AN NALES

UNIVERSITATISMARIAECURIL-SKEOIOWSKA

$$
L_{U} U B I I N-P O L O N I A
$$

VOL. XXVII, 1
SECTIO A
1973

Western Michigan University Kalamazoo, Michigan 49001
Univorsity of California, Davis, California 05616
P. J. FENIGENBURG* AND E. M. SILVIA

A Coefficient Inequality for Bazilevič Functions

Nicrúwności na wspólczymniki dla funkeji Bazylewicza
Нерапенства иа коәффициенты для фуннции Бааилевича

Introduction. Sheil-Small [7] has recently chatacterized Bazilevic functions [1] in terms of a certain integral inequality. More specifically, let $f(z)$ be Bazilevič of type (a, b). Then, for each $r(0<r<1)$,

$$
\begin{equation*}
\int_{U_{1}}^{\theta_{2}} \operatorname{Re}\left[1+z f^{\prime \prime}(z) / f^{\prime}(z)+(a-1+i b) z f^{\prime}(z) / f(z)\right] d \theta>-\pi \tag{1}
\end{equation*}
$$

whenever $\theta_{2}>\theta_{1}$. Conversely, if f is analytic in $|z|<1$, with $f(0)=0$, $f(z) \neq 0(0<|z|<1)$, and $f^{\prime}(z) \neq 0$ for $|z|<1$, and if f satisfies (1) for $0<r<1$ where $a>0, b$ real, then f is Bazilevic of type (a, b).

Let $B(a, b)$ denote the class of normalized functions satisfying (1). For a given complex number μ, we wish to maximize $\left|a_{3}-\mu a_{2}^{2}\right|$ over a fixed class of functions. We are unable to do this for the entire class $B(a, b)$; this praper is concerned with the solution of the above extremal problem over certain subelasses of $B(a, b)$, which are defined below.

Definition. The normalized univalent function f is said to be α-i-spirizl-like, $a \geqslant 0,|\lambda|<\pi / 2$, if

$$
\begin{equation*}
\operatorname{Re}\left|\left(e^{i \lambda}-a\right) z f^{\prime}(z)\right| f(z)+a\left(1+z f^{\prime \prime}(z) \mid f^{\prime}(z)\right) \mid>0 \tag{2}
\end{equation*}
$$

for $|z|<1$. Let M_{a}^{λ} denote the class of such functions.
Note that for $a>0,(2)$ is obtained by requiring the integrant in (1) to be positive, replacing a and b by $a^{-1} \cos \lambda$ and $a^{-1} \sin \hat{\lambda}$, respectively, and then multiplying through by α. The reason for this parameter change

[^0]is that (2) implies f is λ-spiral-like [8], and thus we have facilitated comparison with known results.

Sheil-Small [7] has shown that $f \in B(a, 0)$ if and only if there exists a starlike function $g,\left|g^{\prime}(0)\right|=1$, such that

$$
\begin{equation*}
\operatorname{Re}\left[\frac{z f^{\prime}(z)}{f(z)^{1-a} g(z)^{a}}\right]>0,|z|<1 . \tag{3}
\end{equation*}
$$

Let $B(a)$ denote those functions satisfying (3) with a normalized g, and let C denote $B(1,0) . C$ is the well known class of close-to-convex functions. In this paper we maximize $\left|a_{3}-\mu a_{2}^{2}\right|$ over each of the three classes M_{a}^{λ}, $B(a)$, and C. Keogh and Merkes [3] solved the extremal problem (with μ real) over $B(1)$, and we show that their result holds also for the larger class C. In each of the three cases, the method we use, namely, application of the lemma below, is due to Keogh and Merkes [3]. The three results we obtain can be found in Theorems A, B, and C.

Lemma: Let $\omega(z)=\sum_{1}^{\infty} c_{n} z^{n}$ be analytic with $|\omega(z)|<1$ for $|z|<1$. If v is any complex number then

$$
\begin{equation*}
\left|c_{2}-v c_{1}^{2}\right| \leqslant \max \{1,|v|\} . \tag{4}
\end{equation*}
$$

Equality may be attained with the functions $\omega(z)=z^{2}$ and $\omega(z)=z$. For a proof of this we refer the reader to [3].
Theorem A: If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \epsilon M_{a}^{\lambda}(a \geqslant 0,|\lambda|<\pi / 2)$ and μ is any complex number, then

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leqslant \frac{\cos \lambda}{\left|e^{i \lambda}+2 a\right|} \max \{1,|v|\} . \tag{5}
\end{equation*}
$$

where

$$
v=\frac{4 \mu\left(e^{i \lambda}+2 \alpha\right) \cos \lambda+4 e^{i \lambda} \cos \lambda-\left(\alpha+e^{i \lambda}\right)\left(\alpha+e^{i \lambda}+6 \cos \lambda\right)}{\left(\alpha+e^{i \lambda}\right)^{2}} .
$$

For each μ, there exists an $\alpha-\lambda$-spiral-like function for which equality holds in (5).

Proof. If $f(z) \epsilon M_{a}^{\lambda}$, then there exists an analytic function $\omega(z)$ $=\sum_{n=1}^{\infty} c_{n} z^{n}$ such that $|\omega(z)|<1 \quad(|z|<1)$ for which

$$
\begin{equation*}
\left(e^{i \lambda}-\alpha\right) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(\frac{\left(f^{\prime \prime}(z)\right.}{f^{\prime}(z)}+1\right)=\frac{e^{i \alpha}+e^{-i \alpha} \omega(z)}{1-\omega(z)}(|z|<1) . \tag{6}
\end{equation*}
$$

By expanding (6) and equating coefficients we have

$$
\begin{equation*}
c_{1}=\frac{\left(\alpha+e^{i \lambda}\right)}{2} a_{2} \quad \sec \lambda \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{2}=\left(e^{i \lambda}+2 \alpha\right) \sec \lambda a_{3}+\frac{\left[4 e^{i \lambda} \sec \lambda-\left(\alpha+e^{i \lambda}+6 \cos \lambda\right)\left(\alpha+e^{i \lambda}\right) \sec ^{2} \lambda\right]}{4} a_{2}^{2} \tag{8}
\end{equation*}
$$

Using (4), (7) and (8) we obtain (5), where

$$
\mu=\frac{\left(\alpha+e^{i \lambda}\right)\left(\alpha+e^{i \lambda}+6 \cos \lambda\right)+\left(a+e^{i \lambda}\right)^{2} v-4 e^{i \lambda} \cos \lambda}{4\left(e^{i \lambda}+2 \alpha\right) \cos \lambda}
$$

The sharpness of (5) follows from that of (4).
Corollary 1. If $f(z)$ is $a-\lambda-s p i r a l-l i k e ~ t h e n ~$

$$
\begin{gather*}
\left|a_{2}\right| \leqslant \frac{2 \cos \lambda}{\left|\alpha+e^{i \lambda}\right|} . \tag{9}\\
\left|a_{3}\right| \leqslant \frac{\cos \lambda\left|\left(\alpha+e^{i \lambda}\right)^{2}+2 \cos \lambda\left(e^{i \lambda}+3 a\right)\right|}{\left|\alpha+e^{i \lambda}\right|^{2}\left|e^{i \lambda}+2 a\right|} \tag{10}
\end{gather*}
$$

Proof. The inequalities (9) and (10) follow directly from (7) and (5), respectively.

Corollary 2. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ is α-convex (i.e., $f \in M_{a}^{0}$) and μ is any complex number, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leqslant \frac{1}{1+2 \alpha}-\max \left\{1, \frac{|4 \mu(1+2 \alpha)+4-(1+\alpha)(7+\alpha)|}{(1+\alpha)^{2}}\right\}
$$

Proof: This result follows immediately upon substituting $\lambda=0$ in (5). Further, corollary 2 agrees with a result of Szynal [9].

Corollary 3. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ is λ-spiral-like $(|\lambda|<\pi \mid 2)$ and and μ is any complex number, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leqslant \cos \lambda \max \left\{1,\left|2 \cos \lambda(2 \mu-1)-e^{i \lambda}\right|\right\}
$$

Proof: By substituting $\alpha=0$ in (5) we obtain this result, which is due to Keogh and Merkes [3].

Remarks. The proof of the theorem did not use the fact that α was real. For $a=e^{i \lambda}$ the expression in (2) becomes $e^{i \lambda}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)$, and M_{a}^{λ} corresponds to the class of analytic functions for which $z f^{\prime}(z)$ is λ-spi-ral-like. This class was defined by Robertson [6]. Also, by substituting $\alpha=e^{i \lambda}$ in (5) we obtain the following result of Libera and Ziegler [4].

Corollary 4. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ is an analytic function for which $z f^{\prime}(z)$ is λ-spiral-like $(|\lambda|<\pi / 2)$ and μ is any complex number, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leqslant \frac{1}{3} \cos \lambda \max \left\{1,\left|e^{i \lambda}-(3 \mu-2) \cos \lambda\right|\right\} .
$$

Theorem B: If $f \in B(\alpha)$ and μ is real,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leqslant \begin{cases}3-4 \mu & \text { if } \mu \leqslant \frac{1}{2+\alpha} \tag{11}\\ 1+\frac{4 \alpha^{2}}{(1+\alpha)^{2}}\left(\mu_{0}-\mu\right)+\frac{8 \alpha^{2}\left(\mu_{0}-\mu\right)^{2}}{(1+\alpha)^{2}(2 \mu+\alpha-1)} & \text { if } \frac{1}{2+\alpha} \leqslant \mu \leqslant \mu_{0} \\ 1 & \text { if } \mu_{0} \leqslant \mu \leqslant 1 \\ 4 \mu-3 & \text { if } \mu \geqslant 1\end{cases}
$$

where $\mu_{0}=\frac{3+\alpha}{2(2+\alpha)}$. E'ach estimate is sharp.
Proof: We have from (3) the existence of a normalized starlike $g, g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ such that

$$
\operatorname{Re}\left[\frac{z f^{\prime}(z)^{a}}{f(z)^{1-a} g(z)^{a}}\right]>0
$$

Hence,

$$
\begin{equation*}
\frac{f^{\prime}(z)-\left(\frac{f(z)}{z}\right)^{1-a}\left(\frac{g(z)}{z}\right)^{a}}{f^{\prime}(z)+\left(\frac{f(z)}{z}\right)^{1-a}\left(\frac{g(z)}{z}\right)^{a}}=\sum_{n=1}^{\infty} e_{n} z^{n} \tag{12}
\end{equation*}
$$

satisfies the condition of the Lemma.
By expanding (12) and equating cocfficients, we have

$$
a_{2}=\frac{2 c_{1}}{1+u}+\frac{a}{1+u} b_{2}
$$

and

$$
a_{3}=\frac{2 c_{2}}{2+\alpha}+\frac{(3+\alpha)\left(4 c_{1}^{2}+4 c_{1} b_{2} \alpha+\alpha^{2} b_{2}^{2}\right)}{2(2+\alpha)(1+\alpha)^{2}}+\frac{\alpha\left(b_{3}-\frac{1}{2} b_{2}^{2}\right)}{2+\alpha}
$$

so that

$$
\begin{align*}
a_{3}-\mu a_{2}^{2}= & \frac{\alpha}{2+a}\left[b_{8}-\left(\frac{1}{2}-\frac{\alpha(3+\alpha)}{2(1+\alpha)^{2}}+\frac{\mu \alpha(2+\alpha)}{(1+\alpha)^{2}}\right) b_{2}^{2}\right] \tag{13}\\
+ & \frac{2}{2+\alpha}\left[c_{2}+\left(\frac{3+\alpha}{(1+\alpha)^{2}}-\frac{2 \mu(2+\alpha)}{(1+\alpha)^{2}}\right) c_{1}^{2}\right] \\
& +\frac{4 c_{1} b_{2} \alpha}{(1+\alpha)^{2}}\left(\frac{3+\alpha}{2(2+\alpha)}-\mu\right)
\end{align*}
$$

If $\mu=\mu_{0}$, the third term is zero, and (13) becomes

$$
a_{3}-\mu_{0} a_{2}^{2}=\frac{\alpha}{2+a}\left(b_{3}-\frac{1}{2} b_{2}^{2}\right)+\frac{2}{2+a} c_{2} .
$$

Since g is starlike $\left|b_{3}-\frac{1}{2} b_{2}^{2}\right| \leqslant 1$ [3], and $\left|c_{2}\right| \leqslant 1$ by the Lemma. Hence, $\left|a_{3}-\mu_{0} a_{2}^{2}\right| \leqslant 1$. Also, the area theorem [5] gives $\left|a_{3}-a_{2}^{2}\right| \leqslant 1$. Combining these two inequalities, we have for $\mu_{0} \leqslant \mu \leqslant 1$,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leqslant \frac{\mu-\mu_{0}}{1-\mu_{0}}\left|a_{3}-a_{2}^{2}\right|+\frac{1-\mu}{1-\mu_{0}}\left|a_{3}-\mu_{0} a_{2}^{2}\right| \leqslant 1 .
$$

We now examine $0 \leqslant \mu<\mu_{0}$. Let β denote the coefficient of b_{2}^{2} in (13). One easily checks that $\beta \leqslant \frac{1}{2}$ so that the result of Keogh and Merkes [3] applies, giving

$$
\begin{equation*}
\left|b_{3}-\beta b_{2}^{2}\right| \leqslant 3-4 \beta=1+\frac{2 \alpha(3+\alpha-4 \mu-2 \mu(\alpha)}{(1+\alpha)^{2}} \tag{14}
\end{equation*}
$$

Using the facts that $\left|c_{2}\right| \leqslant 1-\left|c_{1}\right|^{2}$ and $\left|b_{2}\right| \leqslant 2$, the sum of the second and third terms of (13) is bounded by

$$
\varphi(r)=\frac{2}{2+a}\left[1+\frac{(2+a)(1-\alpha-2 \mu)}{(1+\alpha)^{2}} r^{2}\right]+\frac{8 \alpha\left(\mu_{0}-\mu\right)}{(1+\alpha)^{2}} r, r=\left|c_{1}\right|
$$

Now, if $2 \mu+\alpha-1>0\left(\right.$ i.e., $\left.\mu>\frac{1-a}{2}\right)$ then φ attains its maximum value at $r^{*}(\mu)=2 \alpha\left(\mu_{0}-\mu\right)(2 \mu+\alpha-1)^{-1}$. On the interval $\left(\frac{1-\alpha}{2}, \mu_{0}\right], r^{*}(\mu)$ decreases from $+\infty$ to zero. The requirement $r^{*}(\mu) \leqslant 1$ yields: for $\mu \epsilon$ $\left[\frac{1}{2+\alpha}, \mu_{0}\right],\left|a_{3}-\mu a_{2}^{2}\right|$ is maximized by using the estimate in (14) on the first term of (13), and then replacing c_{1} by $r^{*}(\mu), c_{2}$ by $1-c_{1}^{2}$, and b_{2} by 2 in the other terms of (13). This bound on $\left|a_{3}-\mu a_{2}^{2}\right|$ is attained for the function f defined implicity in (12), where g is the Köebe function and $\sum_{n=1}^{\infty} c_{n} z^{n}$ is defined as $z\left(z+r^{*}(\mu)\right)\left(1+r^{*}(\mu) z\right)^{-1}$.

It remains to consider $0 \leqslant \mu \leqslant(2+a)^{-1}$. From (11)

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| & \leqslant(2+\alpha) \mu\left|a_{3}-(2+a)^{-1} a_{2}^{2}\right|+(1-(2+u) \mu)\left|a_{3}\right| \\
& \leqslant(2+\alpha) \mu\left(\frac{2+3 a}{2+a}\right)+3(1-(2+u) \mu)=3-4 \mu .
\end{aligned}
$$

The bounds in (11) for $\mu \phi[0,1]$ are identical with those for the entire class of univalent function [2]. Except for $\mu \in\left[(2+a)^{-1}, \mu_{0}\right]$, the bounds in (11) are attained by a starlike function [3], and the class of starlike functions is contained in each $B(\alpha)$. The proof of Theorem B is complete.

Corollary 5: If $f \in \bigcup_{a \geqslant 0} B(a)$ and μ is real,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leqslant \begin{cases}3-4 \mu & \text { if } \mu \leqslant 0 \\ 1+2\left(\frac{3-4 \mu}{3-2 \mu}\right)^{3} & \text { if } 0 \leqslant \mu \leqslant 3 / 4 \\ 1 & \text { if } 3 / 4 \leqslant \mu \leqslant 1 \\ 4 \mu-3 & \text { if } \mu \geqslant 1\end{cases}
$$

For $\mu \notin(0,3 / 4)$ the bound is attained by a starlike function. If $\mu \epsilon(0,3 / 4)$ equality is attained only for a function in $B\left(\frac{3}{\mu}-4\right)$.

We omit the proof of Corollary 5.
Theorem C: If $f_{\epsilon} C$ and μ is real,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leqslant \begin{cases}3-4 \mu & \text { if } \mu \leqslant \frac{1}{3} \tag{15}\\ \frac{1}{3}+\frac{4}{9 \mu} & \text { if } \frac{1}{3} \leqslant \mu \leqslant 2 / 3 \\ 1 & \text { if } \frac{2}{3} \leqslant \mu \leqslant 1 \\ 4 \mu-3 & \text { if } \mu \geqslant 1\end{cases}
$$

For each μ, equality is attained by a function in B (1).
Proof: From (3) there exists a normalized starlike function g such that

$$
\operatorname{Re}\left[e^{i y} \frac{z f^{\prime}(z)}{g(z)}\right]>0,|z|<1
$$

for some real $\gamma,|\gamma|<\pi / 2$. Now, if $\mu \notin(0,2 / 3)$ the estimates in (15) are those obtained by Keogh and Merkes [3]. Thus we consider only $0 \leqslant \mu \leqslant 2 / 3$, and we begin with (9) of [3]:

$$
\begin{align*}
a_{3}-\mu a_{2}^{2}=\frac{1}{3}\left(c_{3}-\frac{3}{4} \mu c_{2}^{2}\right) & +\frac{2}{3} \cos \gamma\left[a_{2}+\left(e^{i \gamma}-\frac{3}{2} \mu \cos \gamma\right) a_{1}^{2}\right] \tag{16}\\
& +\left(\frac{2}{3}-\mu\right) \cos \gamma a_{1} c_{2},
\end{align*}
$$

where $\left\{c_{j}\right\}$ is the coefficient sequence of g, and $\left\{a_{j}\right\}$ is the coefficient sequence of the related function $\omega,|\omega| \leqslant 1$. Since $\frac{3}{4} \mu \leqslant \frac{1}{2},\left|c_{3}-\frac{3}{4} \mu c_{2}^{2}\right| \leqslant 3(1-$ $-\mu$) [3]. Also, $\left|a_{2}\right| \leqslant 1-\left|a_{1}\right|^{2}$ and $\left|c_{2}\right| \leqslant 2$. Thus,

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leqslant 1-\mu+\frac{2}{3} \cos \gamma\left[1+(|8|-1)\left|a_{1}\right|^{2}\right]+2\left(\frac{2}{3}-\mu\right) \cos \gamma\left|a_{1}\right| . \tag{17}
\end{equation*}
$$

where $s=e^{i \gamma}-\frac{3}{2} \mu \cos \gamma$. As a function of $\left|a_{1}\right|$, the right-hand side of (17) is maximized when $\left|a_{1}\right|=\left(1-\frac{3}{2} \mu\right)(1-|8|)^{-1}$. Since we must have $\left|a_{1}\right| \leqslant 1$, this gives $|8| \leqslant 3 / 2 \mu$, or equivalently,

$$
\begin{equation*}
\cos ^{2} \gamma \geqslant\left(1-\frac{9}{4} \mu^{2}\right)\left(3 \mu-\frac{9}{4} \mu^{2}\right)^{-1}, \tag{18}
\end{equation*}
$$

for each fixed $\mu, \frac{1}{3} \leqslant \mu<2 / 3$. Define $\gamma_{0}(\mu) \epsilon[0, \pi / 2)$ so that equality holds in (18). Then define q_{μ} on $\left[0, \gamma_{0}\right]$ by

$$
\begin{equation*}
q_{\mu}(\gamma)=\cos \gamma\left(1+a(\mu)(1+|8|) \sec ^{2} \gamma\right) \tag{19}
\end{equation*}
$$

where

$$
a(\mu)=(2-3 \mu)^{2}[3 \mu(4-3 \mu)]^{-1}
$$

Note that, upon replacing $\left|a_{1}\right|$ by $\left(1-\frac{3}{2} \mu\right)(1-|s|)^{-1}$ in the right-hand side of (17), we obtain

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leqslant 1-\mu+\frac{2}{3} q_{\mu}(\gamma) . \tag{20}
\end{equation*}
$$

We now assert that for $\frac{1}{3} \leqslant \mu<\frac{2}{3}, \max q_{\mu}(\gamma)=q_{\mu}(0)$. To verify this, note that $|s|$ is an increasing function of γ, so that

$$
\begin{aligned}
q_{\mu}^{\prime}(\gamma) & =\frac{\left.\sin \gamma\left(|8| \mid a(\mu)-\cos ^{2} \gamma\right)+a(\mu)\right)}{|8| \cos ^{2} \gamma} \\
& \leqslant \frac{\sin \gamma}{|8| \cos ^{2} \gamma}\left[\left(1-\frac{3}{2} \mu\right)\left(\frac{-2(2-3 \mu)}{4-3 \mu}\right)+\frac{(2-3 \mu)^{2}}{3 \mu(4-3 \mu)}\right] \\
& =\frac{\sin \gamma(2-3 \mu)^{2}}{|8| \cos ^{2} \gamma(4-3 \mu)}\left(\frac{1}{3} \mu-1\right)<0, \text { for } \frac{1}{3}<\mu<\frac{2}{3}
\end{aligned}
$$

We now must examine, for $\frac{1}{3} \leqslant \mu<\frac{2}{3}$, the case $\gamma_{0} \leqslant \gamma<\pi / 2$. By (18), this is equivalent to $|8| \geqslant 3 / 2 \mu$ which implies the right-hand side of (17) is maximized when $\left|a_{1}\right|=1$. We then have

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leqslant 1-\mu+\frac{2}{3} p_{\mu}(\gamma), \tag{21}
\end{equation*}
$$

where

$$
p_{\mu}(\gamma)=\cos \gamma[|8|+(2-3 \mu)] .
$$

In the same manner as above, $p_{\mu}(\gamma)$ is decreasing on $\left[\gamma_{0}, \pi / 2\right)$, so that $\max \boldsymbol{p}_{\mu}(\gamma)=\boldsymbol{p}_{\mu}\left(\gamma_{0}\right)=q_{\mu}\left(\gamma_{0}\right) \leqslant q_{\mu}(0)$. Thus, from (20), for each $\mu, 1 / 3 \leqslant \mu$ $<2 / 3$,

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leqslant 1-\mu+\frac{2}{3} q_{\mu}(0)=\frac{1}{3}+\frac{4}{9 \mu} . \tag{22}
\end{equation*}
$$

For $0 \leqslant \mu \leqslant \frac{1}{3}$, it follows from (22) that
$\left|a_{3}-\mu a_{2}^{2}\right| \leqslant 3 \mu\left|a_{3}-\frac{1}{3} a_{2}^{2}\right|+(1-3 \mu)\left|a_{3}\right| \leqslant 3 \mu(5 / 3)+(1-3 \mu) 3=3-4 \mu$.
The fact that, for each μ, equality in (15) is attained by a function in $\mathrm{B}(1)$, is shown in [3]. The proof of Theorem C is complete.

The authors wish to thank Professor Maxwell O. Reade for suggesting this problem.

REFERENCES

[1] Bazilevič. I. E., On a Case of Integrability in Quadratures of the Löwner-Kufarev Equation, Mat. Sb. 37 (1955), 471-476 (Russian).
[2] Jenkins, J. A., On Certain Coefficients of Univalent Functions, Analytic Functions, Princeton Univ. Press (1960), 176.
[3] Keogh, F.R. and E.P. Merkes, A Coefficient Inequality for Certain Classes of Analytio Functions, Proc. Amer. Math. Soc. 20 (1969), 8-12.
[4] Libera, R.J. and M. R. Ziegler, Regular Functions $f(z)$ for which $z f^{\prime}(z)$ is a-spiral, Trans. Amer. Math. Soc. 166 (1972), 361-370.
[5] Nehari, Z., Conformal Mapping, McGraw-Hill, New York, 1952.
[6] Robertson, M. S., Univalent Functions $f(z)$ for which zf' (z) is Spiral-Like, Mich. Math. J. 16 (1969), 847-852.
[7] Sheil-Snaall, T. On Bazilević Functions, Quart. J. Math. Oxford (2), 23 (1972), 135-142.
[8] Silvia, E. M., On a Subclass of Spiral-like Functions, (to appear).
[9] Szynal, J., Some Remarks on Coefficients Inequality for a-convex Functions, Bull. l'Acad. Pol. Sci., 20 (1972), 917-919.

STRESZCZENIE

Przedmiotem pracy jest znalezienie dokładnego oszacowania wyrażenia $\left|a_{3}-\mu a_{2}^{2}\right|$ w pewnej klasie funkeji Bazylewicza.

PE:3OME

Предметом заметии является оирсделение точной оценки фуніционала $\left|a_{3}-\mu \Lambda_{2}^{2}\right|$ в ненотором ктассе функциіі Базилевича.

[^0]: * Research supported by a Western Michigan University Summer Fellowship.

