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I. Preliminary Remarks

We begin by stating some of the basic definitions and results in the
theory of linear invariant families of locally univalent analytic functions.

Let L De the set of Mobius transformations of D onto D where D
= {2: 2] < 1}.

Pommerenke [13] has defined a family of functions of the form f(z)
=24, analytic and locally univalent (f/(z) # 0) in D to be a linear
Invariant family if and only if for each ®(z) in L and every f in M the
function

f19(@)]—f[PO)]

1. / S | - i s
(L) Aol fie)) = s ey =

15 also in M.
If 3 is a linear invariant family, then the order of M is defined in
(13] as

(1.2) a = sup{|f"(0)/2]: fe M.

The order of a linear invariant family is always greater than or equal
to one. Let U, denote the union of all linear invariant families of order
3t most a. Then the (umiversal) family U, is itself linear invariant. If
fle) =2+ ... s analytic and locally univalent in D, then we may consider
the linear invariant family M (f) generated by f(2); namely,

M(f) = {4s[f(2)]: P(2)e L}.
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The order of f(z) is the order of the linear-invariant family which it ge-
nerates. As an aid in computing the order of f(z), denoted order f, we
have [13, p. 115]

(1.3) order f = sup|—z+(1—[z0)f" (2)/2f (2)|

zeD
= sup{lg’(0)/2]: ge M(f)}.

Linear invariant families exist in great profusion in classical geometric
function theory. The set S of normalized analytic univalent functions
is a linear invariant family of order 2. Normaulized convex univalent
functions, close-to-convex functions of order 8, and functions with boundary
rotation bounded by kn (denoted by V) are linear invariant families
of order 1, 8-+1, and k/2, respectively. On the other hand, the starlike
univalent functions are not linear-invariant.

The family U, is exceptional in that it is precisely the set of all norma-

lized convex univalent functions while for each a > 1, U, contains the
function

(1 4) f {z __'_1 (I -2 iy 1] o (au——]_]]'r:
. iy ]_ :E’_ 1-_: —L11s ¥ i

whose order is a and which has infinite valence [13, p. 128]. Despite
this gross discontinuity between the possible valence of functions in
U,, a > 1, and U,, many properties are purely a function of the order
of the linear invariant family rather than any intrinsic geometry of the
family. For example, the radius of convexity of a linear invariant family
of order a is always a—(a?—1)"* [13, p. 133].

II. Linear Invariance and the Functions G(r) and y(t).

In order to gain some control over the behavior of argf’(z) for fe M,
we introduce the following:

Definition. Let M be a family of normalized functions which are analytic
and locally wnivalent in D. Then for 0 <r <1, let

(2.1) G(r, M) = G(r) = supmax argf'(z),

JeM |gl=r
where the argument varies continuously from the initial value of argf’(0) = 0.

Lemma 2.1. For any linear invariant family M

G(r) = —inf minargf’(z).

JeM 2| =p
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Proof. Let f(2) be in M, z and ¢ in D and
z2+¢
ilig) -1
J (O —1&®

Since M is a linear invariant family, f(z, {) also belongs to A[. If 2*
= (2+¢)/(L+z) then a brief calculation shows that

1- 2 148 f(2)

f(Z, C) i

2.2 1-—1213)f (2, S — —-

(2.2) A=EN @0 = 1= T s T
In particular, when z = —( we have

(2.3) L= 12)f (=&, O = [A—=1E3f (D17,

from which the lemma follows.

Since max {argf’'(z): |2 =7, 0<r< 1} is a monotone increasing
funection of 7, G(r) is also monotone increasing. In general, the supremum
of monotone increasing piecewise analytic continuous functions need
not be continuous. Nevertheless, G(r) iy in fact continuous.

Theorem 2.2. Let M be a linear invariant family of finite order. Let
M denote the closure of M in the topology of uniform convergence on com-
Pacta. Let M(*) = {f(s2)/8: fe M and 0-< s < 1}. Then

(2.4) G(r, M) =G(r, M(*) =Q(r, M ).

Furthermore, G(r) is a monotone increasing continuous function of r satis-
Jying
2aresinr < G(r), 0<r<1.

Proof. Since G(r, M)<@(r, M )and G(r, M) < G(r, M(*)), to establish
(2.4) it will suffice to show that G(r, M) <G(r, M) and G(r, M(*))
< G(r, M). M  is a compact linear invariant family. Hence there is an
f(2) in M~ such that G(r, M") = argf’(r). Since M " is the closure of M,
there is a sequence of functions f, from M which converges to f locally
uniformly. Thus G(r, M) > limargf,(r)(n—>oc0) = G(r, M ). To obtain
the second inequality wo chose a sequence of functions f, from M (*)
and a sequence of points z, in D, |z,| = r, such that argf,(z,)—G(r, M (*)).
Since f,(za) = gn(sn2n)y gne M, 0<s,<1, we have

argf.(2,) < maxargg,(2) < G(r, M).
18| mr

Taking the limit as n—>oco yields G'r, M(*)) < G(r, M) and completes
the proof of (2.4).
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Since G(r) is monotone increasing, in order to establish the continuity
of G(r) it suffices to show G(r~) = G(r") for all 7 in (0, 1). We may assume
M is compact by (2.4). Choose f, in M and r,—r such that argf,(r,)
—G(r™). By compactness there is an f in M such that argf'(r) = G(r™).
The continuity of argf’(r) implies

G(r~) = argf'(r) = G(r?),

which conecludes the proof of continuity.
If f(2) is any function in M, then g(z) = 2f(z/2) is in M (*) and satisfies

(1 —2)g"(2)/g' (2) = (1L—2)f"(2/2)/[2f (2/2)].

Consequently, lim(1—2z)g"'(2)/g'(2) = 0 as z—1 and, by theorem 3.14 in
[14], the function z/(1+2) is in M (*)". Since G(r, M(*)) = G(r, M (*)")
and maxargz/(1 +2) = 2aresinr (|z| = r), we have

G(r) = G(r, M(*)) > 2 arcsinr.
Corollary 2.3. If M is a linear invariant family then

sup supargf’'(2) = «.
JeM  zeD
Proof. If M is of finite order then this is immediate from Theorem 2.2.
If M is of infinite order then Theorem 2.10 shows that supsupargf’(2)
is actually oo which is certainly greater than z.

Corollary 2.4. If M is any linear invariant family of convex univalent
functions, then G(r) = 2 aresinr.

Proof. This is immediate from Theorem 2.2 and the fact that |argf’(2))|
< 2 aresinr for any convex univalent function.

Kirwan [9] defines a family M to be rotationally invariant if whenever
f is in A then f(tz)/t, 0 < |t| <1, ¢ complex, is also in M. The convex
functions, close-to-convex functions, V,, 8, and U, [1, Theorem 5] are
examples of linear invariant families which are also rotationally invariant.

Theorem 2.5. If M is a compact rotationally linear invariant family
of finite order, then M contains the function z/(1 +2).

Remark. This places an immediate constraint on distortion results
for families of this type.

Proof. If M is compact rotationally linear invariant, then M = I (*)
= M(*)" and the last part of the proof of Theorem 2.2 shows that z/(1 + z)
must be in M.

For several well-known linear invariant families G(r, M) can be de-
termined explicitly. For the convex functions G(r) = 2 arcsinr, for close-
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-to-convex functions G(r) = 4 arcsinr, for funetions in V,, G(r) = k aresinr,
for fanctions p-close-to- V, G(r) = (k4 28)aresin? [2], and for functions
in 8§ G(r) =4arcsinr if 0<<r< 1/V/2 while G(r) = z+log[r2/(1 —7?)]
if 1/V2<r<1([6,p. 115]. Theorem 2.2 indicates that we cannot deter-
mine the linear invariant family 37 if we know G (7). However the following
results show that G(») does uniquely define the order of Af.

Theorem 2.6. Let M be a linear invariant family of order a, let te (0, oc),
r = tanht, and define

(2.5) y(t) = G(tanht)/2t = sup max (1/2t)argf’ (2)
feM |z|=tanht
Then
1) y(t) = —inf min (1/2t)argf’ (2)

feM |z|=tanht
(Bt p(t + ) < tyy(ty) +tay(ts).
lun y(t) = y(o0) exmists.
t—

)
2)
)
) 0<7(°°) y(t) < a.
3
)

©

0 < y(00) < (a® —1)!"

y(t) is continuous in (0, oo0) and limy(t) =
-0

7) Let a and y be real numbers with a > 1 and y in [0, (a* —1)"*]. Then
there is a linear invariant family of order a with y(oo) = y.

4
5
6

Proof. 1) follows directly from lemma 2.1. Let ¢, (k = 1, 2) be given
n (0, ), 7, = tanht, and 2z, — r,e®. If » = tanh(f, +t,) and z = re®,
then (2, +2,)/(1 +2,2,) = 2. Using 2, z;, and 2, in (2.2) yields

1-k ()

(1 =213 (21, 22) = 1= 2,1* [ (22)

which implies

argf'(z) = argf (2, 22) +argf’ (2;) < 2ty () -+ 28,9 ().
Hence

2ty L)yt 1) < 2ty (8y) +2t,p (1)

which proves the second assertion.

The third claim follows immediately from (2) and a problem in Polya
and Szego [12, Vol. 1, p. 17]. Furthermore, (2) implies y(nt) < y(t) for
any integer m, thus y(oo0) < y(t) for all ¢ in (0, oo). Since r = tanht is
equivalent to t = (1/2) log[(1+r)/(1—7r)], the estimates [13, p. 126]

llog(1 — [213)f"(2)] < alog[(1 +7)/(1 —7)]
and

largf’(2)] < (a2—1)"*log[(1 +7)/(1 —r)] +2 arcsinr
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immediately yield y(f) < a and yp(oo) < (a®—1)"%, which completes the
proof of (4) and (5).

The first part of (6) follows from Theoremm 2.2. From (4) we have
y(t) < a for all t; thus the remainder of (6) follows upon showing that
as >0, lim inf y(¢) > a. As in Theorem 2.2 we may assume that M is
compact and choose an f in M such that f'’(0)/2 = a, = a. Thus for 2
sufficiently small,

argf’(z) = arg(l +2a,z + 0(2%))

and
maxargf’(z) = arcsin[2a,r + O(r?)].
&l =r
Consequently
y(t) = sup max M
feM ls|=tanht 2t
_ arcsin[2a,r +0(rY)]
~ log[(1+7)/(1—1)]
and

liminfy(s) > lim arcsin[2a,7 4 0(r?)]
10+ reo+ log[(L+7)/(1—7)]

== az = da.
Since (7) is trivial for & = 1, we may suppose that a > 1 and choose
any number y in [a, (a®>—1)"*]. Let

0 = a(a®—1—9*)(a*—1)" +iy,

and consider

(2.6) fe) == [(Hz)c—l]-

=2_c 11—z

Then the order of f.(2) is [4, Theorem 2.1]
1 2 2\2 211/211/2
75{'01 +14[(1 —el’)* +47° T,

and a computation shows that this reduces to a. Thus to prove (7) it
suffices to show that y(o0) = y for the linear invariant family M generated
by f.(z). For any ®(z) in L we have

InA5[f,(2)] = In[fi(D(2) D' (2)[fo(P(0)) D' (0)].
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Letting ¢ = a iy,

(14-d(2)) 11 —D(0)

) 14 ®(z)\
(1 —(2)) (1 +(0))

arg A[f,(2)] = yln 1+9(0))

.-J‘-(a +1)a,rg(

] . -~
+(a—1)arg (— (2 )) —2arg(1+Zz).
If z = re”, then

{[1+P(2)][1—P20) (L —P(2)][1+PO) ]} < (1 +7)/(L—7)
and thus
(2.7)  argdo[fe()]<yl[(X+7)/(1—n)]+|a+ln+|l—a|n+an
< yIn[(1 +7)/(1 —7)]+(2a +3)n
On the other hand
(2.8) argfe(r) = yIn(1+7)/(1—r),
hence (2.7) and (2.8) yield

(20 43)x

y< 60, M)IMIL47/A-n]=yO)<y+—7
which shows that y(occ) =y and completes the proof of the theorem.

Corollary 2.7. Let If be a linear invariant family of order a. Then G'(07)
always exists and satisfies G'(07) = 2a.

Proof. We have

G;(0+) — lim G(T) . lm ]n[(l -}-T)/(l—’r)] G(T)
rs0t 7 r0+ r In[Q+7)/(1—1)]
= 2lim y(t) = 2a.
r—0t

Pommerenke’s best estimates [13] on argf’(z) for f(z) in U, are

TR
2 f————{ uih

largf’ (2)| < s

147 :
dz < (a® —1)"log o i +2 aresinr
&

while, for any z iu D, there is an f(z) in U, with
(2.9) largf’ (2)| > (a* =1)"log [(1 +7) /(1 —7)].
One might therefore conjecture that for M,, G(r) is either

(@ —1)"dog[(1+7)/(L—7)] or (a®—1)"log[(L+7)/(1—r)]-2 arcsinr.
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Neither conjecture is true for any a > 1 since in the first case G'(0)
= 2(a*—1)"® £ 2a, while in the second G'(0) = 2[(«’—1)"2+1] # 2a.
This suggests that it should be possible to improve (2.9) and it is.

Theorem 2.8. For each ain (1, o) and fw each z satisfying 0 < |2| < 1/a,

there is an f(z) in U, with argf (z) > (a* —1)"log[(1 +7)/(1 —7)].

Proof. Since U, is rotationally invariant we may assume z = r,
0<7r<1l/a. Let

s
fl—Hoe"1 =1 —we~ )" dw

where 4 = arccosr. The function f, is in V,, since it is generated by the
measure with weight a —1 at 0 = 1 and weight ¢ +1 at 6 = — 1. Further-
more, argf,(r) = 2a arcsinr. Since V,, < U,, it now suffices to show
that

2a aresinr > (a® —1)"*log[(1 4 7)(1 —7)]
for 0 <7< 1/a. An elementary calculation shows that
h(r) = 2a arcsinr — (a® —1)"log[(1 +7)/(L—7)]

is a strictly increasing function of r, re(0,1/a), and, since k(0) =0,
this completes the proof.
A careful examination of Pommerenke’s proof that

largf’(2)] < 2 [ (a* —2*)"2(1 — %) do,
0
|z| =7, feU,, leads one to consider
g @
f(z) = fe)&p [2if (az—mz)llz(l—:v:)'ldw]dw
0 S

a5 & possible extremal function for the maximum of the argument of the
derivative. Indeed, in this case argf’ (r) = 2f )" (1 —2*)~'dw which

would certainly make it extremal. Unfortunately, f(2) is not in U,. This
is difficult to verify directly from the definition of the order of f(z); how-
ever, if we note that (1—z)f”(z)/f'(2)—~>i(a*—1)"* as 2—1 in any angle,
then f has as a limit function [14, Theorem 3.14]

fe(2) = (1/2¢){[(1 +2)/(1 —2)]°—1},
¢ = —1+i(a®—1)"2. Furthermore, the order of f,(z) [4, Theorem 2.1] is
ﬁ - [a‘.' +1+(a6 +2a2 _3)1/2]!/2/'/2_.
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A computation shows that 8 > a for all a > 1. If M is the linear invariant
family generated by f(z), then f.(z) isin M~ and, since order M = order M ",

it follows that orderf(z) > orderf,(z) — f > a. Consequently, f(z) is not
in 1,.

One fruitful method of investigation of U, has been to place various
norined linear space structures on X = (J U, [3]. Following Hornich,

az1
we define an addition and @ multiplication on the set of normalized locally
univalent analytic functions in D as follows:

[f+91() = [ (@)g (@)do  (f,geX),
0

[af](z) = f[f'(w)]“dm (feX, areal)

0

where square brackets denote the algebraic operations on X.
Theorem 2.9\7 f fis in X and a is real, then
(2.10) la]y7(00) = Y(apn(00),

where y,(oo) denotes the value of y(oo) for the linear invariant family M,
which g generates.

Proof. We actually show that
(2.11) [alys(t) — Vi (1)) < mla —1]/2¢,
from which (2.10) is obvious. For any @(z) in L and any 7 in [0, 1] 2 com-
putation shows

la| [arg A5(f(2))| = larg A5 ([af1(2)) -+ (a —1)arg {B(2) ' (0)}]

< |arg A5([af1(2))| +|a —1| =,
where we have used the fact that @(z) in L implies @(z) is of the form
D(2) = €°(z+)/(L+F2) and therefore @' (z)/P’'(0) = (1+Fz)~% hence
larg {@’(2)/P'(0)}] < .
Thereforo

|a| larg A5 (f(2))| < G(ry Myg) +la—1|7
and consequently
la|G(r, M) < G(ry, Myp) | la—1|x.
Upon reversing the roles of f and [af], we obtain
lla|G(r, M) —G(r, M[af])l < la—1l|=
from which (2.11) follows directly.
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It is perhaps appropriate to remark at this stage of development
that a function (), similar to y(¢), was introduced by Pommerenke
for the study of the distortion of |f'(z)| in linear invariant families. To
his conclusions {13, Theorem 2.2] one can add the facts that g(¢) is con-
tinuous, lim+ﬂ(t) = a and for each B in [1, a] there is a linear invariant

-0

family M with B(o0) = B. There are several differences in the behavior
of 8(t) and y(t). Although f(¢) may be constant, y(¢) cannot be constant.
This is obvious since y(oo) < y(0). The function y4(o0) is homogeneous
in |a| while B4 ( o) is not. Finally, Pommerenke was able to characterize
compact linear invariant families of order a for which g(oc) = a; these

L
were those families containing the function (-}—)I((l F2)[(1—2))* —1].
o

In would be of interest to obtain a comparable proposition concerning
the function y(?).

We have previously mentioned that G(r) = k arcsinr for the linear
invariant family V,. We have also seen (Corollary 2.4) that G(r, M)
= 2 arcsinr for any linear invariant subfamily M of V, (the convex
univalent functions). Nevertheless, the boundary rotation of a linear
invariant family M of V,, k > 2, is not enough to determine G(r, M)
for either small or large values of ». For example, let f(z) be a close-to-con-
vex univalent function with boundary rotation 100z (such a function
is easily constructed). Let M be the linear invariant family generated
by f(z). Then G(r, M) does not behave as 100 arcsinr for either small
or large values of 7. In fact since M consists of close-to-convex functions,
we know that G(r, M) < 4 arcsinr, 0 < r < 1. This shows that G(r) need
not depend simply on the boundary rotation of a linear invariant family.

We know (Corollary 2.7) that @' (0 °) is intimately related to the order
of the linear invariant family generating G(r). If

G(1) =limG(r) = sup sup argf'(z)

-1 JeM  1si<1 .
is finite, then G'(1) is also related to the order of the linear invariant family
generating G(r). We can obtain a relationship between G'(1) and the order
of M by utilizing the class K(8) of generalized close-to-convex functions
of order 8 examined by A. W. Goodman [7]. A function f in X is in K (8),
B =0, if for each rin [0, 1) and each pair 0, and 0,, 0 < 0, < 0, < 2=,
we have

6
(2.13) f ] Re[l + réf"’ (re®)[f (re”®)1d0 > — fm;
6

equivalently if there is a nonzero complex number C and a normalized
convex univalent function @(z) such that for z in D

larg {ef’(2) /P’ (2)}| < B=/2.
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Theorem 2.10. Let M be a linear invariant satisfying

sup sup argf'(z) = fr < oo.
JeM  [g| <1

Then M 8 contained in the linear invariant family K (B). Furthermovre,
largf’(2)| =< 2(B +1)arcsinr. Finally, if a = order M, then « is finite
and satisfies 1 < a < B +1.

Proof. We show that M is in K (8) but is not in K(8 —2) (when g > 2).
Let 2, = r¢™ and 2z, = re'®, 0 < 0, < 0, < 2n. Then

09
f Re[1 +re®f" (re”) [f' (re™®)1dp = arg[z.f'(2,)/(2.f" (21)].
6,

Since M is rotationally invariant the minimum value of the above integral
over M depends only on r and 0,— 0,. We therefore set 6 = 6,— 6, and

A(r, 0) = int{arg[z.f(2,)/2.f" (21)]: fe M}.

o] 2l )] [l
e 2] = s | (o) | rorer o m

where we define {, by {, = (2, — 2,)/(1 —%,2,), we see that

(2.4) A(r, 6) = 2 arccot [(i

Since

@

r )cot({;@)] +inf argf’ (£, 24) -
JeM

} ra

Because of the linear invariance of 3,

inf[argf’ (Lo, 21) : fe M] = inflargf'({o) : fe M]
and hence by the hypothesis we have
(2—p)x=>int A(r, 0)> —B=n.
lg] <1
Thus M is a subset of K (B) but, for g > 2, M is not a subset of K (8 —2).

The remainder of the theorem now follows from well-known results for
K (B). Namely, order K(8) = g +1 and

jargf’ (2)| < 2(B +1)aresinlzl, f in K(B).

Much better results are presented in Theorem 3.5, but under consi-
derably stronger hypothesis.

Concluding this section we remark that Theorem 2.6 may be used

to show certain families are not linear invariant. For example, as one

type of generalization of V,, Pinchuk [11] let V} denote the class of
functions in X which satisfy

2r

sup Jl |Re 6 (1 +ref” (re®) [’ (re”))]|d0 = kmcosa,

o<r<1 0
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2, |A| < =/2. One can show that
a =supfay: fe Vi} = k|1 +e /4

while y(oo, Vi) > (k+2)sin24|/4. It is easy to see that the inequality
y(o0) < (o —1)"* is not valid for various values of 4 and %k and hence,
by Theorem 2.6, for these values of 4 and k, V} cannot be a linear invariant
family. We conjecture that Vj iy linear invariant if and only if 2 = 0.

III. G(r) and the Radius of Close-to-Convexity

The radius of close-to-convexity of a family is useful in that it pro-
vides an upper bound for the radius of starlikeness and a lower bound
for the radius of univalence. In this section we place additional restrictions
on G (r) and are thereby able to determine the precise radius of close-to-con-
vexity of various linear invariant families. All known examples of G(r) sa-
tisfy the conditions we assume and we are thus able to obtain previously
known results as corollaries.

Theorem 3.1. Let M be a linear invariant family of order a, a> 1. If
@' (v, M) exists for each r in [0, 1) and if for each fized o in (2a/(1+ a?), 1)
the equation

(3.1) @ (r) =2(g" —r)™"

has a unique root r, within [0, 1), then the radius of close-to-convewity of
M is o5[1+(1— o)1 where

(3.2) o =sup{ge(2a/(1+a?),1):2aresin(r,/e) —G(r) = —a].
Proof. Let 2z, = €z, |2,| =, fe(0,2n) and set
A(r, 6) = ;:g arg [z,f" (22) /21 (21)]-
The radius of close-to-convexity of M is the supremum of all » in [0, 1)
such that A4(r, ) > —= for all 0¢(0,2x), [8]. We may assume M is

compact since the radii of close-to-convexity of M and M~ are the same.
As in the proof of Theorem 2.10, we have

— 2 (V]
(3.3) A(r, 0) = 2 arccot [(14_—:2—) cot —2-] Hinf {argf'($o): fe M}

1—7r2)

i
—4=

/
= 2 arccot [l lcot 2J —G([Zol)y

where |Zo| = 7[2(1—cos6)/(1—2r2cosf+7*)]">. The compactness of M
implies that for any z, and z, there is an f in M for which arg [2,f’(z,)/2,f (2,)]
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= A(r, 0). We wish to find the minimum of 4(r, 6) for fixed ». Upon
differentiating A(r, 6) with respect to 6 we obtain

3.4 2 4, 09 4 i x
. —Ar,0) = ————
(3-4) a0 1—2r2cos0 +7*

[1 G (15| (l-_"'2 : sin 0 F
= = 3 u-=) [2(1—cos0)]'" (1—2r2coso+»_f4)'/2]'

Since we are only interested in a minimum, and because G'(|{,]) = 0,
we nced consider 0e (0, z). Letting o = 2r/(1 + %) and noting that

sin f 1[92—1aw1m

[2(1—cos8] o

1— 1207 |

the inner factor of (3.4) can be written as

’

1
(3.3) B(iol) = 1= & (15ol) [0* — ICol*]".

Since f(z) is starlike, and hence close-to-convex for all 7 in [0, 1/a], [13,
p. 134], we need only consider r in (1/a, 1) or, equivalently, ¢ in (2a/
/(1 + a?), 1). As 0 variesfrom 0 to =, |{,| varies from 0 to o. Our hypothesis
guarantees for each ¢ in (2a/(1 + a?), 1) that h(|Z,]) has exactly one root,
denoted by r,, within the interval [0, ¢]. (Note that we do not require
the continuity of G' nor do we postulate anything about the number
of or lack of roots of & in (g, 1)). It is easy to verify that this value 73
yields a minimum for A(r, ). From

’

1 2(1—cos0,) TP
-
€ 1—2r2cos ), +7*

it is easy to deduce by a half angle formula that

i & 1 2 __ 212
cos — 0 —[Q "?] 3

]
Consecquently,
2. 2712
eotiﬁ =l il } M
. 7o L. 1—~0*
Thus,
. (1—7%) 1
3.6 A(r) = infA(r, ) =2 a t ¢ cot—0,] —@
(3.6) (r) ; (ry 0) rcco[(1+rg)°°2° (7o)

= 2 arcsin(r,/g) —G(r,),

2 — Annales
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and, by compactness, therc is a funetion fin M for which arg(z,f'(2,)/2,f'(21)]
= A(r). Since A4(r) ix a decreasing functions of r and ¢ = 2r/(1 +22)
is equivalent to r = o[l -+ (1 —p?)"?]7", the radius of close-to-convexity
of M is go[1+(1—g;)"*]" where g, is the supremum of those p’s in
(2a/(1 + a?), 1) for which
2 aresin(r,/o) —GQ(r,) = —m.

Thiy completes the proof of the theorem.

Corollary 3.2. For each o in (4/5, 1), let r, denote the unique solution
in (0, o) of

r*—2r* 4-2° — o* = 0.

Then the radius of close-to-convewity of 8 is oo[1+(1— g5)*17", where
0o 18 the unique solution of

2 arcsin(r,/o) —log[ri/(1—7})] = 0.

Proof. § is a linear invariant family of order 2 and G(r) is 4 arcsinr
if 0<r<1/V2 aad n+log[r?/(1 —r?)] if 1V2<r<1 [6, p. 115]. If
pe (4/5, 1), then there is a solution to
(3.7) G (r) = 2(e'—r)™"
only if » > 1/V’§ and these solutions are roots of

p(r) =r*—2r* 4277 —p* = 0.

Since p(0) = — % and p(p) = p2(e?—1)% there is at least one root in
(0, o). However, q(t) = p(Vt) = *—2£2 1-2t — ¢* is nionotone increasing
and therefore there is only one root of (3.7) in (0, ¢) and it is denoted by 7,.
The remainder of the corollary now follows from Theorem 3.1 upon recal-
ling that 4(r)—>—o0 as r—1 for S.

Corollary 3.2 was first proved by Krzyz [10] who expressed his solution
in a slightly different form. It is easy to see Krzyz’s result agrees with
ourt. We need only show that if 1, is the root of ™ —2r* 1272 p2 =,

then
1[ 21"
-2
. ll1—¢*

X’—AX* +4°X—A4 =0

is a root of

where A = (1 +72)/(1—72). If we notice that we can rewrite = as 4 (1 —r})
(by using 3.7) and if we use the fact that A*> = (1 — p?)~', then it is a routine
verification that z is indeed a root of X*— AX*+A*X — 4 = 0.
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Corollary 3.3. If M is a linear invariant family for which G(r) = 2a arcsinr,
then the radius of close-to-convexity is 1 if 1 < a < 2 and go[1 4 (1 — gp)"*]17"
where oq s the wnique solution of

atp? —1\'* ap?—1\"*
2 :»\.rcsm( = ) -2 nrcsm( ——) = —z

a?p?— o «®—1
if a> 2.
Proof. Since for G(r) = 2a arcsinr the solution of

G'(r) = 2(*— )"

7, = [(a?e®—1)/(a®—1)]'",

the radius of close-to-convexity is o,[1+(1— g5)'*]"' where g, is the
supremum of those ¢’s in (2a/(1 +a?), 1) for which

¢ a2p2—1 \2 ~ [a%p2—1 1/2

h(p) = 2 arcsinl __g_\' —2a arcsml—e——\n > —m.
\ator— ot \ar—1)

However, lim h(g) = n—na and h(p) is monotone decreasing in o for o

e—1
in (2a/(1 +a*, 1). Thus for any @, 1 < a< 2, h(1) > —z and the radius
of close-to-convexity is 1.

Corollary 3.3 yields the radius of close-to-convexity for functions
in V,, functions f-close-to-convex, »nd functions f-close-to-V, [2], since
G(r) for the above classes is karcsinz, (28 +2)arcsin r, and (28 +k)
arcsinr, respectively. The radius of close-to-convexity of V, had been
determined previously by Coonce and Ziegler [6].

Corollary 3.4. The radius of close-to-convexity for U,, r,, is greater than
or equal to o, [L + (1 — g5)"*17" where o is the unique solution in (2a/(1 +a?),1)
of

L

(3.8) 2 aresin(o/o) —2 j (@ —2*)P1—2*)'do = —n
(1]
where © = (p*a*—1)(0* +a* —2)]"*. Furthermore, liminfar,> B, where
B 18 the unique root of the equation A=
(3.9) arccot[48° —1)"'*1—[(482 — 1) = —=/2.

in the interval [ [4, n/2]. (B i3 approximately 1.4858).

Proof. If G(r, M) < F(r) and F () is a function satisfying the conditions
of Theorem 3.1, then an examination of the proof of Theorem 3.1 shows
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that the radius of close-to-convexity for M is at least o,[1 (1 — g5)"*]!
where

00 = sup{oe(2a/(1 +a*), 1): 2 aresin(r,/o)— F(r,) = —x].

In the case M =, we may let F(r) = 2f(a’—2")"*(1—2")'ds and

0
note that »r, is [o°a®—1)/(¢* +a®—2)]"? for o in (2«/(1 -+ a’), 1). The first
conclusion follows as before. For large a the inequality 1/a < r, < a/(24a)
follows from known results on the radii of starlikeness and univalence
of U, (13, p. 135]. In order to prove liminfar, > f, it is sufficient to show

a-—»o0o

limag,[14(1—gp)"*17" = .

a—»oc0

If a, is any sequence such that

liminfa, gy [1+(1— g )] =8,

then it follows from (3.8) that
2 arccot (482 —1)" V2 —2(4p* —1)'? = —n

which is (3.9). Differentation shows that the left hand side of (3.9) is
a monotone decreasing function with a unique root in [z/4, #/2] and
thus lima, gy [1 +(1—g )'"*]"! must exist.

Theorem 3.5. Let M be a linear invariant family of order a. Suppose G (r)
is bounded on [0, 1) and the unique solution r,in (0, o) of & (r) = 2(o*—1)
for o in (2a/(1+a®),1) tends to 1 as o—>1. Then M is contained
in the close-to-conver functions of order f = G(1)n~'—1. Consequently,
G(r) <2G(1)a~! arcsinr, and a < G(1)n~ "

Proof. We actually establish that M is contained in the close-to-con-
vex functions of order # = G(1)n~'—1 but not in the close-to-convex
functions of any lower order. Thus the result is best possible. To establish
this stronger claim it will suffice to prove that

inf inf A(r, 0) = —(G(1)/z—1)n = a—G(1).

re[0,1) 6¢(0,25)

Using (3.3) of Theorem 3.1 we see that

inf A(r, ) = 2 arcsin(r,/0) —G(7,).
0¢(0,27)



The argument of the derivative of linear — invariant fumilies... 21

Since o = 2r/(1 +4*), 7,1 as g1, @ is continuous, and inf{4(r, 6):
:0e (0, 27)} = 2 arccosr,/p—G(r,) is & decreasing function of r, we obtain

inf inf A(r, 0) = 2 aresinl —G (1) = a—G(1),

re[0,1) 6¢(0,2n)

which completes the proof of the first part of the theorem. The latter
claims follow from previously cited facts about K (f).

If the root r, Theorem 3.5 tends to I < 1, then the salient conclusion
is that

1
(3.10) @ = —(G(R)—2 arcsinR) +1.
T

This condition can be used to show that no G(r) can be of the form G ()
= 2ar. If this werc the case, then 7, = (a’p*—1)"?/a—>(a®*—1)"*/a = R
as p->1 and (3.10) becomes na < 2(a®—1)"?—2 arcsin[(a®—1)"2/a]+ =.
However, a differentiation shows this last inequality is false for all a > 1.
This shows that no linear invariant family can have G(r) = 2ar. It would
be of interest to establish other positive and negative results on the pos-
sible forms of G(r) for various linear invariant families.

REFERENCES

[1] Campbell D. M., Locally Univalent Functions with Locally Univalent Derivatives,
Trans. Amer. Math. Soc., 162 (1971), 395-409.

[2] —, fA-Close-to-Lincar Invariant Families (to appear).

[3] —,Cima, J. A., and Pfaltzgraff, J. A., Linear Spaces and Linear-Invariant
Families of Locally Univalent Analytic Functions, Manuscripta Math., 4 (1971),
1-30.

[4] —, and Pfaltzgraff, J. A., The Generalized Koebe Funclion (to appear).

[5] Coonce H. B., and Ziegler M. R., The Radius of Close-lo-Convexily of Functions
of Bounded Boundary Rotation, Proc. Amer. Math. Soc., 35 (1972), 207-210.

[6] Goluzin G. M., Geometric Theory of Functions of a Complex Variable, Vol. 26
Amer. Math. Soc., Providence, R. I., (1969).

[7] Goodman A. W., On Close-to-Convex Funclions of Higher Order, Annales Univer-
sitatis Scientiarium Budapestinensis de Rolando Eotévs Nominatae, Sectio
Math., 15 (1972), 17-30.

[8]1 Kaplan W., Close-to-Convex Schlicht Functions, Mich. Math. J., 1 (1952), 169 -185.

(9] Kirwan W. E., A Note on Ezxtremal Problems for Certain Classes of Analytic
Functions, Proc. Amer. Math. Soc., 17 (1966), 1028-1030.

[10] Krzyz J., The Radius of Close-to-Convexity within the Family of Univalent Fun-
ctions, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astro. Phys., 19 (1962), 201 -204.

[11] Pinchuk B., Unified Approach to Subclasses of Analytic Functions (to appear).

[12] Pélya G., and Szego G., Aufgaben und Lehrsdtze aus der Analysis Vol. 1,

Berlin 1925.

[13] Pommerenke Ch., Linear-invariant Familien analylischer Funtkionen I, Math.
Annalen, 155 (1964), 108-154.

[14] —, Linear-invariant Familien analytischer Funktionen 1I, Math. Annalen, 156
(1964), 226-262.



22 Douglas M. Campbell, Michael R. Ziegler

STRESZCZENIE

Praca dotyczy liniowo niczmienniczej rodziny M rzedu a, wprowadzonej przcz
Pommeorenko. W 8zczegélnoéci suma mnogosdciowa W, wszystkich liniowo niczmien-
niczych rodzin rzedu co najwyzoj a jest réwniez rodzing liniowo niezmienniczg. Autorzy
otrzymujg oszacowanie argf’ (¢) w klasie U, oraz znajduja promien prawiec wypuklodei
dla rodzin liniowo niezmienniczych.

PE3IOME

Pa6ora nccpsiueHa AHHeRHC-HHBAapMAHTHOMY ceMeiicTBy M mnopsaxa a, pseaeHHoMy Ilo-
MepeHke. B yacTHOCTH, cymMa U, BceX JHHEIHO-HHBapHAHTHBIX CEMEACTB nopsaka ue 6osb-
LUEro 4€M @ TaKXe ABNAETCA JTHHEHHO-HHBAPHAHTHBLIM CEMEHCTBOM. ADBTODBI MOJYYAKOT OUEHKY
arg f'(z) B xnacce Y, a Takke HaxoAAT paaHyC INOYTH BBINYKIAOCTH IJIA NHHeRHO-WHBApHaH-
THBIX CeMeHCTD.



