ANNALES
UNIVERSITATIS MARIAE CURIE-SKLODOWSKA
Lublin — Polonia

VOL. XXVIII, 3 SECTIO A 1974

Instytut Matematyki, Uniwemrsytet Marii Curie-Sklodowskie], Lublin

RENATA JANICKA
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of Neutral Type
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YPaBHEHHSA ReATpabHOTO THMA

I. Introduction

In this paper we shall consider thie problem of existence of the solution
for the neutral integro-differential equation of the form

[}

o' (t) =f(t, [ @(t—5)d,61t,9), [ (t—s)d, K (t,3)) for te (0, a;
(0) 0 0
x(t) = &(t) for te(—o0,0).

To solve the problem we shall use the method based on the notion of
‘‘measure of noncompactness’’ and the fixed point theorem of Darbo [3].
To do that we shall need the exact formula for measure of noncompactness
in the spaces C, C! of continuous and differentiable functions on a compact
interval. Those forinulas have been proved by Goebel [4]. Besides those
formulas the paper [4] contains some remarks which show how to check
the assumptions of Darbo’s theorem for concrete transformations in the
spaces C and C'. It appears that it is enough to check that the mappings
change the modulus of continuily of the argument function in a ‘regular
way” (see Definition 1). In our case the transformations we shall have
to study will be some linear integral operations. So the main stress will
be put on finding the conditions under which they change modulus of
continuity as required in Definition 1.
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II. On some integral operators

Let € _., ., be the Banach space of bounded and continuous funections
¢(t) defined on an interval (— oo, a) with the norm |igll_ o = sup{le(?)|:
te(—oo,a,}. Let G(t,8) be a real functien defined on <0, a) x<0, o).

We shall deal with the mapping % in the following form

o

(1) (9)(1) = [ p(t—s)d,G(t,5) for te (0, a).
0

In [1] Bielecki gave some conditions on the kernel G(t, 8) which are suf-

ficient for ¥ to map the class € __ ,, into a class Cy qy. Those assump-
tions are:

10 G(t,0) =0 for te (0, a,.
20 The function G(t, 8) is of bounded variation with respect to s for
any fixed value te (0, a) and satisfies the inequality

Y G(t, 8) < V, — const.

§=0

30 For an arbitrary ¢ > 0 exists a number K > 0 that

Y G(t,s) < e

8=K

40 For an arbitrary fixed number K’ > 0 and fe {0, a)

%
lim [ [@(t, s) G (i, s)lds = 0.
t—-t 0

Theorem 1. Under the assumptions 1° —41° the mapping ¥ maps any

function ge C_ ., into a function of the class Cyqy and this mapping is
continuous.

Proof. The proof that #: € .+, has been given in [2]. We
shall prove the continuity. Because the mapping is linear, we shall only
show that there exists a constant M and

”g‘Plko ay S <M ||<P|](_oo ay*
In fact

(8p) (O] =| [ p(t—~9)dG(t, 8) | < gl T 6(2) )< V' IPlmmr
0 S
This ends the proof of Thzorem 1.

Let us go through a new problem. Let us consider a function K (¢, s)
defined for te (0, a> and se {0, a) with real value. We assume that the
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function A (¢, 8) has bounded variation with respect to 8 for any fixed
te (0, a> and satisfies inequality

(2) YK(i,s) <V, = const.
a=0

We deal with a mapping # of the form
[

(3) (Ag)t) = [@(t—s8)d,K(t,s) for te(0,a) and geCoga
0

We shall use a concept of the modulus of continuity «(x, k) for a fune-
tion ze Cpg 4y a8

o(z, h) =sup[|z(t) —=z(f)|:t,Le<0,a)>, [t—E| < h].

Definition 1. We say, that transformation .# changes the modulus
of continuity in the regular way, if there exist a constant L and functions
a(h) and B(k) such that 0 < a(h)—>0 and 0 < g(h)—0 for h—>0 and for
every @e C g,

(4) o((X9), h) < Lo(p, a(h)) + B(k).

Now let us raise a question; what conditions on K (¢, 8) are sufficient

for the mapping X to change the modulus of continuity in the regular
way.
The following theorem holds.

Theorem 2. If the kernel K(t,s) of the transformation X 18 quven by
(3) K(t,s) =K1(t,8)-}—K2(t,8),

where K, (t, 8) i8 a continuous function of 8 for every t and satisfies:

10 for every te (0,a> Y K,(t,8) < V, = const,

8=0
20 lim v (K,(t,8)—K,(t,8)) = 0 for t,1e (0, a) and t >{,
(‘_")_,o 8:-0
3° lim Y K,(t,8) =0 for t,te{0,a) and t=>1{,
(¢—0)-0 a=¢

and K,(t,8) is of the form
(6) K,(t,8) = D a;H(v,(t)—s\.
im1
where 4° H(u) i8 the Heaviside's function
0O, u<<0

H(u) =
(%) 1,u>0,
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50 The funotions tv,(t), 1 =1,2,... satisfies 0 < v,;(t) <t and all are
equicontinuous i.c. there exists a function Q(h) defined on the interval (0, a>
such that for every i w(v;, h) << 2(h) and 0 < Q(h)->0, if h—>0,

00

6o The coefficients a; form an absolutly convergent series D' |a;| < oo,
i=1
then the transformation A" maps C o, into itself, is continuous and changes
the modulus of continuity in the reqular way.

Proof. It is easy to verify that the transformation ¥ maps C g, into
C0,ay and is continuous. We prove only the last part of the thesis.
Let t,te <0, a) and t > t. By (5), (6) we have

() (1) =(Hp) (B)] = |f¢p(t—s‘ 4K (L, s) fq) i—s)d,K (I s)’

t ¢
<U¢(t—s)d,,1fl<t, 8)— [pE—9)d, K, 9|+

a; H (v,(f) —s)|.
1

Tm

:
+Uq)t—s aH(v —s)—fcp(i——s)da

0

Now we estimate both parts separately.

¢
8 = |f¢<t—s)d3K1(t,s>— pli—8)d,K,(E, )

c\‘l

1

rrp(t— s)d, K, (1, s) f(p(t—sdh t »)—ftp(t——&d]x (2, 9)‘

t ?
<|[ot—s)aK,(t,5)~ [pE—s)d K (t, )|+
0 0
t 1 t
+ | [ot—9)d,Ks(t, 8)— [t ~8)d, Ky (b, 9)| + | [p(t —8)d, Ky(t, 9) |
0 t

0

< lf(?’(t—s)—Q’(i—s))dsKl(ta 8) I +

¢ ¢
+ | [ o= 9)d,(Ks(t, 5) ~ Ky (E, 9) | + \_fzp(t—s)d,Kl(t, )|

< sup [g(t—9) ~plE-9) - T Ey(t, ) +

8¢(0,8)

+ sup lg(t—8)| - Y‘(K (t, 8) — K(Z, 8)) + sup |p(t—s)] Yﬁ'l(t 8).
8¢¢0, 8y P a=i
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Thus in view of 19, 20, 3° we obtain

< o, {t_ﬂ)'Vs + 'I‘P“w.a)')’(lt"t_l)’
where

a

]
(7) y(t—2) = ¥ (K.(2, 8) — K, (¢, 8)) + v K,(t, 8).

8=0 e

However, by the assumptions 49, 59, 6° we get

52_‘f¢(t—?d _Vau’(r(t}—s)_ f(pt—-sd S’aH(v‘(z )—s)|

1=l

|I
-"‘MB

U o (t—8)d, H (v;(t) —s) — _[cp(t_s)d H(n,(!)—u)”

l’Ja

lﬂsll?(f — (1) —g(F—vy(B)) < E lag| @ (@, 1t —F + oo (v;, [t —E]))

=1

-

A
MP

) - (@, 1E— 1+ 2(1t ).

o
I
[

Therefore the modulus of continuity for the transformation ¢ can
be estimated in tho following way:

o0

w((ftp), h) < Vi o(p, h) -+ 2 |ayl 'w(‘Py h Q(h)) =i ]Iq’[l(o,a>'7(h)

=]
for [t—1I| < h.
Then there exist a(h) = h -+ 2(h) and B(k) = y(k)and L = Vy+ 3 |aj

1=1

such that conditions of Definition 1 are satisfied and

) o), W< (Vs r X lal)olp, bt Q)+ Iplgw 7 (?)

i=1

for every @e C (g g -
This ends the proof of Theorem 2.

III. Remarks about ‘‘measures of noncompactness”

Let (M, o) be a metric space M with a metric o. By I we denote
a class of all nonempty closed and bounded subsets of the space M.

Definition 2. If X M, then x(X) is the greatest lower bound of such
numbers » that X can be covered by a finite number of balls of radius 7.
We call x(X) the “measure of noncompactness’ of the set X.

2 — Annales
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Now let us consider a space C, ,, of all real functions z(t) continuous
on an interval {0, a) and the space O’_'o_,,> consisted of the differentiable
functions in continuous way. The norm in the space C’éo,,,) we introduce

Izl = llelic + | Dxllc,

d
where [#ll; = sup[|z(t)|: te (0, a ] and D 3 is differential operation.
(

Let M, and M be classes of all nonempty bounded subsets of the
spaces C and C! respectively. We quote the basic theorems concerning
methods of estimate of the function x in the spaces C,, and Cl,,

(cf [4]).

Theorem 3. For arbitrary set X ¢ M, we have
1.5 1|
po(X) = —limw (X, h) = —lim{sup[w(2, h): veX]}.
2 h—0 2 h—0
Theorem 4. For arbitrary set X e M

d
st (X) = po(DX), where DX _—[gt-:r:[l): e I].

Moreover we use

Theorem 5 (Darbo [3]). Let (B, | ||) be a Banach space and let E be
a bounded closed and conver subset of the space B. We assume that a trans-
formation T maps the set E into itself and is continuous. If u(TX) < ku(X)
for all closed subsets X of E, where 0 < k< 1 and p means the ‘“measure of
noncompactness’ for sets in (B, || ||), then the transformation T has a fized
point in the set E.

According to the above remarks we can see that in order to check
the inequality in Darbo’s theorem in C! space, it is enough to verify that

lim o (D(TX), b) < k limo (DX, k)
h—0 h—0)

for all bounded sets Xe M. Notice also that this inequality holds if
we can find two functions a,(k), 8,(h) such that for any ze C'

o(D(Tz), k) < w(Do, a,(h))+ p1(h)
and
lima, (k) = limpB, (k) = 0.
—0

h—0 h

Similarly to the Definition 1 we could say that the mapping DT: C1-(C
changes the modulus of continuity of the derivative in the regular way.
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IV. An existence theorem.

Let f(t, x, y) De a real continuous function defined on D = <0, a) x
% R % R. In the set ) we define a metric

:'.’[“" x,Y), (“:7 z, y)) i max[lt—i], |2 —Z|, |y —7l].

Let G (¢, 8) and K (¢, s) be functions such as in Theorem 1 and Theorem 2.
We shall deal with the differential equation

o]

t
9 2t =f(t, [ 2¢t—9)a,6(, 8), [ @' (t—8)d, K (t, 3))for te 0, a),

(10) o(t) = &) for te(—o00,0).
Theorem 6. Assume that

10 the function f(t, x, y) is bounded (f(t, x, y)| < M and satisfies a Lipschitz
condition with respect to a variable y

|f(t,m,1)—f(t,m,g)] <kl?/—37|,

oo
where 0 < k<—L-, L=V3}t ¥ lal,
L i=1
20 the function G(t, 8) satisfies the assumptions of Theorem 1,
3° the function K(t,s) satisfies the inequality (2) and the assumptions of
Theorem 2,
40 £(t) i8 an initial, bounded and continuous function defined on an interval
(—o0,0).
By those assumptions a differential equation of the from (9) has at least
one solution x(t) defined and continuous for te (— oo, a), belonging to the
class C+ on an interval (0, a, and satisfying the initial condition (10).

Proof. Let us consider the space (9, and a integral operation
E: Cy.0y +Clo,e; given by

(1) (Pe)t) = £(0) + [f(z, [ o(r —8)d,G(7, 9), [ ¢'(z—8)d, K (z, 8)) dr
for te {0, a)

and let

(12) (Fo)(t) = &(t) for te(—oo,0>.

By notations and assumptions 2°, 39, 4°¢ and by above formula it is
easy to verify that F is the continuous transformation.
The norms in spaces Cq 4, and C}y 4, we introduce as usual

I(Fp)llc = sup[|(Fg)(t): te <0, a)],
I(Fe)llcr = (Fo)llc +I(Fe) lic-
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Now we estimate

(Fe) (1) < 160) + [ |z f(p(t—s)dsG(t,s), J ¥ (r—8)d,K(r—s)) dz
0 0 0

and thus
I(Fo)llec < |6(0)| +aM.

Becauso

(Pg) (1)) = If(t Colt-0)a,6(, ), f«p(t—-v)d K(t, ),

then

(Fe)llc< M
Hence

(Fo)ler < 1£(0)] +aM + M = [£(0)] +(a+1)-M =r.

It means that transformation F maps the set Cly,, in a ball B(0,r).
In particular this ball maps into itself.

Now we denote the modulus of continuity for (Fg)' for ge B(0, 7).
Then for t > i, where t, {e (0, a), we have

(13)  [(Fp) (1) —(Fg)' (B)] < |f(t f(pt—sth 8) f<p (t—s)d K (t, s))

—f(t qo(t—s)d G(t, s), fqp(t—s 4K, )|+

+| £(ts fmw(t—smﬁ(t,s),fqa'(i—s)d‘,K(i,s)) -
—-f(t «p(t—s)d G(i, 5) ftp(t—s)d K(, s))]
t
<k|f¢'<t—s)dsK(t,s>— [ o' t—9a,E (s
0

+o{f, max (It——i],|f¢p(t—s)d G(t,8)— f qa(z—s)d,G(z,s)!)).

Vo ,00,a)

We apply Theorem 2 to the first part of above sum. Let

t
(Ko ) (1) = [ ¢ (t—9)d,K(t,5).
0
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By the assumptions of Theorem 2 and the formula (8) the modulus of
continuity for .#° can be estimated as follows:

(14)  of(H¢), h) < (Vy+ D lail) alg’s bt Q) +lg o (h).

In view of Theorem 1 we can also estimate the second part. It is easy
to verify that a domain of the function f is a compact set, so f is the uni-
formly continuous function. Since the modulus of continuity for the
function f satisfies

(15) lim w(f, n(|t—1#))) = o0,

|t—0]—0

where 7(|t—#) = max [t -1, [(9p)(t) — (Y9)(})]]
1,0¢(0,a)
(see the formula (1)).
Returning to the formula (13) in view of the inecqualities (14) and (15)

we obtain for |t—i| <k
w((Fq*)’, h) <k [(Va o ‘\: lai|)w(‘l”, h+ Q("’)) +||<I”|f<o,a>'}’(h)] +w(f, 77(”'))-
i=1
For arbitrary set X < B(0, r) we have
o(FX), < k[(Vat Y lad)-o(X', b+ Q) +r-y ()] + o(f, n(h)
=1
and by (15), (7) and the assumptions 29, 3° of Theorem 2

limo((FX)', b) <k (V8 + ¥ |a,.|)-1imw(x', h+ Q(h)).
b= h—0

h—0 i=1
Since, by Theorem 4 we obtain

po(FX) = po((FX)) = Ylimo((FX)', 1)

< 3k(Ve+r N lai)lime(X', b+ Q(h
L (V +€§lal);f;w( L+ 2(h))

0o

E(Var ool = k(Vas 3 o) -por(X).

1=1 1=1
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1
By the assumption 1° 0 < k< - — —. Then all assumptions of

Vs + E |ai'
i=1
Darbo’s Theorem for I' are satisfied. Therefore the transformation
has a fixed point, which is a solution of our differential equation (9) and
(10).
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STRESZCZENIE

W pracy tej rozwazamy problem istnienia rozwigzan dla réwnania catkowo
-rézniczkowego typu neutralnego postaci (0). Do rozwigzania tego problemu stosujemy
metode oparty na pojeciu ,,miary niezwartoéci’’ i twierdzonioc Darbo o punkecie staly.

PE3IOME

B pabore paccMaTpuBaercs MmpobnemMa CyLIECTBOBaHMA PpELIEHHs HHTErpaibHO-aHddepeH-
UHANBLHOTO ypaBHEHHA HeMTpanbHOro Tuna Buaa [0]. Ana pewenns 31o#t npobieMbl NPUMEHAETCA
METO, OMMPAIOLUIHACA HA MOHATHH ,,MEPbI HEKOMNAKTHOCTH" M Teopema [lap6o 0 HEMmOABHXKHOM
TOYKE.



