UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA

VOL. XXVIII, 6

SECTIO A

1974

Instytut Ekonomii Politycznej i Planowania, Uniwersytet Marii Curie-Skłodowskiej, Lublin Zespół Matematyki, Wyższa Szkola Inżynierska, Kielco

ZDZISŁAW LEWANDOWSKI, STANISŁAW WAJLER

Sur les fonctions typiquement réelles bornées

O funkcjach typowo-rzeczywistych ograniczonych О тяпячно-вещественных ограниченных функциях

1. Désignons par $T_M(M>1)$ la classe des fonctions f de la forme

(1)
$$f(z) = z + a_2 z^2 + \ldots,$$

holomorphes dans le cercle $K_1=\{z\colon |z|<1\}$ et définies par l'intégrale de Stieltjes

(2)
$$f(z) = \int_{-1}^{1} s_{M}(z, t) d\mu(t),$$

où μ est une fonction quelconque non décroissante dans l'intervalle $[-1,1], \ \mu(1)-\mu(-1)=1,$

$$s_{M}(z,\,t) = rac{2z}{\sqrt{\left[1-2tz\Big(1-rac{1}{M}\Big)+z^{2}
ight]^{2}-rac{4z^{2}}{M^{2}}}+\left[1-2tz\Big(1-rac{1}{M}\Big)+z^{2}
ight]}},$$

et M est un nombre fixé, M > 1.

Remarquons que $T_{\infty} = T$, où T est la classe bien connue des fonctions typiquement réelles ([1], [3], [4], [5], [6]).

Dans cette note, nous étudions quelques problèmes extrémaux dans la classe T_M . En particulier, nous y déterminons le domaine de variation de f(z) pour z fixé, $z \in K_1$, $f \in T_M$, ainsi que les limitations qui en résultent. Nous déterminons encore les points extrémaux de la classe T_M et trouvons les limitations pour les coefficients des fonctions de cette classe. On verra que toute fonction $f \in T_M$ est typiquement réelle et bornée par M, c'est-à-

-dire que |f(z)| < M, $z \in K_1$. Des résultats obtenus on tire, dans le cas limite $M = \infty$, les résultats bien connus pour la classe des fonctions typiquement réelles. On peut démontrer que la classe T_M n'est pas identique à toute la classe des fonctions typiquement réelles et bornées par M.

2. On montre aisément que pour la fonction $w=s_M(z,t)$ on a le théorème suivant:

Théorème 1. La fonction $w = s_M(z, t)$, $t \in [-1, 1]$, représente le cercle K_1 sur un cercle de rayon M, entaillé suivant les segments de droite [-M, a(t)] et [b(t), M], où

$$(4) \hspace{1cm} a(t) = -\left\{\sqrt{\left[1+t\left(1-\frac{1}{M}\right)\right]^2-\frac{1}{M^2}}+\left[1+t\left(1-\frac{1}{M}\right)\right]\right\}^{-1}$$

$$(5) b(t) = \left\{ \sqrt{\left[1 - t\left(1 - \frac{1}{M}\right)\right]^2 - \frac{1}{M^2}} + \left[1 - t\left(1 - \frac{1}{M}\right)\right] \right\}^{-1}, \ t \in [-1, 1].$$

Théorème 2. Le domaine de variation de la fonctionnelle f(z) pour z fixé, $z \in K_1$, et f variant dans la classe T_M est le domaine limité par le aro de la courbe $w = s_M(z,t)$, $t \in [-1,1]$, et par le segment de droite joignant les extrémités de cette courbe.

Si $\operatorname{Im} z = 0$, le domaine de variation de f(z), $f \in T_M$, quand z est un point fixé du cercle K_1 , est le segment de l'axe réél

(6)
$$\left[\frac{4z}{\left[\sqrt{(1-z)^2-\frac{4z}{M}}+(1-z)\right]^2}, \frac{4z}{\left[\sqrt{(1-z)^2+\frac{4z}{M}}+(1-z)\right]^2}\right]$$

Démonstration. En vertu du théorème 2 du travail [1], le domain de variation de f(z) lorsque z est fixé, $z \in K_1$, et f varie dans la classe T_M est l'enveloppe convexe de la courbe (3) $w = s_M(z, t)$, $t \in [-1, 1]$. Nou allons montrer que la courbe $w = s_M(z, t)$, $t \in [-1, 1]$, est convexe. Poson

$$\zeta=z+rac{1}{z}, \quad m=1-rac{1}{M}.$$

On obtient:

(7)
$$w = \frac{1}{2(1-m)^2} \left[(\zeta - 2tm) - \sqrt{(\zeta - 2tm)^2 - 4(1-m)^2} \right], \ t \in [-1, 1].$$

Posant $\zeta = x + iy$, w(t) = u(t) + iv(t) = u + iv, on déduit de (7), après quelques transformations, l'équation de la courbe $w = s_M(z, t)$ sous forme implicite:

(8)
$$u^2 + v^2 = \frac{v}{av - y}$$
, où $a = (1 - m)^2$,

done

(9)
$$F(u, v) = avu^2 + av^3 - yu^2 - yv^2 - v = 0.$$

En étudiant l'expression qui caractérise la convexité

$$K = F_{uu}F_{v}^{2} - 2F_{uv}F_{u}F_{v} + F_{vv}F_{u}^{2},$$

on constate facilement que la courbe (9) admet un sens de convexité fixe (pour v < 0 et v < 0). De la forme (7) il s'ensuit que v > 0 si $\operatorname{Im} z > 0$, tandis que v < 0 si $\operatorname{Im} z < 0$, ce qui prouve que la fonction $f \in T_M$ est une fonction typiquement réelle. Comme $w = s_M(z,t)$ est la courbe fermée de Jordan (pour $\operatorname{Im} z > 0$ et $\operatorname{Im} z > 0$) et sa les extrémités $w_1 = s_M(z,1), w_2 = s_M(z,-1)$ appartiennent en même temps au demi-plan supérieur ou au demi-plan inférieur, le domaine de variation est bien celui qui est annoncé dans le théorème. Le cas $\operatorname{Im} z = 0$ est évident.

L'interprétation géométrique du théorème 2 implique les limitations suivantes:

Théorème 3. Si $f \in T_M$, on a, pour tout z fixé, $z \in K_1$:

$$|s_M(z, +1)| \leqslant |f(z)| \leqslant |s_M(z, -1)| \ si \ \mathrm{Re} s_M(z, -1) \leqslant 0,$$

$$|s_M(z, -1)| \leqslant |f(z)| \leqslant |s_M(z, 1)| \ \ \text{si} \ \ \operatorname{Re} s_M(z, 1) \geqslant 0.$$

Si $\operatorname{Res}_M(z, -1) \geqslant 0$ et $\operatorname{Res}_M(z, 1) \leqslant 0$, on a

$$|f(z)| \leqslant \frac{2}{\left|\sqrt{\left[\operatorname{Im}\left(z + \frac{1}{z}\right)\right]^{2} + 4a - \operatorname{Im}\left(z + \frac{1}{z}\right)\right]^{2}}},$$

$$|f(z)| \geqslant \begin{cases} d & si \ |s_{M}(z, -1)|^{2} - \operatorname{Re}s_{M}(z, 1)\overline{s_{M}(z, -1)} \geqslant 0 \\ & et \ \operatorname{Im}s_{M}(z, 1) \geqslant \operatorname{Im}s_{M}(z, -1); \\ |s_{M}(z, -1)| & si \ |s_{M}(z, -1)|^{2} - \operatorname{Re}s_{M}(z, 1)\overline{s_{M}(z, -1)} \leqslant 0 \\ & et \ \operatorname{Im}s_{M}(z, 1) \geqslant \operatorname{Im}s_{M}(z, -1); \\ |s_{M}(z, 1)| & si \ |s_{M}(z, 1)|^{2} - \operatorname{Re}s_{M}(z, -1)\overline{s_{M}(z, 1)} \geqslant 0 \\ & et \ \operatorname{Im}s_{M}(z, 1) \leqslant \operatorname{Im}s_{M}(z, -1); \\ |s_{M}(z, 1)| & si \ |s_{M}(z, 1)|^{2} - \operatorname{Re}s_{M}(z, -1)\overline{s_{M}(z, 1)} \leqslant 0 \\ & et \ \operatorname{Im}s_{M}(z, 1) \leqslant \operatorname{Im}s_{M}(z, -1), \end{cases}$$

où

$$d = \left|\operatorname{Im} \frac{s_M(z,\,-1)}{s_M(z,\,1) - s_M(z,\,-1)}\right| \cdot |s_M(z,\,1) - s_M(z,\,-1)|.$$

Les limitations (11) - (13) sont exactes. Les fonctions extrémales dans (11) et (12) sont les fonctions $f(z) = s_M(z, \pm 1)$. Dans la limitation supérieure (13) la fonction extrémale est la fonction $f(z) = s_M(z, t_0)$, où $t_0 = \frac{1}{2m} \operatorname{Re} \left(z + \frac{1}{z}\right)$, $m = 1 - \frac{1}{M}$. Les fonctions extrémales dans la limitation inférieure (13) sont les fonctions $s_M(z, \pm 1)$ et la fonction $f(z) = \lambda s_M(z, 1) + (1 - \lambda) s_M(z, -1)$ ùo $0 \le \lambda \le 1$ satisfait l'équation

$$\left| \operatorname{Im} \frac{s_{M}(z, -1)}{s_{M}(z, 1) - s_{M}(z, -1)} \right| |s_{M}(z, 1) - s_{M}(z, -1)|$$

$$= |\lambda s_{M}(z, 1) + (1 - \lambda)s_{M}(z, -1)|.$$

Théorème 4. Si $f \in T_M$, on a, pour z fixé, $z \in K_1$,

(14)
$$\arg s_M(z, -1) \leqslant \arg f(z) \leqslant \arg s_M(z, 1) \ si \ \operatorname{Im} z > 0,$$

(15)
$$\arg s_M(z, 1) \leqslant \arg f(z) \leqslant \arg s_M(z, -1) \ si \ \operatorname{Im} z < 0.$$

Les fonctions extrémales dans (14) et (15) sont les fonctions $f(z) = s_M(z, \pm 1)$.

Théorème 5. Si $f \in T_M$, on a, pour tout $z \in K_1$, Im $z \neq 0$,

$$|{\rm Im}\, s_M(z,\,-1)|\,=\,|{\rm Im}\, f(z)|\leqslant |{\rm Im}\, s_M(z,\,1)|\ \, si\ \, {\rm Re}\, s_M(z,\,1)\geqslant 0\,,$$

$$|\mathrm{Im}\,s_M(z,\,1)|\leqslant |\mathrm{Im}\,f(z)|\leqslant |\mathrm{Im}\,s_M(z,\,\,-1)|\ \ si\ \ \mathrm{Re}\,s_M(z,\,\,-1)\leqslant 0\,,$$

$$|\operatorname{Im} f(z)| \leq \frac{2}{\left|\sqrt{\left[\operatorname{Im}\left(z+\frac{1}{z}\right)\right]^2+4a-\operatorname{Im}\left(z+\frac{1}{z}\right)\right]}},$$

 $si \operatorname{Re} s_M(z, -1) \geqslant 0 \ et \operatorname{Re} s_M(z, 1) \leqslant 0$

$$|{
m Im} f(z)| \geqslant egin{cases} |{
m Im} s_M(z,1)| & si \ {
m Re} s_M(z,-1) \geqslant 0 \ et \ {
m Re} s_M(z,1) \leqslant 0 \ et \ |s_M(z,-1)| \geqslant |s_M(z,1)|; \ |{
m Im} s_M(z,-1)| & si \ {
m Re} s_M(z,-1) \geqslant 0 \ et \ {
m Re} s_M(z,1) \leqslant 0 \ et \ |s_M(z,-1)| \leqslant |s_M(z,1)|. \end{cases}$$

En mettant, dans les théorèmes 2-5, $M=\infty$, on retrouve les résultats établis dans les travaux [1], [3] et [4].

3. En appliquant le théorème 1 du travail [2] on obtient le

Théorème 6. La classe T_M est une classe compacte et elle constitue l'enveloppe convexe de l'ensemble des fonctions $f(z) = s_M$ (z, t), $t \in [-1, 1]$.

La correspondance $\mu \leftrightarrow f$ (dans la formule 2) est biunivoque et les seuls points extrémaux sont les fonctions $f(z) = s_M(z, t), t \in [-1, 1]$.

Soit \mathscr{J} une fonctionnelle linéaire continue sur l'espace de Frechet de tous les fonctions holomorphes dans le cercle K_1 . De même que dans [2] on trouve:

(20) $\max\{\operatorname{Re}\mathscr{J}(f)\colon f\in T_M\} = \max\{\operatorname{Re}\mathscr{J}(f)\colon f\in \text{enveloppe convexe de la classe }T_M\} = \sup\{\operatorname{Re}\mathscr{J}(f)\colon f\in \text{ensemble des points extrémaux de l'enveloppe convexe de }T_M\} = \sup\{\operatorname{Re}\mathscr{J}(f)\colon f\in \text{ensemble des points extrémaux de la classe }T_M\}.$

En tenant compte de (20) et du théorème 6 on obtient le

Théorème 7. Si $f \in T_M$, on a

(21)
$$\min_{t \in [-1,1]} A_n(t) \leqslant a_n \leqslant \max_{t \in [-1,1]} A_n(t), \ n = 2, 3, \dots$$

où

(22)
$$s_{M}(z,t) = z + \sum_{n=2}^{\infty} A_{n}(t)z^{n}.$$

En particulier,

(23)
$$|a_2| \leq 2m$$

$$|a_3| \leq \begin{cases} 2m - m^2 & \text{si } m \in [0, 2/3], \\ 5m^2 - 2m & \text{si } m \in [2/3, 1]. \end{cases}$$

L'égalité dans (21) et (23) a lieu pour les fonctions $f(z) = s_M(z, t)$ où t est convenablement choisi dans [-1, 1]. Enfin, en posant $M = \infty$, on obtient $|a_n| \leq n$, $n = 2, 3, \ldots$ (v. p. ex. [3]).

RÉFÉRENCES

- [1] Ашневиц И. Я., Улина Г. В., Об областях значений аналитических функций представимых интегралом Стильтеса, Вест. Лен. Унив., 11 (1955), 31-42.
- [2] Brickman L., MacGregor T. H., Wilken D. R., Convex Hulls of Some Classical Families of Univalent Functions, Trans. Amer. Math. Soc., 156 (1971), 91-107.
- [3] Голузин Г. М., О типично-вещественных функциях, Мат. Сб. 27 (69),(1950), 201-218.
- [4] Ремизова М. П., Экстремальные задачи в классе типично-вещественных функций, Изв. Выш. Учеб. Зав., Математика, 32 (1963), 135-144.
- [5] Robertson M. S., On the Coefficients of Typic-Real Functions, Bull. Amer. Math. Soc., 41 (1935), 565-572.
- [6] Rogosinski W., Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Zeitschr., 35 (1932), 93-121.

STRESZCZENIE

W pracy tej autorzy zajmują się problemami ekstremalnymi w klasie $T_M(M>1)$ funkcji holomorficznych w kole jednostkowym, danym wzorem (2), która jest podklasą klasy funkcji typowo-rzeczywistych ograniczonych. Wyznaczono obszar zmienności f(z) przy ustalonym $z \in K_1$, gdzie $f \in T_M$, a także podano kilka oszacowań wynikających z oszacowania obszaru zmienności f(z). Ponadto podano oszacowania na współczynniki funkcji $f \in T_M$. W przypadku granicznym $M = \infty$ otrzymane twierdzenia odpowiadają wynikom z prac [1], [3] i [4].

РЕЗЮМЕ

Авторы занимаются экстремальными проблемами для класса $T_M\,(M>1)$ голоморфных функций в единичном круге, данных формулой (2). Класс T_M является подклассом класса типично-вещественных и ограниченных функций. Дается область изменения f(z) для фиксированного $z\in K_1$ где $f\in T_M$, а также даются некоторые отсюда вытекающие оценки коэффициентов для функций $f\in T_M$. В граничном случае $M=\infty$ получаем теоремы из [1], [3] и [4].