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Introduction. Estimates of the variance components for the unbalanced
nested classification obtained with the use of analytical methods are given
in the papers of Gates and Shiue [3], Gower [5], Oktaba [11], Ahrens
[1] and Gaylor and Hartwell [4]. Matrix methods for obtaining the va-
riance components estimates are shown in the papers of Searle [13] and
Mahamunulu [9]. This paper gives the estimates of variance components
for the unbalanced N-way nested classification obtained with the use
of the properties of linear spaces.

Model and analysis of variance. The linear model for an observation

Yijig. iy, 15 taken as

(1) yill'z...l"v,*.] = + a‘1'2 + + a‘l‘2 lV + e'l'

2.+ iN 41
where u is the general mean, c::,‘.1 is the effect due to the %,-th first stage
class A‘l, ?,- is the effect due to the i,-th second stage class A? 4, Within

45, ... a{‘f,2 iy 15 the effect due to iy-th N-th stage class A, .  within
N=1
A,l,2 iy_ and e o is the residual error of the observation ¥, ;, . ANt

We assunme that the number of the first stage classes A; is a® so that
1, =1,2,...,a'. Within each A’l -class there are “1 A*- cla,sses so that
iy =1,2,...,a;. Furthemore, within each A,l,2 5 class (p =2,
3, N) there 'are @y e | AP-classes so that i = l,d, SRRTEL TR
The number of observa,tlons in the N-th stage class A,],, iy 18 My, iy
Where n;;, ;. > 0. All terms of the model (except u) are assumed to be
independent and normally distributed random variables with zero means
and variances o}, o3, ..., 0% and o2, respectively. These are the variance

components which are to be estimated.

5 — Annales

L]



, 66 Henryk Mikos

Let y be the column vector with the elements y; PN SO a” — the
column vector with elements af f1ig...i, and e — the column vector the
elements of which are the resldualp €rrors e; Let furthermore

ifg-IN+1°
X,(p=1,2,...,N) denote the = xa” matrix, where

5‘ T'ﬂilu iyt

‘1 '2
»_ Yar, .
. s 2 N “'1‘2""ﬂ- i
G 1 p-1

in which the element of the ¢g-th row and (4,, i,, ..., ¢,)-th column is either
zero or one; one- if the g-th observation is in the Af; n -th class of the
class1flcat10n AP, in other cases — zero.

Now we can express the linear model (1) as follows:

(2)

N
(3) y =J.u—+ 2X,,a”+e

p=1

where J, = [1,1,...,1]. It is easy to see, that
(4) R[J,]c R[X,] < R[X,] = ... cR[Xy]

where E[X] denotes the range space of the matrix X, i.e. the space span-
ned by the column vectors of X. It follows from this that each observation
which belongs to the class 'A?ﬂ'z---"p of the classification 4” belongs also
to the class A%;:'___,-p_l of the classification 4”7,

It is easy to see that the random vectors a”’(p =1,2,..., N) are
distributed as N[O, of,Ia,,] and the random vector e is distributed as
N[O, 5;1,]. Thus we have the following covariance matrix of the vector
y/ef.[12]/

N
(5) ) BN M T BTG

In the customary analysis of variance there are the following sums
of squares /c.f.[10]/

88, =3 3 ... Y @h—wr

DY) IN+1

(6) 88 = X' Xt DB~ Wiy )t (0 =2,8, .0, N)

a;nd "l iy tAv+l

= 22 Z' (Yirty.. tns ,_H;‘:r'_.....'d\,}:
‘l ,2

IN+1
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where

f’ij‘l'.:'"‘l = (":'lfz...it)"l 2 Z--- Z y.‘l,-z___f‘\,u, (t = 1, 2, ceny .N)

i1 42 N4

. VAN O
{8) y ‘" H l ; y{ Ig l\, ‘
N+1
and
(9) ‘1‘2 o= Z 2/ Zn‘x‘z U
Y142

It can be shown that the sums of squares (6) can be written in the follo-
wing form
S‘Sl w y’(P[Xl]_P[Xt—ll)y (t = 17 27 esey N)v

(10)
88, = y'(I-P[Xy))y

where, if t = 1, X, should be replaced by J, and the term P[X,] denotes
the orthogonal projection operator to the range space of the matrix X,/c.f.
[14]/. It is worth noticing that from the relationship (4) follows immedia-
tely that

(11)  (I-P[Xy)(P[X]—P[X,,]) =0 for t =1,2,..., N
and
(12) (P[X,]—P[X,,)(P[X,]—P[X, ,]) =0 for r +#1
and r,t =1,...,N.
Estimation of variance components. To obtain the unbiased estima-
tors of the variance components o%, o3, ..., o%, 03, we must have the expect-

ed values of the sums of squares (10). According to the formula 2.1.24
in [1] we get

N
E[88,] = ) tr[(I—P[Xy)) X, X,0%] +tr[(I - P[Xy])eF),

(13)
E[88,] = N tr[(P[X,]—P[X, ) X, X,03] + tr[(P[X,]—

p=1

—P[X,_,])d:] (t=1, 27 ---71\")

where tr[X] denotes the trace of the matrix X.
Let

= tr[P[X,]X,X.], r<s;r,& =0,1,2,..., N).
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Then, in regard to the range space of the matrix X, and the range space
of the matrix P[X,]—P[X, ,] are orthogonal if p < t, we have

E[88.] = (n— a'N) Ui’
(14)

N
B[88) = (al—at ")+ M(ky—kiyp)oh, (6 =1,2,..., N)

n=t

Now we will find the coefficients k,. If r =3 =p(p =1,2,..., N)
we get

(15) k,,— tr[P[X,]X, X;]ztr[x,,x;]=tr[x;,xp]_2 Y’n‘l ="
Similarly

’ 1 ’ - »r 1 ’ ’ ’
(16) kop = tr|P[J.1X, X, ] = % trd,J, X, X,] = - tr[(J,X,) J, X,]
1 ©
AT S &
i

is :.,,

In an analogous way we can obtain

(17)

'y
_J Wyig.. i,

2
3 ' t 1 ..l',)
> \ e (p<r;p,r =1,2,...,N).
‘l '2 i
Hendorson’s first method (c.f. [8]) for estimating the components
variance is to equate each of the sums of squares 88,, §8,, ..., SS,, 88, to
its expected value. Denoting the resulting estimates as a3, a2,

2
sery ONy
and of the equations for obtaining them are

.
(18) 88 = Y'(kyp—k_,,)05+ (' —aNaE (4 =1,2,...,N),

p=L
= (n—a")3.
The equations (18) can be written in the following matrix form
(19) S = Kea?

where S = [88,, 88,,..., 88y, 88,1, ¢ = [o}, 03, ..., 0%, 0’] and K is
the triangular matrix of k’s Since all diagonall elements of the matrix K
are not equal zero, the matrix K is nonsingular. Hence the following
unique solution of the equation (19) exists

ot =HK7'S.

The sampling covariance matrix of the vector a* can be found for the
unbalanced data by the method of Ahrens (c.f. [2]).
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Balanced data. When all the n,;, 4y are equal, say m, and when all
the a}'i,2 iy, AT equal, say a” (p =1, z ., N), i.e. when the data are
balanced, “we can explicitly obtain the estlmates of variance components
as well as the sampling variances of their estimates. In this case for

p<r(p,r=0,1,2,...,N)
(20) ky,, = a’a'a®...a’a"'a" ... aV

where to simplify the notation it is taken 1 = a°, m = a™¥*!
Now the equations (18) can be expressed as

N
MS, = a2+ Za”“a”“...a”“&; (t=1,2y::y8),
=1
21 ! .
1) M8, = &

where M8, = (1/f,)88,, MS; = (1/f;) 88, are the mean squares due to the
error and the t-th classification, respectively. The notations f,, f, are used
for the degrees of freedom due to the error and the t-th classification,
respectively. It can be shown that

f. = a'a’...a"(m—1),
fi = a’d'a’...d (1) (t =1,2,..., N).
We can readily see that

M8, = d'* a2 oV e} + M8,

(22)

and hence
1

(23) (;'f :W“a,\ I(J‘IS‘ J'ISH]) (t=l,2,...,N)
where, if t = N, M8y, should be replaced by MS,.
For balanced data the covariance matrix of the vector y can be expres-

sed as

N
(24) Z, = Lo+ Y atiar*t . a"H AP [X,]

pel
for P[ ] pa, ap+lap+2 . N+l) lX X (p =1,2, .N)
Now we can prove the following theorem
Theorem 1. The projection operators I — P[Xy], P[X,]—P[X,_,]
(t =1,2,..., N)and the covariance matrix 2, satisfy the following conditions
(I—P[Xy)Z, = ¢ (I-P[Xy])
(P[X]-P[X,,]1%, = @(P[X,]-P[X,,])

where
N

o =G = dh+ D @ e eV g

=i



70 Henryk Mikos

Proof. Since for p <t the range space E[X,] and the range space
R[P[X,]—P[X,_,]| are orthogonal
(25) (P[X,]—P[X,,])P[X,] =0 (p<?)
and since for p >t R[P[X,]—P[X,_l]] c R[X,] we have (c.f § 76 Theo-
rem 2 in [7]),
(26) (P[X,]—P[X,,])P[X,] = P[X,]-P[X,,] (p=1).
Thus for t =1,2,...,N

N

(P[X,]—P[X,,])Z, = Y a?'a?*% .a¥ "1} (P[X,] - P[X, ) P[X,]+

p=1

+(P[X,]—P[X,_,])o; =

p

+(P[X,]—P[X,_,])o} = @(P[X,]—P[X,_,]).

N
=1

aP+ aP+? . oV 1ok (P[X,[—P[X'Y) +

The first condition follows immediately from (4) and (24).
The straightforward conclusion from Theorem 1 is the following theorem:

1 1 1 1
Theorem 2. The quadratic forms — 8S8,, — 88,, ..., — 88y,—88,
P1 P2 @

N (]
are independently distributed as y*® (chi-square) with degrees of freedom

flvfev cooy Iy foy TE8DECtIVELY.

Proof. From Theorem 1 we have that the matices 1/¢,(P[X,]—
—P[X,_)2y(t=1,2,...,N)and 1/¢(I —P[X,]Zyareidempotent. The
expectation of the vector y is the vector J, which is orthogonal to each of
the rang spaces R|I — P[Xy]|, R|P[X,]—P[X, ]| (t =1,2,...,N). The
application of the theorem 4.9 in [6] completes the first part of the proof.
The independence of the quadratic forms follows immediately from (11),
(12), Theorem 1 and theorem 4.21 in [6].

The sampling variance of any quadratic form y’ Ay of normally-distri-
buted random variables represented by the vector y is 2tr(Z; A)? where
Z, is the covariance matrix of y. The well known formula, Theoren 1 and
Theorem 2 will be applied to obtain the sampling variances of the estimates
a'and o} (t = 1,2, ..., N). First we will get the sampling variances of the
mean squares MS, and MS, (¢t =1,2,...,N).

var(MS,) = 2f;*br|pe(I — P[Xy )] = fﬂ

e

var(M8§,) = 2f:_2tr!‘!’:(P[Xu]_P[Xt-xl)!2 = 2f‘2°

Ji
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Hence
]2 2
var(o?) = (a'att?...aV )2 (?L + qj‘“) (t=1,2,...,N)
@1 fe  fn
@ = 22
var(o,) = .
) A

On the bagis of Theorem 2 we can say that the test function available
to verify the hypothesis

J][Sl

H?:0§=0i8 F‘=W
sl 25 |

(t=1,2,...,N)

where if ¢ = N, M8y, should be replaced by MS,. If H} is true, the
test function F, is distributed as F(f, fi.,).
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STRESZCZENIE

W pracy otrzymano nieobeigZone estymatory komponentow warian-
cyjnych dla modelu losowego niezrownowazonej N-krotnej klasyfikacji
hierarchicznej. Dla oméwionego oddzielnic modelu z danymi zréwnowazo-
nymi otrzymano ponadto wariancje z proby uzyskanych estymatorow
oraz testy istotnofci dla weryfikacji hipotez dotyczgcych parametréw
modelu. Wszystkie wyniki uzyskano w oparciu o wilasnoéci przestrzeni
liniowych.

PE3IOME

B aroii paGote 110;1y4eHbl HecMellleHHble OLCHKH KOMIIOHEHT JUCIICPCUU
no HecOaTaHCHPOBAHHBHIM JaHHHIM N-paKkTOpHOH JepapXHyeckoil Kiac-
cudpukamin. st oTmennno o6GeydijgaeMoil cOajlaHCHPOBAHHON Mo IeNH
HOJIy4eHbl KpOMe TOro BLIGOPOYHBIE IMCIMEPCHU OLEHOK M KPUTEPHH 3Ha-
YNMOCTU JUIA NPOBepKH rumnorcs o6 osddexrax uccienyeMux $axkropos.
Bce peayabTaTbl 1HOJY4YeHBI ¢ MCIOJIL30BAHHEM CBOMCTB JIMHEITHBIX MPOCT-
pancra.



