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O zbieznodci szeregéw Rosena dla sum niezaleznych zmiennych losowych z losows
liczbg skladniké6w
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1. Introduction

In the present paper we shall give an extension of B. Rosen’s theorems
[6] to the sums of a random number of independent nonidentically
distributed random variables. Some generalizations of his results may
by found in [1], [2], [3] and [4]. The results given in this paper are exten-
sions or generalizations of results of the above-mentioned papers.

Let {X,,n > 1} be a sequence of independent random variables with

corresponding characteristic functions {p,(t), n > 1} and let 8, = Y X,.
k=1

In the following by N we shall denote a positive integer-valued random
variable which has the distribution function dependent on a parameter
AA>0) i.e. P[N =2] =p, (n =1,2,...), where the p, are functions
of 4 such that for all 4, p, > 0 and Y p, = 1. We assume that the random

n=1
variables N, X,, X,, ..., are independent, and a = EN, y? = ¢?N exist
for all A.

Under the above-mentioned conditions and notations the distribution

function #,(w) and the characteristic function ¢,(t) of the random variaole

SN = X1+X2}‘ cee +X.v
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depend on the parameter A and

Fi(a) = ) puP[8, < al,

n=1

eat) = X pu [ oi(t)-
n=1 k=1
In what follows absolute, in general different, positive constants
will be denoted by C. Further on, let I, be an interval on the x-axis and
let u(I,) be its length.

2. Upper bounds for the probabilities P[S,¢1,]

In this Section we give upper bounds for the probabilities ’[Sye I,]
for some different types of interval families.

Definition 1. A sequence [X,, n > 1] of independent random variables
is said to satisfy the condition (A), if there exist some constants d, > 0,
n, and a function g(n) such that for every = = n,

(1) [ ] wdt)ide < Cofg(n),
11<8y k=1
where C, is a constant not depending on 7, and ¢(n)—>occ as 1—> oo,
One can observe that a sequence of independent random variables
normally distributed with standard deviation o, such that 3 op— oo,
n k=1
when n->oo, satisfies the condition (A) with g(n) = (Y ¢})*. By Lemma
k=1
1 of [6], we see that any sequence of independent nondegenerate identically

distributed random variables satisfies the condition (A) with the function
g(n) = n'?. The same fact concerns the random variables considered
by L. H. Koopmans [3] and by O. C. Heyde [2]. Another example of
random variables which satisfy (1) can be found in [5].

The following Theorem is an extension of Theorem 1 [6].

Theorem 1. Let [X,, n > 1] be a sequence of independent random varia-
bles satisfying the condition (A). If a—oo as 1—>oo, then

(@) of u(I) <[9(a/2)}", 0<p<1/2, then
P[8ye L] < Clg(a/2)]"~"[1 + y%g(a/2)/a],
(b) if u(l,) <eg(aj2), e> 0, then
P(Sye ] < Ce{l +y2g(a/2)/a*+ (e, 4)},
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where for every fized ¢ > 0 5(e, A)—>o00 as 100,
(e) if u(I,;) < const., then

P[8yeI,] < C{y?*/a® +1/g9(a/2)},
(d) maxP[Sy = o] < Cly*a* 11/g(a/2)}.
Cisa constant independent of A and I,.

Proof. Let f,(¢) and h;(x) be the functions such that

(2) [ Ifit)dt < oo, 1f( <1
(3) hy(x) = fe“’fl(t)dt“zo

73

If F,(x) is the distribution function of the random variable S, then

[ m@aFy@) = [ fie(ndt
where ¢,(t) is the characteristic function of S,. But

fhl = minh,(x) ! ar,(x),
xel I).

hence, by the snnple calculations

P[S_\-efal:_{minhl(m)}"{ [ iw@iae+ | ]_mt.)jdt}.

zed) <3, 1£1>8,

On the other hand, because of P[N < a/2] < 4y%/a®, we have

lea()l < y3ar 4+ Y p, ] ] lpi (1))

n>al2
Thus
P[Sye L] < {minhy(2)} " {88,72/az + [ [fi(t)ldt
2&‘11 ‘“>60
+ Yo [ []iwat)iay
n>al2 181>89 k=1
holds.

Now let us choose 1, so that for all A > 2, a/2 = n,. Then by our

assumptions

| ] iettydt < Clg(aj2)

n>al2 <8y k=1
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holds for every A > 4,. Hence
(4)  PlSyeL]< C{minky(@)} ™ {y*/a +1/g(a/2) + [ 1f(0)]dH),
St |¢|>ao

To prove (a) we choose

hi(@) = V2mexp{— (2 —pm)*/2[9(a/2)1"} /[g(a/2) T
and
fi(t) = exp{—112[g(a/2)]*” —ip;t},
where y, is the midpoint of I,. It is easy to verify that f,(t) and h,(z) are
functions satisfying the conditions (2) and (3). Furthermore, we have
mink,(z) > V2nexp(—1/8)/[g(a/2)]*?

zel)
and
J 1)l < Cilg(al2),
(=T
where C, is a constant independent of 4 and I,. Thus, the last two inequali-
ties and (4) prove (a).
In case (b) we choose

hi(2) = V2mexp{— (¢ — p)*/2¢2[g(a/2)]%) [eg(a/2),
L) = ‘ml){—‘}tz‘f2 [9(a/2)] —iu,t}.
Obviously these functions satisfy (2) and (3). But we have
minh,(z) > exp( —1/8)l/—/eg(a/2)

zedd,
Thus (4) gives
P[SyeI,] < Ce{l +y*g(a/2)/a® + (e, A)},
where
n(e,4) = g(a/2) [ exp{—it2ei[g(a/2)]}dt.
|‘|>60
It is easy to see that for every fixed ¢ > 0

1 -
llmn(e, 1) =lim — J exp ( —22%/2)dz = 0,
e © 181> 34 ag(a/2)

which proves (b).
In order to prove (c¢), let us put

i )
h =4/l —

L (aa(w—m

| (L —lt/8)expimt) for [l < 8

i) =
1) for || > 4,
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where 4 is chosen so that é < d,, and M < 2x/6 which assures that
mink;(@) > >0 and [ [fi(t)ldt=0
zel, 121>84
Therefore (4) gives (c).
The statement (d) immediately follows from (c).

Corollary 1. Let [X,,n > 1] be a sequence of independent random

variables satisfying the condition (A) with g(n) = Vn. If a—>o00, y = 0(a?)
as A—oo, then

(a) if p(I)<a®, 0< p<1/2, then
P[8yeI;] < Ca® '3,
(b)) if u(l,) < ea’, >0, then
P[SyeI,]< Ce{l (e, A)},

where for every fized ¢ > 0, n(e, 1)—>0 as 21— o0,
(ey) if wul(I;) < M — const., then P[SyeI,]< Ca™'?,
(d,) maxP[8y = z] < Ca™'2,

X

C i3 a constant independent of A and I,.
B. Rosen in [6] has proved that if F(x) is a distribution function and
@(t) its characteristic function, then

&
(5) 3@ 10) + F@—0)] =+ [ 7 {e"p(—1) — e~ “p(t)}dt +

2mi .

oo

4. f aF (y) | [sin (o — y)t/t]dt
- 0 i

provided | (1+|z|)dF (z) < oo.

Thus, using the equality (5) to the distribution function ¥,(w) with
characteristic function ¢,(t), we obtain

140 A
©) . [Fa+0+ P02 =12+ 5 [ Ceep(-0-

e “p\(t)}dt + Ry(a, 0),
where 4 is a positive number and

1 o0 -~
o, 0) == [ aF,) [ [sin@—y)trar.
—o0 ]
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Lemma. Let [X,,n > 1] be a sequence of independent random variables
satisfying the condition (A). If a—>oco as A-—>oo, then for every e, 0 < ¢ < 1/2,
a constant C exists, independent of x and 2, such that

(7) B, (2, 0)| < Clg(a/2T77 {1 +y2g(a/2)/a%}.

Proof. By definition R,(#, §), we have
7By, Ol < [ dFy(w)| [ [sin(z—y)t/tldt]
—o0 [

L f ’f[sin(w—y)t/t]dt]df’a(y)+

1z—yl<[gla/2)]2® ¢

+ 3 [|[ tsin(@—y)t/d aF )+

i<lgta/2)? BJ 8

+ [ |[ bia@—pundalaFe) = L+1L+1,

12— yl>[gla/)?e+2 0
where B; = {y: jlg(a/2)* < lo—y| < (§ 1)[g(a/2)]*}.
Now using Theorem 1 (a) and the fact that |j'm(sinut/t:)dtl<O’l
(€, = const.), we get g

I, < Clg(a/2)*7'[1 i ¥*g(a/2)/a’].

Further on, form Theorem 1 (a) and by the bounded

| f (sinut/t)dtl < C,/8|u) (C, = const.),
4

we have

L<C D [lo—yldF\(y)<C'[L/g(a/2) +¥ /'] Y 1/i<

i<lg(a/2)]® B; j=lola/2))!
< Clg(a/2) 7' [1+y*g(a/2)/d"],

what with the following inequality

I,<C dF,(y) < Clg(a/2)]**

|z—yl>[g(a/2))26 +2

1
& —yl

ends the proof of the Lemma.
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3. The Convergence of Rosen’s Series for the Sums
of a Randomn Number of Independent Random Variables

We shall now assuime that the parameter 4 belongs to the set of positive
integers. Thus we shall consider the sequences {N,,n > 1} of & positive
integer-valued random variables independent of X,, n =1,2,....

Let us put p,(n) = P[N, = k), EN, = qa,, 2 = ¢* N, and let F,(x)
be the distribution function of X, k£ =1,2,....

The following three theorems constitute some generalizations or ex-
tensions of the results given in [7], [6], [2], [3] and [4].

Theorem 2. Let |z|**" be uniformly integrable with respect to F,, k =
=1,2,..., for some r, 0<r<1, and let EX, =0, ¢’X, = 0} = o}
= const > 0.

If {N,,n>1} is a sequence of a positive integer-valued random varia-
bles independent of X,,, n = 1,2, ... such that

Z‘ a7 < oo and y, = 0(a¥?), where 0 < s <r,

Ne=1

then
(7) D@ RIP[8y < 0]-1/2] < oo.
n=1

Proof. Let gy (1) denote the characteristic function of the random
variable Sy . Putting # = 0 in (6), we get

P8y, <0]-1/2 =

bo| -

[Fy, (0-+) + Fy, (0—)]— P[Sy, = 0]/2~1/2
]

1 1
f (™ Lo, (— 1) =, (D]dt — — P[Sy, = 0]+ Ry, (0, 3),

2m

where 4 is a positive number, Fy_(z) = P[8y_ < z], and

1 g
By, (0,8) = —— J dI«’Nn(y)f (singt/t)dL.

Hence, we get

]

I Wt

Nl

] o
P[SN <0]*‘— = é;Za,,” o

n=1

[ o~

plissh =
— o, (010t + 5 D RSy, = 01+ Y it By, (0, 0).

fiew ) fiw=1
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From Lemma 4 [3] it follows that there exist the positive constants
6, >0 and C, 0 < C< oo, such that for [{| < é,

(9) lgx ()] < 1—C#, uniformly in k.

Thus the sequence {X,, n = 1} satisfies the condition (A) with the function
g(n) = Vn(dy = 6,,n, = 1). Hence by Corollary 1 () P[8y, = 0]< Ca,?
holds, and therefore

(10) it P8y = 01<C Y et 0N < o,
n—1 n—l

On the other hand putting # = 0 and ¢< (1 —7)/2 in the Lemma,
we get

oo

(11) Z +a/2lR (0 6)] 020_1—('—8)/2< 00.

n=1 Nl

Now let us observe that

]
(12) | f g — )~ 1d < Y py(n) f it n Iy (1))

<"1:/2 Je=1

x]sm(Zargcpj(t)”dt -+ 2 Pr(n) f It“i” l@; t)llsm(Zargzpj(t))ldt

kzapp

It follows by Lemmas 2 and 5 [3] that there exists &, such that for
every |t| < 4,

k k
Isin(garg%(t)n < O‘g; L) < Gkt k =1,2,...,

where I () is the imaginary part of ¢(t), j =1,2,..., and C,, C, are
positive constants independent of t and k.

We choose 4 in (6) to be 8 = min(4,, d,), where 6, is as in (9). Then,
we get

l f 1™ [pw, (—0) —on, (D]A < C 3 kpp(m) f 4+ exp (— Cke?) dt +
k<u,|n
+C ' kpy(n) f [t]*+" exp ( — Cke)dt.

k)am 2

Taking into account

4
(13) [ +rexp(—Ckt')dr < €k,
0
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we obtain

(19 kpk('n)f |t T exp (— Ckt?)dt < OP[Np < a,/2] < Ca3?,
k<anpo
and
(15) Y kpi(n) f [t " exp ( — Cki?)dt < Ca;">.
k>apjp
Thus, because of (14) and (15), we have

oo é
1 a—1+s/2
2n Z "
ne=l 0

[ t“[qw,‘(—t)—m,‘(tndt[

L
CZ A (]—-s],'3+02 108 < o

n=l n=1

The last inequality, (10) and (11) prove (7).

Theorem 3. Let (X, n > 1} be a sequence of mdependent random varia-
bles such that EX, =0, ¢*!X, =0;>0,>0, k=1,2,... and |o*"
18 uniformly integrable with respectto ¥, k = 1,2, ..., for some r, 0<r<l1.

If {N,,n > 1} is a sequence of a positive integer-valued random variables
independent of X,, n =1,2,..., such that

oo
. = 0(a*) and Za;l_('_“m< o, 0<s<r,

n=1

then for every p, 0 < p < (1—38)/2 and every z, —oo< < o0,
@

a 't P8y < alz]—1/2| < oo.

1
-

n

Proof. Let us observe that

Sy <o) if 2<0
[y, < k) < | - i
y By, <alull8y,|<aoa] i x>0.

We see that a,—>oc as n—oc. Hence for any o, p < ¢ < (1—7)/2, there
exists n, = ny(0, ®) such that for n > n,
[8y | < aa]  [18y,] < a§/2].
Furthermore, it is easy to see, by the proof of Theorem 2, that the
sequence {X,,n > 1} satisfies the condition (A) with the function g(n)
= Vn. Thus by Corollary 1 (a,) we get

P[|8y,| < a}/2] < Caf~'2.
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Hence for every z

1 Lal . E
-148/2 1 DPTR P, 1 o)
Y/ i, |P[Sy, < aje]—1/2]

L
n—1

< D a P8y, < 01-1/21+C N a T RP[8y, | < a8 [2].
n-1 n=1

By Theoremn 2 the first series on the right hand side of the last inequality
converges. On the other hand we have

=+

Za;l+8/2P[|SNnI < a&/z] < CZ“::HI-.M."I < oo,

ne=1l n=1
since o < (1—r)/2. Thus Theorem 3 is proved.

Definition 2. If there exist a nondegenerate random variable with
the characteristic function ¢(t) and constants C,, 6’ > 0 and » > 0 such that

max g, (t)] < C1—C,t?) for |t] <,
k
max]lk(t)] < JI(t) for |t <9,

we shall say that the sequence {X,,n > 1} satisfies the condition (B).
Here, and in what follows I(t) denotes imaginary part of g(?).
It is easy to see that the random variables considered in [2] satisfy
the condition (B).

Theorem 4. Let | X, n > 1} be a sequence of independent random varia-
bles satisfying the condition (B) with a random variable X such that

[ #dP[X<3] =0(z"), 0<r<1.

x| >2

If {N,,n =1} is a sequence of positive integer-valued random variables

independent of X,,, n=1, 2, ...suchthat y, = 0(a2*) and ‘ a;' 7" < oo, then

n—l
D @ P[8y, < 0]—1/2| < co.
n—-1

Proof. In the same way as in the proof of Theorem 2 one can obtain
the following inequality

(16) D a'IP[8y, < 01-1/2(< 5 L P[8y, = 0]+
ne=] Nneml -
'Z 'Ry, (0, a)|+— \ @ | [ 6 [, (=0 —w, (D11,

where Ry (0, 6) is as in the above.
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It can shown that if {X,,n > 1} satisfies the condition (B) then
{X,,n =1} satisfies (A) with g(n) =l/'n, by Corollary 1 (d,). we get

0

(17) Za;‘P[SN" = 02 -3

n=1

Moreover, it follows from the Lemma with ¢ chosen less than (1—7)/2
that

(18) D' Ry, (0, 8) < C Y a7 < oo,
n=1 n=1

For the first series on the right hand side of (16) we have

(19) Mo f 1™ [gw, (—1) — @, (1)1t

ne=1

<ya' ) pk(n)flt"lnm mlz larg ;- (1) dt +

n k<apo ]-l j=1

+ ) pk(n f | H Iy (t|2|argtpj(t)|dt

=] J=1 Je=1

3

where ¢ is a positive constant to be determined later.
Now we can write

@ (1) = Ry(8) +1i;(t),

where E;(t) and I;(t) are real functions, bounded on any finite interval.
Thus, we have
arge;(t) = arctg{I;(t)/R,(t)}.

But R;(t) = {g;(t) +¢;( —t)}/2 is itself a characteristic function and there-

fore it is contmuous about R;(0) =1 in a neighbourhood of the origin.

Therefore for every ¢> 0 there exists d; > 0 such that |R;(¢)—1|<e

in |t] < ¢;. Choose 6" = mind; (clearly 6" > 0). Then, uniformly in %
j

for [t| < 6 we must have
large; (1) < O|L;(1)| < CI(?)],

where I(t) is as in the condition (B). But by Lemma 2 [4] [I(t)| = O(|¢[**"),
80

(20) largg; (1)l = O([tP**"), j =1,2,....

6 — Annales
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We choose é in (19) to be 6 = min(zn, ', ’'). On the basis of (20) and

(13) we get
(21) D pin) f I ]] g5 (2) IZIm‘g%(t )l dt
k<ay/a j=1 j=1
Z kpk('n)f]tl”'exp(—()o kt2)dt < Ca;'?
I'<°7112
and
(22) D m n)f It“ln (AUBY ) larg g ()] ds
k=ape j=1 1-1
< 0 Z (n) < C‘ --l'f:l
k>ap;

Thus from (19), (21) and (22) we obtain

o 4

o [t o, (— 1) — g, (B)]1dE
n=1 0

< Oza;3/2+02a;1—r/2< 0,

ne=1 nml

and what with (16), (17) and (18) ends the proof.

(1]

(2]

(3]
4

(5]
£6]
(7]
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STRESZCZENIE

W pracy podano rozszerzenia twierdzen Rosena [6] na przypadek sum nieza-
leznych zmiennych losowych z losows liczbg skladnikéw. Otrzymane twierdzenia
rozszerzaja badZ uogélniajs wyniki podane w pracach [1], [2], [3] i [4].

PE3IOME

B pa6ote moay4eHo pacispenus TeopeM Poiena [6] Ba cayyait cymm cinyyaHHoOro yucna He-
3aBUCHMBIX Cy4aiHRIX BenuyMH. IlonyveHbl TeopeMhl aBAfAOTCA 060GIeHHsAMH nu60 pacinH-
peaMaMH 3anay HMcciaenosanusix B [1], [2], [3] n [4].



