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On a Certain Paratingent Equation with a Deviated Argument

O pewnym réwnaniu paratyngensowym z odchylonym argumentem

(o) HEKOTOPOM NapaTHHICHTHOM YPAaBHEHHH C OTKJIOHEHHBIM apryMeHTOM

In this paper we shall prove a theorem on the existence of solutions
of a paratingent equation of the form

(Ptr)(t) = F([x]) for ¢ =0
with the initial condition

z(t) = &(1) for t < 0.

Preliminaries

Let CompE denote the set of all compact and nonempty subsets
of a metric space E. If additionally E is a linear space, ConvE denotes
the set of all elements of CompE which are convex. Having two metric
spaces E and E’, a mapping I': E—~Comp E’ is called upper semi-continuous
(usc) when for each point ae E and every & > 0 there exists 4 > 0 such
that the inclusion I'(z) = K(I'(a),e) holds for all ze K(a, ¢). K(a,
8) = {me E: o(w,a)< 8}, o —a metric in E. K(I'(a), §) = {ye E’: there
exists ze I'(a) such that o (y, 2) < ¢}, o' — a metric in E’. The following
fact has been established in [6] (Proposition 4.1).

Lemma 1. Let E and E’ be two metric spaces. A mapping I': E— Comp E’
is usc if and only if for all sequences {x;}¢ E, {y;} e E' such that »,—~x, and
Yie I'(z), 1 =1,2,..., there exists a subsequence {y;} of {y;} which is
convergent to y, and yqe I'(z,).

Let R be the real line, R" be the n-dimensional Euclidean space with
norm [z| = max(|z,l, ..., |#,]) where R" >x = (2,,...,7,) l.et C be the
space of all continuous functions ¢: R—>R" with the topology defined by
an almost uniform convergence (i.e. a uniform convergence on each com-



128 Wojeciech Zygmunt

pact interval of R). It is well known that the almost uniform convergence
in C is equivalent to the convergence by metric d defined as follows
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for ¢, ye C.

Then C is a metric locally convex linear topological space. Let << 0
be a fixed real number and let I = (0, o0) = R. Given a function ¢e C
the symbol [¢], will denote the function ¢|;,, (i.e. ¢ localized within
the interval (8, t)) where te I, and the symbol ||p[, will denote the maximum
of |p(s)lin (B, 1), i.e. [lg|: =:}1§:{<,I¢(8)1-

Let € denote the metric space the elements of which are functions
(¢l;, [w], etc and the distance o([¢];, [v],) between the two functions
[¢], and [¢], in € being understood as a distance of graphs of these funec-
tions (the graph being subsets of R x E") in the ILausdorff sense.

A more detailed study on the properties of the space € can be found
in [7]. The following lemma will be most useful for us:

Lemma 2. Let ¢;, pc C, i = 1,2, .... If p;—¢, then to every ¢ > 0 there
exist 6> 0 and N > 0 such that the inequality o([¢:],,, [¢l,) <€ holds
for all t,, t,e (T —6, T+ 8)nland i = N.

Proof. Let us fix T ¢ I and choose anarbitrary ¢ > 0. Since the function ¢
is continuous, there exists & > 0 such that

lp(r)—¢(a)l < g2 for tr,0e(T—6,T+6)NI.
Hence it follows immediately that
?(['P’]llf [‘7’](2) <e¢/2  for 4, le (T—48, T+ d)nI.

Since ¢, —p, then the sequence {g;} is uniformly convergent to a function
@ on the interval (8, T --6), in particular. Thus there exists N > 0 such
that |@;(8) —@(s)] < /2 for se (B, T +6) and ¢ > N. Then we ohviously
have

o(lpcdes [p)) < e/2  for te<0,T+4) and i > N.
Finally for ¢,,t,e (T —6,T--6)nI and i > N we have
o([e:de,s [91s,) < e(lo:ds), [9)) + o(l@]s), [P],) < ¢

which completes the proof of our lemma.
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Having a function ge C and with te I the set of all limit points

@ (t) —o(8;)

D . e
t, —8;

where s;,1; eI, s;—t, t,—t and 8 # 1t (¢ =1,2,...), is called the para-
tingent of ¢ at the point ¢ and denoted by (Ptg)(t). It is easy to see that
Ptp: I >R" maps the interval I into the family of the nonempty closed
subsets of R"(cf. [3], [10]). By the paratingent equation we understood

a relation
*) (Piz)(t) < F([2]y), tel

where a mapping F: €—»Comp RE" is usc and » is nonnegative, real-valued,
continuous function defined on I. Every function ge C satysfying (*)
will be called the solution of these equation.

The main theorem

Let »(t) > 0, M (t) = 0 and N (t) = 0 be real-valued continuous functions
defined on the interval I, let 0 < a <1 be a fixed number and let

4
(1) A(t) = [ L(uw)du, where L(t) = M(t)+N(1).

Let us assume that
(2) Alr(t) < a”A(t+e7).

Let £¢C and A > max(1, [[{],) be a fixed number. Furthemore, let us
assume that a mapping F: €--ConvR" is usc satisfying the condition

(3) F([=)) = K(0, M(t) + N(t)(|lz[)®) for telI,6 — an origin
of R". Then there exists a function ge C such that

(4) (Ptg)(t) = F([plyy) = for t=0

and

(5) p(t) = §@t) for t<O.

This solution ¢ of our paratingent equation satisfies' the inequality
(6) lp(t)] < Aexpled(t)] for t=0.
Before proving this theorem we shall give some lemmas.
Lemma 3 (cf lemma 3 in [7]). If ¢, ye C and
(Pty)(t) = E(8, M (1) + N () (lpl)?) for t=0

9 — Annales
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then for all t > 0 and h > 0

t+h

(7) (4 h) — w0 < [ (M(w)+ N () (lplw)) du.
'

Proof. It is completely analogous to the proof of lemma 3 in [7].
Lemma 4. Let ¢, y, ¢;, p;eC (¢ = 1,2, ...). If ¢;=¢, p;—>y and
(a) (Pty)(t) = F([g;]qg) Sfor t=0 and i =1,2,...
(b) v (t) = &(1) for t<0 and i =1,2,...,
then (Pty)(t) = F([¢ly) for t=0
p(t) = &) for 1<O0.

Proof. The second condition is obvious. To prove that the first
condition is satisfied let us fix t,e I and choose an arbitrary ¢ > 0. Let
T = »(ty) = 0. From the continuity of function »(t), lemma 2 and the
upper semi-continuity of the mapping F it follows that there exists a
neighbourhood 6(t,) of the point ¢, and number N > 0 such that

(Pty)(t) = F([glg) < K(F([q’]r)’ 5) for te 6(t)NI, i > N.

Since the sequence of functions {y,} is uniformly convergent to y on the
same set 0(t,), in view of lemma 8 in [7] (cf also Theorem 2.6 in [10] and
[4]) we obtain

(Pty)(t) = K(F([plr), e) for te 8(t)NI.
In particular we have
(Pty)(t) = K(F([glr), €

and, owing to the optionality of ¢ we conclude

(Pty)(to) = F([@ly))-

Thus the first condition is satisfied and in this way lemma 4 is proved.

Lemma 5. Let ¢, ye C and G(t) = F([¢lyy) for t= 0. Then following
statements are equivalent:

(ey) (Pty)(t) = G(t) for t=0
(cg)

ANV Alie—t< 8 and o—t1< 8= 2020 g, ).
tel 8>0 8>0 t‘,;cal T—O0 l
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Proof. It is easy to see that the mapping @ is usc on I and the impli-
cation (c;) =(c,) is obvious. To prove that the implication (¢,) =(¢,;) holds,
let us suppose that the condition (¢;) is not satisfied. Thus

W M. W t—t<d and |c—t|< d and

tyed ¢g>08>0 v,0dd
Tva

o(r)— 9’( )
T —

fK(G(to)r En)

Puting 6 = 1/¢, ¢ =1,2,..., we can choose sequences {7;} < I, {0;} = I
such that 7,—ty, o;—>t,, o; # 7; and

(p(r‘) (P( s) jK(G(to), so), i = l 2
T, — 0
On the other hand, from the upper semicontinuity of the mapping G
and in view of Lemma 9 in [7] (cf also Lemma 6 in [3] and Lemma 2.5
in [10]) it follows that the difference quotients [¢(t;)—@(a;)]1/(7;— 0;)
are uniformly bounded. Then there exist subsequences {r,} = {r}
and {o;} = {o;} such that

tim 29 =P0%) _ p) 1) & 6(10).
j—o0 T‘j’ b ij
But this contradicts the condition (c,). Thus there must be (c,)=(c,)-

Lemma 6. Let e C and G(t) = F([ply,)) for t = 0. There exists a function
ye C such that

(Pty)(t) = G(t) for t=0
and
p(t) = &) for t<0.

Proof. Since the mapping @ is usc on I, there exists a measurable
selection g of G (cf [8], Theorem in § 2) such that g(t)e G(t) for t > 0.
Defining

t
£(0)+[g(s)ds for t>0

p(t) = ¢
£(t) for t< 0

we conclude that y(t) is an absolutely continuous function for ¢> 0 and
then obviously the relation y’(t)e G(t) holds a.e. (= almost everywhere)
in I. We shall show that (Pty)(t) c G(t) for all te I. Let us fix arbitrary
toe I. From the upper semicontinuity of @ it follows that to any given
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€ > 0 there is 6 > 0 such that the condition |[t,—t| < 4, te I, implies
G(t) = K(G(t), ¢). Hence y’'(t)e H(G(t,), ¢) a.e.inQ(t,) = {tel: |ty —1t| < 6}
and by the Wazewski’s lemma (Lemma in [9])
(1) —v(o)
T'_

) }1(( (to), €) for all 7,0eQ(ty), T # 0.

Therefore in view of our Lemma 5 we obtain (I’ty)(t,) < G(t,). Since i,
is arbitrary, we have finally

(Pty)(t) = G(t) for t=0
and .
p(t) = &) for t<O.

Proof of the theorem. Let ® denote a family of all functions ¢ belonging
to C and satisfying the following three conditions

(i) lp(t)] < AexpleA(t)] for t=0
t+h
(7) (i) |p(t+h)—p(t) < Af eL(u)exp[eA(u)]du fort=0,h>0
(iii) p(t) = &(t) for t<0.

We see at once that this family is a nonempty, compact and convex subset
of the space C. Given a function gpe @, by Fp we denote the set of all
functions ye C such that (Pty)(t) = F([¢l) for t=0 and ¢(t) = &()
for ¢t < 0. Let us consider the correspondence :p—>%¢ First let us note
that the inequality [¢|,<< Aexp[eA(t)] for ¢t > 0 is equivalent to the in-
equality |p(t)| < Aexp[eA(t) for t > 0, i.e. if te I and ¢/, < Aexp[ed(t)]
then |p(?)| < Aexpf[eA(t)] and, vice versa, if |p(s) < Aexp[eA(s)] for
0 <s<t then

liply < A exp[eA(t)].

For every pe @ the set F¢ is nonemtpy according to the Lemma 6, it is
convex which is easily concluded from Lemma 5 and closed in view of
Lemma 4. Similarly, if ye #¢, then by Lemma 3 and conditions (1), (3),
(7i) and (2) we have

t+h
lw(@+h)—p(t)| gAf eL(u)expleA(w)]du for t=0, h >0
!

and

lp(t)] < Aexp[edA(t)] for t=0
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and obviously
w(t) = E(t) for t<0.

This means that ype @. Thus F¢p < P.

Moreover, all functions y belonging to #¢ are uniformly bounded
and equicontinuous on each compact interval of K. Therefore in view of
closedness of #p we may conclude that F¢ is compact, too. Now, we see
that the correspondence # maps the set @ into the family of the nonempty
compact and convex subsets of ®. We shall prove that % is usc on ®.
Indeed, let ¢;, ¢, y;e P, ¢;—¢ and yeFg, i =1,2,.... In view of com-
pactness of & there exists a subsequence {1/’.',-} < {y;} which converges
to y. Thence from the lemma 4 it follows immediately that (Pty)(t)
c F([ply) for t =0 and y(t) = &(?) for 1 < 0. Thus yeFg¢ and in view
of lemma 1 a correspondence F# is usc.

Now, we see that # fulfils all the hypotheses of the well known theorem
by Kakutani — K. Fan on a fixed point for multivalued mappings (cf [1])
Therefore, there exists a function ¢,e¢ @ such that ¢,e @, what means
that

(Ptpo)(t) = F([polyy) for t=0,

o) = &(t) for t<O
and
lpo(t)] < Aexp[ed(t)] for t=0.

Our theorem is thus proved.

Remarks

1. Conditions (2) and (3) given in the assumption of our thorem come
from A. Bielecki’s paper [2] on the existence of solutions of ordinary differ-
ential equation with a deviated argument. These conditions were subsequ-
ently used by T. Dlotko [5], with some modifications, showing the existence
of solutions of an ordinary differential equation with an advanced argument
@' (t) = f({@},xy) Where {@}, ;) denotes the function ¢ localized within
interval <t, k(t)), k(t) > t.

2. If »(t) =t, then we obtain the paratingent equation with a retarded
argument which has been precisely examined by B. Krzyzowa [7]. In
this case, every function ge C satisfying (Ptg)(t) = F([¢],) for ¢t > 0 must
also fulfill the inequality lp(¢)| < Aexp[eA(t)] for > 0. But if »(¢) > ¢
then we know nothing about the evaluation of the growth of the function ¢
which is the solution of the paratingent equation (4).
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STRESZCZENIE

W pracy rozwaia si¢ problem istnienia rozwigzanis rownania paratyngeusowego
2z odchylonym argumentem postaci

(*) (Ptz)(t) = F([zlny), t>0
z warunkiem poczgtkowym
z(t) = &(t), t<O.

Korzystajgo z twierdzenia Kakutani-Fana o punkcie stalym dowodzi si¢ przy sto-
sowanych zalozeniach o funkcjach », £ i odwzorowaniu F, istnienia funkeji ¢ okrcélonej
na calej osi B, majgcej z géry zadane wartodci na przedziale (— oo, 0> oraz takiej,
%e joj paratyngens (Pip) (t) w momencie ¢ zawiera si¢ w zbiorze F ([x],). Zbior F ([ly)
zmienia 8i¢ w zaleznosdci od calego przebiegu funkcji ¢ na zmiennym przedziale (8, v(t)),
gdzie g < 0, v(t) > 0. Rozwigzanio ¢ spelnia warunek

lp(t)] < Aoxpled(t)), t> 0.
W przypadku, gdy »(f) > t, to rownanie (*) obejmuje réwnania i nieréwnoéci z wyprze-
dzajgcym argumentem.

PE3IOME

B pa6Gote paccMaTpuBaeTca npobneMa CyMIECTBOBAHHA PEMCHHA MapaTAHIEHTHOrO Ypas:
HEHAsl C OTK/IOHAIOWIHM apryMeHTOM BMIa

* (Prz)(t) C F(lz)oq)), ¢ >0
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C HaYaNbHbIM YCIOBHEM
z(r) =§@), 1<O.

IMpu nomoww npuHuuna KakyTaHu-daHa O HEMOABHXKHOH TOYKE QOKA3IBIBACTCH NPH COOT-
BETCTBEHHBIX MPEANONONKEHHAX O QyHKUHAX v, & H oToBpaxewun F cyulecTsoBanue GyHKuMH @,
onpeneieHHOR Ha Bced ocH R, coBnanarouled Ha oTpelke (—oo, 0) ¢ 3aJaHHOH Ha4a/lbHOH (yH-
kuued &, napatuuredT (Pfy) (f) KOTOPOH B MOMEHT ! BKMIOYAaeTCA BO MHOXECTBO [([@].y)).
Muoxectso F([ip],1)) 3aBHCHT OT BCErO TEYEHHS GYHKLKH Y Ha MEPEMEHHOM HHTEpBae < S, v(r)>
roe <0, v(r) > 0. PeweHne y yIORIETBOPSAET YCI0BHIO

lp(0)| < AexpleA()], > 0.

B cay4ae, koraa v(f) > ¢ ypaBHeHRe (*) OXBaThIBaeT NHGEPCHLHANILHLIC YPABHCHHA M Hepa-
BEHCTBA C OMEPEIKAIOLIHM apryMEHTOM.






