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liepanencrna na xoappuunentn gaa Pynxnuit Basuxenuda

Introduction. Sheil-Small [7] has recently characterized Bazilevié
functions [1] in terms of a certain integral inequality. More specifically,
let f(z) be Bazilevi¢ of type (@, b). Then, for each r(0 < r< 1),

(1) fz Re[1+ zf" (2)/f (2) +(@a—1 4 ib)zf'(2)/f(2)1d0 > —=

whenever 6, > 6,. Conversely, if f is analytic in |2| < 1, with f(0) = 0,
f(z) = 0(0< |2|< 1), and f'(2) # 0 for |z| < 1, and if f satisties (1) for
0 <7< 1 where a > 0, b real, then f is Bazilevié of type (a, b).

Let B(e,b) denote the class of normalized functions satisfying (1).
For a given complex number u, we wish to maximize |a, — uaj| over a fixed
class of functions. We are unable to do this for the entire class B(a, b);
this paper is concerned with the solution of the above extremal problem
over certain subclasses of B(a, b), which are defined below.

Definition. The normalized univalent function f is said to be
a— j-spiral-like, a > 0, || < /2, if

(2) Re((e” — a)2f () [f(2) + a(1 + o (2) [f (2))] > 0,

for |s| < 1. Let M? denote the class of such functions.

Note that for a > 0, (2) is obtained by requiring the integrant in (1)
to be positive, replacing @ and b by a~'cosi and a'sini, respectively,
and then multiplying through by a. The reason for this parameter change
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is that (2) implies f is A-spiral-like [8], and thus we have facilitated compa-
rison with known results.

Sheil-Small [7] has shown that fe B(a, 0) if and only if there exists
a starlike function ¢, |¢'(0)] = 1, such that

f0_]
3 Re|——2—" |59, 1.
. | )= o 1<

Let B(a) denote those functions satisfying (3) with a mormalized ¢, and
let C denote B(1, 0). C is the well known class of close-to-convex functions.
In this paper we maximize |a,— ua;| over each of the three classes M?,
B(a), and C. Keogh and Merkes [3] solved the extremal problem (with
u real) over B(1), and we show that their result holds also for the larger
class C. In each of the three cases, the method we use, namely, application
of the lemma below, is due to Keogh and Merkes [3]. The three results
we obtain can be found in Theorems A, B, and C.

Lemma: Let w(2) = D¢,2" be analytic with |o(2)] <1 for |z|< 1.
1
If » is any complex number then
(4) ley— véd| < max {1, v]}.

Equality may be attained with the functions w(2) = 2% and w(z) = 2.
For a proof of this we refer the reader to [3].

o0

Theorem A: If f(z) =2+ Y a,2"¢ M, (a>0, |A| < x/2) and u is
n=2

any complex number, then
cos A

@y — 2 <.7
(5) l 3 .ua2| = |e"+2a|

max {1, |v|}.
where _ .
e 4pu(e™* +2a)cosd +4e”cosd—(a+e?)(a+e” +6cosi)
T (ﬂ T oﬂ)l ol
For each u, there exists an a — A-spiral-like function for which equality
holds in (5).
Proof. If f(z)e M., then there exists an analytic function (2)

= Y ¢,2" such that |o(2)| <1 (Jz| < 1) for which

T e (e e e a(z)
6 i ) 7 1)=———"— (k< D).
U e P ) T

By expanding (6) and equating coefficients we have

_ (ate)
(7) % = 2

Gy, sech
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and

2
'

[4¢" 002 —(a + 6" 1+ 6e0s 4)(a + 6¥)sect]

(8) ¢, = (e +2a)seciaz + I

Using (4), (7) and (8) we obtain (5), where
(a+e?)(a+ e +6cosi)+(a+e?)2v—4e“cond
- 4(e*+2a)cos A :
The sharpness of (5) follows from that of (4).
Corollary 1. If f(2) i8 a— A —spiral-like then
2cosi
la+e?|
cos A |(a_te‘“)2 +2cos A(e™ +3a)|
la + 6™ | | 2q]
Proof. The inequalities (9) and (10) follow directly from (7) and
(5), respectively.
Corollary 2. If f(z) =2+ 5: a,2" 8 a-convex (i.e., fe M2) and p i

ne=2

(9) |@s] <

(10) |@g] < -

any complex number, then

14p(1 +2a) +4—(1+a)(7 + )| }

-max ‘1.
(1-+a)?

— aF =
@y — puy| < 1+2a

Proof: This result follows immediately upon substituting 4 =0
in (5). Further, corollary 2 agrees with a result of Szynal [9].

Corollary 3. If f(z) =2+ > a,2" is A-spiral-like (|A| < =|2) and and

n=2

& 18 any complex number, then
la; — pal| < cosAmax {1, |2cosA(2u—1) —e"[}.

Proof: By substituting a = 0 in (5) we obtain this result, which

18 due to Keogh and Merkes [3].
Remarks. The proof of the theorem did not use the fact that a was
zf;rl-z} . )
—— 41}y

f(2)

and M? corresponds to the class of analytic functions for which zf’(z) is A-spi-

ral-like. This class was defined by Robertson [6]. Also, by substituting
a = ¢* in (5) we obtain the following result of Libera and Ziegler [4].

real. For a = e¢“ the expression in (2) becomes e”(

Corollary 4. If f(z) =2+ 3 a,2" is an analytic function for which
n=2
4f'(2) is A-spiral-like (|A| < =/2) and p is any complex number, then
lag— pad] < YcosAmax {1, [¢? —(3u—2)cosi|}.
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Theorem B: If fe B(a) and u is real,

(11)
3—4 if pu< :
" eE 24a
4a? 8at(pg—p)? .. 1
la. — 2 < l L | — —_— — = =
|ty j'-lﬂr:l S (1—:(1)2 (/‘0 .“)+ (l+a)2(2/4+a—1) 2 a = = Hhy
1 if BoS <1l
4pu—3 if u=>1
3La
where py =————— ~-. Each estimate is sharp.
2(2+a)

Proof: We have from (3) the existence of a normalized starlike

g,9(z) =2+ N b,2" such that

Ne=2

f'( }
R ([ el )
a9l

P (o) (e ))“
s+ (%) - (2 ) “

satisfies the condition of the Lemma.
By expanding (12) and equating coefficients, we have

Hence,

(12)

| u

2¢, «
o= l+a - l+a s

and

W 20 (3+ a) (4¢3 +4¢,b,a + a*b2)  a(by,—}b)

s v 24%g 2(2 +a)(1 + a)? 2+a
so that

! a 1 a(3+a) ua(2+a

(13) a;—pa; = Y [bs—‘\.z. 5 {1( ‘_a)a) bg]

\(1-1—¢1)2 (1-+a)?
S M RN
(1+a)_=('2(2+a) ")

2_[ {3+a 2u(2+ a}) ]
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If p = u,, the third term is zero, and (13) hecomes

2 @ 2 2
g3 — oy — (bg—1ib3) + Ble Cs-
Since ¢ is starlike |b3—§b§| <1 [3], and |e,] = 1 by the Lemma. Hence,
lag— poay] < 1. Also, the area theorem [5] gives |a;—a3| < 1. Combining
these two inequalities, we have for u, < u <1,
9, _ M— [y 2 1= b .
Ag— Udg| =~ a,—a; — |y | < 1.
lag— pag| < < lag—a,| + T g — Holly| =
We now examine 0 << u < p,. Let g denote the coefficient of b; in (13).
One easily checks that § < } so that the result of Keogh and Merkes [3]
applies, giving
2a(3 4+ a—4p—2ua)

14 b, — b <3—48 =14 Ly:
(14) [bs — Bb3| B 1 a)

Using the facts that |c,| <1 — ¢ |? and |b,| < 2, the sum of the second
and third terms of (13) is bounded by

S 2t — o —2u) .z] peBalpa—p) o -
PN =5 [H (1 +a)? { Arae 7=l

' a | . .
Now, if 2u+a—1>0 {i.e., > —)) then ¢ attains its maximum value

=

1
at " (u) = 2a(po—p)(2u +a—1)"". On the interval ( ’ /‘o], r* (p)

decreases from - oo to zero. The requirement r*(u) <1 yields: for ue
[2T o /to], |@; — puay| is maximized by using the estimate in (14) on the
i
first term of (13), and then replacing ¢, by r*(u), ¢, by 1—¢}, and b, by
2 in the other terms of (13). This bound on |a,— uai is attained for the
function f defined implicity in (12), where g is the Koebe function and
oo
D ¢,2" is defined as z(z +7" (u)) (L +7" (u)2) .

Nez]
It remains to consider 0 < u < (2 +a)~'. From (11)
lay — pal| < (2 + a)play— (2 + )7 @] + (L— (2 +a)p) gy

2 4+3a)
< (2+a)#(2—+:‘; 31— (24 a)u) =3 —4p.

The bLounds i (11) for u¢[0, 1] are identical with those for the entire
class of univalent function [2]. Except for ne[(2 +a) ', 4], the bounds
in (11) are attained by a starlike function [3], and the class of starlike
functions is contained in each B(a). The proof of Theorem B is complete.
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Corollary 5: If fe U B(a) and u is real,
az=0

3—4u if p<0
3—4,u\|3_
3 142 f o< u<3/4
la; — pay| < N (3—2M e
1 if 34 <1
4p—3 if pu>1

For u¢(0,3/4) the bound is atiained by a starlike function. If ue(0, 3/4)

3
equality 8 attained only for a function in B (—- —4).
Iz
We omit the proof of Corollary 5.

Theorem C: If fe C and u is real,
3—4p ifu<]

19

Y Hisu<¥Hh
(15) @, — paj| <

2

du—3 if u>1
For each u, equality i3 attained by a function in B (1).

Proof: From (3) there exists a mormalized starlike function g such
that )

l{-e[e" ff{—”)] >0, 2| <1.
g(z)

for some real y, |y| < n/2. Now, if 4¢(0, 2/3) the estimates in (15) are those
obtained by Keogh and Merkes [3]. Thus we consider only 0 < u < 2/3,
and we begin with (9) of [3]:

. 3 ,\ 2 [ . 8 s
(16) a,— pua, = :!,-(c3 = /wz) +;' cosy[aﬁ- le"— = ycos;;) u;]

(2
1 -g—,u cos8ya, C,,

where {c;} is the coefficient sequence of g, and {a} i8 the coefficient se-
|

£ .3 3
quence of the related function w, |o| < 1. Since 1 n<i, l e — T"cg <3(1-—

—pu) [3]. Also, |ay] < 1—|a;|* and |¢;] < 2. Thus,

. 2 2
(17) @y — pal| < 1 — p+ 3 cosy[1+ (|8 —1)|a,|?] -2 (? —,u) cosy|a,|.
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3
where s = ¢ — E,ucosy. As a function of |q,|, the right-hand side of (17)

3
is maximized when |a,| = (1 - -;,u)(l |#])~'. Since we must have |a,| < 1,

this gives |8| < 3/2u, or equivalently,

9 g

(18) cos*y = (1 =3 p’) (3;;. == ,u*) y
for each fixed u, 3 < u < 2/3. Define yo(u)e[0, n/2) so that equality holds
in (18). Then define g, on [0, y,] by
(19) g,(y) = cosy(1+a(u)(1+|8])sec?y)
where

a(p) = (2—3u)*[3u(4 —3u)]™".

3

Note that, upon replacing |a,| by (l - 2—/1,) (1—1s[)~" in the right-hand
side of (17), we obtain

2
(20) la3_nua'§l < 1_,“‘*"5!1,‘(7)-

We now assert that for } < u < %, maxg,(y) = ¢,(0). To verify this,
[oy}'o]
note that |s| is an increasing function of y, so that

siny (18| (a (u) — cos*y) + a(u))

Q;G(}’) - Islcoszy
Slny [( .' \ 2(2__3ﬁ)_\| o (2—3u) ]
L |s]cos* ) 4—-3u , 3u(4—3u)

siny (2 —3pu)?
~ [s|cos?y (4 —3u)
We now must examine, for } < u < %, the case y, <y < =/2. By (18),
this is equivalent to (8] = 3/2x which implies the right-hand side of (17)
I8 maximized when|a,| = 1. We then have

(21) lay, —pad| < 1—p+2p,(y),
where

(du—1)< 0, for } < pu< i

Pu(y) = cosy[ 8] +(2—3u)].
In the same manner as above, P.(y) is decreasing on [y,, n/2), so that

(malx]p”(y) = P,(¥0) = €u(?0) < ¢,(0). Thus, from (20), for each u, 1/3 < u
Yo

< 2/3,
(22) lay—pay < 1—p+3q.(0) = )+ o
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For 0 < u < i, it follows from (22) that
jay — padi < By fas — ad] + (1 —3p)lay| < 3p(3/3)+ (1—3u)3 = 3 —du.

The fact that, for each u, equality in (15) is attained by a function
in B(1), is shown in [3]. The proof of Theorem C is complete.

The authors wish to thank Professor Maxwell O. Reade for suggesting
this problem.
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STRESZCZENIE

Przedmiotem pracy jest znalezienie dokladnego oszacowania wyraze-
nia |a;— pai| w pewnej klasie funkeji Bazylewicza.

PE3BIOMIL

ITpenmerom 3aMeTky sIBJIAETCA OHPCHC/EHHE TOUHOH OlCHKU QVIIK-
wonana |a, —pal B nexoropoM kiaacce gyuxumnii basuieBuua.



