNT

On a Certain Paratingent Equation with a Deviated Argument

O pewnym równaniu paratyngensowym z odchylonym argumentem

О некотором паратингентном уравнении с отклоненным аргументом

In this paper we shall prove a theorem on the existence of solutions of a paratingent equation of the form

$$(Ptx)(t) \subset F([x]_{\nu(t)})$$
 for $t \ge 0$

with the initial condition

$$x(t) = \xi(t)$$
 for $t \leq 0$.

Preliminaries

Let Comp E denote the set of all compact and nonempty subsets of a metric space E. If additionally E is a linear space, Conv E denotes the set of all elements of Comp E which are convex. Having two metric spaces E and E', a mapping I': $E \rightarrow \text{Comp } E'$ is called upper semi-continuous (usc) when for each point $a \in E$ and every $\varepsilon > 0$ there exists $\delta > 0$ such that the inclusion $\Gamma(x) \subset K(\Gamma(a), \varepsilon)$ holds for all $x \in K(a, \delta)$. $K(a, \delta) = \{x \in E: \varrho(x, a) < \delta\}, \varrho - a$ metric in E. $K(\Gamma(a), \delta) = \{y \in E': \text{there exists } z \in \Gamma(a) \text{ such that } \varrho'(y, z) < \varepsilon\}, \varrho' - a \text{ metric in } E'.$ The following fact has been established in [6] (Proposition 4.1).

Lemma 1. Let E and E' be two metric spaces. A mapping $\Gamma \colon E \to \operatorname{Comp} E'$ is use if and only if for all sequences $\{x_i\} \in E$, $\{y_i\} \in E'$ such that $x_i \to x_0$ and $y_i \in \Gamma(x_i)$, $i = 1, 2, \ldots$, there exists a subsequence $\{y_{i_k}\}$ of $\{y_i\}$ which is convergent to y_0 and $y_0 \in \Gamma(x_0)$.

Let R be the real line, R^n be the n-dimensional Euclidean space with norm $|x| = \max(|x_1|, \ldots, |x_n|)$ where $R^{n-1}x = (x_1, \ldots, x_n)$ Let C be the space of all continuous functions $\varphi \colon R \to R^n$ with the topology defined by an almost uniform convergence (i.e. a uniform convergence on each com-

pact interval of R). It is well known that the almost uniform convergence in C is equivalent to the convergence by metric d defined as follows

$$d(\varphi,\,\psi) \colon = \sum_{i=1}^\infty \frac{1}{2^i} \, \min(1\,,\, \sup_{-i\leqslant s\leqslant i} |\varphi(s)-\varphi(s)|)\,,$$

for φ , $\psi \in C$.

Then C is a metric locally convex linear topological space. Let $\beta < 0$ be a fixed real number and let $I = \langle 0, \infty \rangle \subset R$. Given a function $\varphi \in C$ the symbol $[\varphi]_t$ will denote the function $\varphi|_{\langle \beta, t \rangle}$ (i.e. φ localized within the interval $\langle \beta, t \rangle$) where $t \in I$, and the symbol $\|\varphi\|_t$ will denote the maximum of $|\varphi(s)|$ in $\langle \beta, t \rangle$, i.e. $\|\varphi\|_t := \max |\varphi(s)|$.

Let \mathfrak{C} denote the metric space the elements of which are functions $[\varphi]_l$, $[\psi]_u$ etc and the distance $\varrho([\varphi]_l, [\psi]_u)$ between the two functions $[\varphi]_l$ and $[\psi]_u$ in \mathfrak{C} being understood as a distance of graphs of these functions (the graph being subsets of $R \times R^n$) in the Hausdorff sense.

A more detailed study on the properties of the space C can be found in [7]. The following lemma will be most useful for us:

Lemma 2. Let φ_i , $\varphi \in C$, $i = 1, 2, \ldots$ If $\varphi_i \rightarrow \varphi$, then to every $\varepsilon > 0$ there exist $\delta > 0$ and N > 0 such that the inequality $\varrho([\varphi_i]_{t_1}, [\varphi]_{t_2}) < \varepsilon$ holds for all t_1 , $t_2 \in (T - \delta, T + \delta) \cap \text{I}$ and $i \geq N$.

Proof. Let us fix $T \in I$ and choose anarbitrary $\varepsilon > 0$. Since the function φ is continuous, there exists $\delta > 0$ such that

$$|\varphi(\tau)-\varphi(\sigma)|$$

Hence it follows immediately that

$$\varrho([\varphi]_{t_1}, [\varphi]_{t_2}) < \varepsilon/2 \quad \text{ for } t_1, t_2 \epsilon \left(T - \delta, T + \delta\right) \cap I.$$

Since $\varphi_i \rightarrow \varphi$, then the sequence $\{\varphi_i\}$ is uniformly convergent to a function φ on the interval $\langle \beta, T + \delta \rangle$, in particular. Thus there exists N > 0 such that $|\varphi_i(s) - \varphi(s)| < \varepsilon/2$ for $s \in \langle \beta, T + \delta \rangle$ and $i \geqslant N$. Then we obviously have

$$o(\lceil \varphi_{\epsilon} \rceil_{t}, \lceil \varphi \rceil_{t}) < \varepsilon/2$$
 for $t \in \langle 0, T + \delta \rangle$ and $i \geq N$.

Finally for $t_1, t_2 \in (T - \delta, T + \delta) \cap I$ and $i \geqslant N$ we have

$$\varrho([\varphi_i]_{t_1}, [\varphi]_{t_2}) \leqslant \varrho([\varphi_i]_{t_1}, [\varphi]_{t_1}) + \varrho([\varphi]_{t_1}, [\varphi]_{t_2}) \leqslant \varepsilon$$

which completes the proof of our lemma.

Having a function $\varphi \in C$ and with $t \in I$ the set of all limit points

$$x = \frac{\varphi(t_i) - \varphi(s_i)}{t_i - s_i}$$

where s_i , $t_i \in I$, $s_i \to t$, $t_i \to t$ and $s_i \neq t_i$ (i = 1, 2, ...), is called the paratingent of φ at the point t and denoted by $(Pt\varphi)(t)$. It is easy to see that $Pt\varphi \colon I \to \mathbb{R}^n$ maps the interval I into the family of the nonempty closed subsets of \mathbb{R}^n (cf. [3], [10]). By the paratingent equation we understood a relation

$$(Ptx)(t) \subset F([x]_{r(t)}), \ t \in I$$

where a mapping $F: \mathfrak{C} \to \operatorname{Comp} R^n$ is use and ν is nonnegative, real-valued, continuous function defined on I. Every function $\varphi \in C$ satisfying (*) will be called the solution of these equation.

The main theorem

Let $\nu(t) \geqslant 0$, $M(t) \geqslant 0$ and $N(t) \geqslant 0$ be real-valued continuous functions defined on the interval I, let $0 < \alpha \leqslant 1$ be a fixed number and let

Let us assume that

Let $\xi \in C$ and $A \ge \max(1, \|\xi\|_0)$ be a fixed number. Furthemore, let us assume that a mapping $F: \mathfrak{C} \to \operatorname{Conv} R^n$ is use satisfying the condition

(3) $F([x]_t) \subset K(\theta, M(t) + N(t)(||x||_t)^a)$ for $t \in I$, θ — an origin of \mathbb{R}^n . Then there exists a function $\varphi \in C$ such that

(4)
$$(Pt\varphi)(t) \subset F([\varphi]_{\eta(t)})$$
 for $t \ge 0$

and

(5)
$$\varphi(t) = \xi(t) \quad \text{for } t \leq 0.$$

This solution φ of our paratingent equation satisfies the inequality

(6)
$$|\varphi(t)| \leq A \exp[e\Lambda(t)]$$
 for $t \geq 0$.

Before proving this theorem we shall give some lemmas.

Lemma 3 (cf lemma 3 in [7]). If φ , $\psi \in C$ and

$$(Pt\psi)(t) \subset K(\theta, M(t) + N(t)(\|\varphi\|_{p(t)})^a) \quad for \ t \geqslant 0$$

then for all $t \ge 0$ and h > 0

$$|\psi(t+h)-\psi(t)| \leqslant \int_{t}^{t+h} \left(M(u)+N(u)(\|\varphi\|_{\nu(u)})^{a}\right) du.$$

Proof. It is completely analogous to the proof of lemma 3 in [7].

Lemma 4. Let φ , ψ , φ_i , $\psi_i \in C$ (i = 1, 2, ...). If $\varphi_i \rightarrow \varphi$, $\psi_i \rightarrow \psi$ and

(a)
$$(Pt\psi_i)(t) \subset F([\varphi_i]_{\eta(t)})$$
 for $t \geqslant 0$ and $i = 1, 2, ...$

then $(Pt\psi)(t) \subset F([\varphi]_{\bullet(t)})$ for $t \geqslant 0$

$$\psi(t) = \xi(t) \quad \text{for } t \leqslant 0.$$

Proof. The second condition is obvious. To prove that the first condition is satisfied let us fix $t_0 \in I$ and choose an arbitrary $\varepsilon > 0$. Let $T = \nu(t_0) \geqslant 0$. From the continuity of function $\nu(t)$, lemma 2 and the upper semi-continuity of the mapping F it follows that there exists a neighbourhood $\theta(t_0)$ of the point t_0 and number N > 0 such that

$$(Pt\psi_i)(t) \subset F([\varphi_i]_{\sigma(i)}) \subset K(F([\varphi]_T), \varepsilon) \quad \text{for } t \in \theta(t_0) \cap I, \ i \geqslant N.$$

Since the sequence of functions $\{\psi_i\}$ is uniformly convergent to ψ on the same set $\theta(t_0)$, in view of lemma 8 in [7] (cf also Theorem 2.6 in [10] and [4]) we obtain

$$(Pt\psi)(t) \subset K(F([\varphi]_T), \varepsilon) \quad \text{for } t \in \theta(t_0) \cap I.$$

In particular we have

$$(Pt\psi)(t_0) \subset K(F([\varphi]_T), \varepsilon)$$

and, owing to the optionality of ε , we conclude

$$(Pt\psi)(t_0) \subset F([\varphi]_{\nu(t_0)}).$$

Thus the first condition is satisfied and in this way lemma 4 is proved.

Lemma 5. Let φ , $\psi \in C$ and $G(t) = F([\varphi]_{\varphi(t)})$ for $t \ge 0$. Then following statements are equivalent:

$$(c_1) (Pt\psi)(t) \subset G(t) for t \geqslant 0$$

 (c_2)

$$\bigwedge_{\substack{\ell \in I \text{ e} > 0}} \bigvee_{\substack{\delta > 0 \\ \tau \neq \sigma}} \bigwedge_{\substack{\tau, \sigma \in I \\ \tau \neq \sigma}} \left\{ (|\tau - t| < \delta \text{ and } |\sigma - t| < \delta) \Rightarrow \frac{\varphi(\tau) - \varphi(\sigma)}{\tau - \sigma} \in \overline{K(G(t), \varepsilon)} \right\}.$$

Proof. It is easy to see that the mapping G is use on I and the implication $(c_2) \Rightarrow (c_1)$ is obvious. To prove that the implication $(c_1) \Rightarrow (c_2)$ holds, let us suppose that the condition (c_2) is not satisfied. Thus

$$\bigvee_{t_0 \in I} \bigvee_{s_0 > 0} \bigwedge_{\delta > 0} \bigvee_{\substack{\tau, \sigma \in I \\ \tau \neq \sigma}} |\zeta - t| < \delta \quad \text{and} \quad |\sigma - t| < \delta \quad \text{and} \quad \frac{\varphi(\tau) - \varphi(\sigma)}{\tau - \sigma} \notin \overline{K(\overline{G(t_0)}, \varepsilon_0)}.$$

Puting $\delta=1/i,\ i=1,2,...$, we can choose sequences $\{\tau_i\}\subset I,\ \{\sigma_i\}\subset I$ such that $\tau_i\to t_0,\ \sigma_i\to t_0,\ \sigma_i\neq \tau_i$ and

$$\frac{\varphi(\tau_i) - \varphi(\sigma_i)}{\tau_i - \sigma_i} \notin \overline{K(G(t_0), s_0)}, \ i = 1, 2, \dots$$

On the other hand, from the upper semicontinuity of the mapping G and in view of Lemma 9 in [7] (cf also Lemma 6 in [3] and Lemma 2.5 in [10]) it follows that the difference quotients $[\varphi(\tau_i) - \varphi(\sigma_i)]/(\tau_i - \sigma_i)$ are uniformly bounded. Then there exist subsequences $\{\tau_{i_j}\} \subset \{\tau_i\}$ and $\{\sigma_{i_j}\} \subset \{\sigma_i\}$ such that

$$\lim_{j\to\infty}\frac{\varphi(\tau_{ij})-\varphi(\sigma_{ij})}{\tau_{ij}-\sigma_{ij}}\;\epsilon\;(Pt\varphi)(t_0)\;\Leftrightarrow\;G(t_0)\,.$$

But this contradicts the condition (c_1) . Thus there must be $(c_1) \Rightarrow (c_2)$. Lemma 6. Let $\varphi \in C$ and $G(t) = F([\varphi]_{r(t)})$ for $t \ge 0$. There exists a function $\varphi \in C$ such that

$$(Pt\psi)(t) \subset G(t) \quad \text{for } t \geqslant 0$$

and

$$\psi(t) = \xi(t) \quad \text{for } t \leqslant 0.$$

Proof. Since the mapping G is use on I, there exists a measurable selection g of G (cf [8], Theorem in § 2) such that $g(t) \in G(t)$ for $t \ge 0$. Defining

$$\psi(t) = egin{cases} \xi(0) + \int\limits_0^t g(s) \, ds & ext{ for } t \geqslant 0 \ \xi(t) & ext{ for } t \leqslant 0 \end{cases}$$

we conclude that $\psi(t)$ is an absolutely continuous function for $t \ge 0$ and then obviously the relation $\psi'(t) \in G(t)$ holds a.e. (= almost everywhere) in I. We shall show that $(Pt\psi)(t) \subset G(t)$ for all $t \in I$. Let us fix arbitrary $t_0 \in I$. From the upper semicontinuity of G it follows that to any given

 $\varepsilon > 0$ there is $\delta > 0$ such that the condition $|t_0 - t| \leq \delta$, $t \in I$, implies $G(t) \subset \overline{K(G(t_0), \varepsilon)}$. Hence $\psi'(t) \in H(G(t_0), \varepsilon)$ a.e. in $Q(t_0) = \{t \in I : |t_0 - t| \leq \delta\}$ and by the Wazewski's lemma (Lemma in [9])

$$\frac{\psi(au)-\psi(\sigma)}{ au-\sigma}\,\epsilon\,\overline{Kig(G(t_0),\,arepsilonig)}\,\, ext{for all}\,\, au,\,\sigma\,\epsilon\,Q(t_0),\,\, au
onumber\ \sigma.$$

Therefore in view of our Lemma 5 we obtain $(Pt\psi)(t_0) \subset G(t_0)$. Since t_0 is arbitrary, we have finally $(Pt\psi)(t) \subset G(t) \quad \text{ for } t \geqslant 0$

$$(Pt\psi)(t) \subset G(t) \quad \text{for } t \geqslant 0$$

and

$$\psi(t) = \xi(t) \quad \text{ for } t \leqslant 0.$$

Proof of the theorem. Let Φ denote a family of all functions φ belonging to C and satisfying the following three conditions

(i)
$$|\varphi(t)| \leqslant A \exp\left[eA(t)\right]$$
 for $t \geqslant 0$

(7) (ii)
$$|\varphi(t+h)-\varphi(t)| \leqslant A \int_{t}^{t+h} eL(u) \exp\left[eA(u)\right] du \quad \text{for } t \geqslant 0, h > 0$$

(iii)
$$\varphi(t) = \xi(t)$$
 for $t \leqslant 0$.

We see at once that this family is a nonempty, compact and convex subset of the space C. Given a function $\varphi \in \Phi$, by $\mathscr{F}\varphi$ we denote the set of all functions $\psi \in C$ such that $(Pt\psi)(t) \subset F([\varphi]_{\nu(t)})$ for $t \ge 0$ and $\varphi(t) = \xi(t)$ for $t \leq 0$. Let us consider the correspondence $\varphi \to \mathscr{F} \varphi$ First let us note that the inequality $\|\varphi\|_{t} \leq A \exp[eA(t)]$ for $t \geq 0$ is equivalent to the inequality $|\varphi(t)| \leq A \exp\left[eA(t) \text{ for } t \geq 0, \text{ i.e. if } t \in I \text{ and } \|\varphi\|_t \leq A \exp\left[eA(t)\right]$ then $|\varphi(t)| \leq A \exp[e\Lambda(t)]$ and, vice versa, if $|\varphi(s)| \leq A \exp[e\Lambda(s)]$ for $0 \leqslant s \leqslant t$ then

$$\|\varphi\|_{\ell} \leqslant A \exp\left[e \Lambda(t)\right].$$

For every $\varphi \in \Phi$ the set $\mathscr{F}\varphi$ is nonemtpy according to the Lemma 6, it is convex which is easily concluded from Lemma 5 and closed in view of Lemma 4. Similarly, if $\psi \in \mathscr{F}\varphi$, then by Lemma 3 and conditions (1), (3), (7i) and (2) we have

$$|\psi(t+h)-\psi(t)|\leqslant A\int\limits_t^{t+h}eL(u)\exp\left[eA(u)
ight]du \quad ext{for } t\geqslant 0\,,\,\, h>0$$

$$|\psi(t)|\leqslant A\exp\left[eA(t)
ight] \quad ext{ for } t\geqslant 0$$

and obviously

$$\psi(t) = \xi(t)$$
 for $t \leq 0$.

This means that $\psi \in \Phi$. Thus $\mathscr{F}\varphi \subset \Phi$.

Moreover, all functions ψ belonging to $\mathscr{F}\varphi$ are uniformly bounded and equicontinuous on each compact interval of R. Therefore in view of closedness of $\mathscr{F}\varphi$ we may conclude that $\mathscr{F}\varphi$ is compact, too. Now, we see that the correspondence \mathscr{F} maps the set Φ into the family of the nonempty compact and convex subsets of Φ . We shall prove that \mathscr{F} is use on Φ . Indeed, let φ_i , φ , $\psi_i \in \Phi$, $\varphi_i \to \varphi$ and $\psi_i \in \mathscr{F}\varphi_i$, $i=1,2,\ldots$ In view of compactness of Φ there exists a subsequence $\{\psi_{ij}\} \subset \{\psi_i\}$ which converges to ψ . Thence from the lemma 4 it follows immediately that $(Pt\psi)(t) \subset F([\varphi]_{\gamma(i)})$ for $t \geq 0$ and $\psi(t) = \xi(t)$ for $t \leq 0$. Thus $\psi \in \mathscr{F}\varphi$ and in view of lemma 1 a correspondence \mathscr{F} is usc.

Now, we see that \mathscr{F} fulfils all the hypotheses of the well known theorem by Kakutani — K. Fan on a fixed point for multivalued mappings (cf [1]) Therefore, there exists a function $\varphi_0 \in \Phi$ such that $\varphi_0 \in \mathscr{F} \varphi_0$ what means that

and

$$|arphi_0(t)| \leqslant A \exp\left[e A(t)
ight] \quad ext{ for } t \geqslant 0.$$

Our theorem is thus proved.

Remarks

- 1. Conditions (2) and (3) given in the assumption of our thorem come from A. Bielecki's paper [2] on the existence of solutions of ordinary differential equation with a deviated argument. These conditions were subsequently used by T. Dłotko [5], with some modifications, showing the existence of solutions of an ordinary differential equation with an advanced argument $\varphi'(t) = f(\{\varphi\}_{t,k(t)})$ where $\{\varphi\}_{t,k(t)}$ denotes the function φ localized within interval $\langle t, k(t) \rangle$, $k(t) \geqslant t$.
- 2. If $\nu(t)\equiv t$, then we obtain the paratingent equation with a retarded argument which has been precisely examined by B. Krzyżowa [7]. In this case, every function $\varphi\in C$ satisfying $(Pt\varphi)(t)\subset F([\varphi]_t)$ for $t\geqslant 0$ must also fulfill the inequality $|\varphi(t)|\leqslant A\exp\left[eA(t)\right]$ for $t\geqslant 0$. But if $\nu(t)>t$ then we know nothing about the evaluation of the growth of the function φ which is the solution of the paratingent equation (4).

REFERENCES

- [1] Berge Cl., Topological Spaces, Oliver Boyd, Edinburgh and London 1963.
 - [2] Bielecki A., Certaines conditions suffissantes pour l'existence d'une solution de l'équation $\varphi'(t) = f(t, \varphi(t), \varphi(y(t)))$, Folia Soc. Sci. Lublinensis 2 (1962), 70-73.
 - [3] Biolocki A., Sur certaines conditions nécessaires et suffissantes pour l'unicité des solutions des systèmes d'équations différentielles ordinaires et des équations au paratingent, Ann. Univ. Mariae Curie-Sklodowska, Sectio A, 2 (1948), 49-106.
- [4] Bielecki A., Extension de la méthode du rétracte de T. Ważewski aux équations au paratingent, Ann. Univ. Mariae Curie-Skłodowska, Sectio A, 9 (1955), 37-61.
 - [5] Dłotko T., O istnieniu rozwiązań pewnego równania różniezkowego z wyprzedzającym argumentem, Zesz. Naukowe WSP w Katowicach, Sekcja Matematyki, 4 (1964), 79-83.
- [6] Hukuhara M., Sur l'application semi-continue dont la valeur est un compact convexe, Funkcial. Ekvac., 10 (1967), 43-66.
- [7] Krzyżowa B., Équations au paratingent à argument retardé, Ann. Univ. Mariae Curie-Skłodowska, Sectio A, 17 (1965), 7 18.
- [8] Kuratowski K., Ryll-Nardzewski, Cz., A General Theorem on Selectors, Bull. Acad. Polon. Sci. Sér. Mat., 13 (1965). 397-403.
- [9] Ważowski T., Sur une condition équivalente à l'équation au contingent, Bull. Acad. Polon. Sci. Sér. Math., 9 (1961), 865-867.
- [10] Zaremba S. K., O równaniach paratyngensowych, Dodatek do Rocznika Polskiego Towarzystwa Matematycznego, 9 (1935), 1-22.

STRESZCZENIE

W pracy rozważa się problem istnienia rozwiązania równania paratyngensowego z odchylonym argumentem postaci

$$(Ptx)(t) \subseteq F([x]_{r(t)}), \quad t > 0$$

z warunkiem początkowym

$$x(t) = \xi(t), \quad t < 0.$$

Korzystając z twierdzenia Kakutani-Fana o punkcie stałym dowodzi się przy stosowanych założeniach o funkcjach v, ξ i odwzorowaniu F, istnienia funkcji φ określonej na całej osi R, mającej z góry zadane wartości na przedziale $(-\infty,0)$ oraz takiej, że jej paratyngens $(Pt\varphi)$ (t) w momencie t zawiera się w zbiorze $F([x]_{v(t)})$. Zbiór $F([\varphi]_{v(t)})$ zmienia się w zależności od całego przebiegu funkcji φ na zmiennym przedziale $\langle \beta, \nu(t) \rangle$, gdzie $\beta < 0$, $\nu(t) \geqslant 0$. Rozwiązanie φ spełnia warunek

$$|\varphi(t)| < A \exp[e\Lambda(t)], \quad t > 0.$$

W przypadku, gdy v(t)>t, to równanie (*) obejmuje równania i nierówności z wyprzedzającym argumentem.

РЕЗЮМЕ

В работе рассматривается проблема существования решения паратингентного уравнения с отклоняющим аргументом вида

$$(Ptx)(t) \subset F([x]_{r(t)}), \quad t > 0$$

с начальным условием

$$x(t)=\xi(t), \quad t<0.$$

При помощи принципа Какутани-Фана о неподвижной точке доказывается при соответственных предположениях о функциях v, ξ и отображении F существование функции φ , определенной на всей оси R, совпадающей на отрезке $(-\infty,0)$ с заданной начальной функцией ξ , паратингент $(Pt\varphi)(t)$ которой в момент t включается во множество $F([\varphi]_{v(t)})$. Множество $F([\varphi]_{v(t)})$ зависит от всего течения функции ψ на переменном интервале $<\beta$, v(t)> где $\beta<0$, v(t)>0. Решение ψ удовлетворяет условию

$$|\varphi(t)| < A \exp[eA(t)], \quad t > 0.$$

В случае, когда v(t) > t уравнение (*) охватывает диференциальные уравнения и неравенства с опереджающим аргументом.