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WOJCIECH ZYGMUNT
On the Full Solution of the Paratingent Equations
O pelnym rozwigzaniu ré6wnania paratyngensowego

O DONHOM pemeAud NAPATHHTEHCHOTO YPaBHEHUA

In this paper we shall deal with the problem of existence of the solution
of a paratingent equation

(Piz)(t) = F(t, z(1)).

The classical theory of paratingent equations considers the weaker
problem

(Ptx)(t) = F(t, z(t)),

(cf [1], [4]). We shall prove that with somewhat stronger assumptions
than the classical ones we obtain the existence of the solution in. our
stronger sense.

I. We shall use the following notations: Let |z| denote the Euclidian
norm of x = (2!, ...,2™)e R, # — the family of all convex compact
and non-empty subsets of R™, (t,z)e '™ = Rx ™, D = (0,1) x R™
< R™,

Having a continuous function g: (0, 1,+E™ and te {0,1) the set of
all limit points

g(t) —a(s;)
r=-—
f"_—*.ﬂ'l-

where 8;, t;e (0,1, 8;—t, t,~t and t; # &, will be called paratingent of ¢
at the point ¢ and denoted by (Ptg)(t). It is easy to see that Ptg: (0, 1)—+R™
maps the interval (0, 1) into the family of the non-empty closed subsets
of R™ (cf [1], [4]). Taking only the limit points for which s; = ¢ and %t
one obtains the subset (Ctg)(t) = (Ptg)(t) — contingent of g at the point ¢.

Let F be a continuous mapping: D-~.#, the distance between the
two sets in . being understood in the Hausdorff sense. We shall put
IF(t, 2)| = sup{ly|: ye F(t, z), (¢, ) D}.
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II. Theorem. If the continuous mapping F: D — M satisfies the con-
dition
(1) |E (2, z)|| < m(t) le| +n(t) for (t,z)e D
where the functions m and n are non-negative and integrable tn (0, 1) and

if xoe R™ then there exists an absolutely comtinuous function g: {0,1)—R™
such that

(2) (Pig)(t) = F(t, g(t)), te 0, 1)
and
3) g(0) = z,.

The proof of this theorem will be based on the following lemmas.

III. Lemma 1. There exists a sequence of sets A, = (0,1>, n =0,1,...
such that

(4) AnA =0 if i #j

(¢2) UoAn =0,;1>

(1218) A ul(a,b)nA,)>0, for n =0,1,...
(@.b)<(0,1>

u being the Lebesque measure.

Proof. Having an interval 4 and a positive number d we denote by
O (4, d) a Cantor set of the measure d contained in 4 and such that the
length of (a, 8) € AN\C(4, d) does not extend beyond a half of the length
of A. Now let 0,,C,,... be a sequence of sets defined as follows:

¢, = C({0,1),37"), 0eCy, 1eC,
Cn+l = U_ C((a, B), 3_"_1(5—‘1))
(a By,

where K, denotes the set of all intervals (a, 8) contained in (0, 1)\(Cj,
C: = (C,uC,u ... UC, such that aeCj and BeCh. It is easy to verify
that

(Wy) C;NC, =@ if i #j
(Wa) #(Cnsy) = 87" u(<0, DN CR) < 37"
(Ws) p(Cy) < D3t <}

t=]

(W) (8—a) < 27" for (a,f)ec K,
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In view of the fact that the formula

n=2"(20—1), r=0,1,...,8 =1,2,...
establishes the one to one correspondence 7': N,—Ny,X N, where N,
= {k, k+1, ...} and bearing in mind (w,), the sets

=]
AJ = LJOCZ'(Ij—l)7 j = 1, 2, cee
P

44 =<0, 1>\,U 4; =<0, 1HNUC,
=]

im1
satisfy (i) and (ii). To verify (1ii) we take an arbitrary interval (a, b) < <0, 1)
and some j = 1. Then if roe Ny, and
1 b—a
2% =1, N3
it follows from (w,) that there exists an interval‘4 e Kyyqs;_y)-, contained
in (a, b). Thus

(4) AnC; =0 for t =1,2,...,27(2j—1)—1
(6) u(4 n02'0(2l—l)) = "(4).3_2%(:;_1)
(6) (4 NnC,) < p(4)-37" for i > 2M(2j—1)

Since Corgp5_1) = 45 and 4 < (a, b) in view of (5) we obtain
p((@, b) NAy) = u(A NCorypy_yy)) = p(4)-377CI=D > ¢,

In order to complete the proof in the case j = 0 let us notice that

wd) = (40U )+ w40 49

and

wAnUC) = Y u(40C) < u(4)
= te=]
thence

p((a, ) NAg) = u(4NnAy) = p(4)—pu(4 f“Ul Cy) > 0.
Lemma 2. If the absolutely continuous function g: (0,1) -» R™ satisfies
the condition

(7) g'(t)e F(t, g(t)) a.e. almost cverywhere in {0, 1)
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then
(8) (Ptg)(t) = F(t, g(t) everywhere in (0, 1).

Proof. Let te{0,1), e>0 and F, = {ye B™: \/ [2e F(t, g(t)) A |y — 2|
< ¢]}. Since the function F is continuous, there e;ists an interval (a, B)

such that te (a, 8) and F(s, g(s)) = F, if 8¢ (a, f) N0, 1). Thence, by (7)
g'(s)e F,a.e.in 4 = (a, ) N<{0,1) and in view of the lemma 1[3] we have

g(t;) —g(ty)

eF, for tie d, 1 =1,2,1t, #1,.
ti—1p

It follows that (Ptg)(t) = F, for any ¢ > 0 and thus condition (8) is ful-
filled (owing to the optionality of e).

IV. The proof of the theorem. Let A4,, n = 0,1,... be a sequence
of sets satisfying (i) — (iii). By a lemma 5.2 in [2], there exists a sequence
of continuous selections f,: D—~R™, n = 0, 1, ... such that f,(t, z)e F(t, z)
for every (t,z)e D, n = 0,1, ... and the set {f,(f, &)},,,,, ... is dense in
F(t, z) for each (t,z)e D. Let us put

ft,z) =f.(t, z) if (t,x)e A, xR", n =0,1,...
The function f is continuous on R™ for every fixed te (0,1). Putting
i A
and suph,(t, ) = (suphy(t, @), ..., suphy (¢, 2)) (analogically infh,(t, z))
the fu;ction f(t, z) ; suph,(t, x) +i1:fh,,(t, x) is measurable on 20, 1) for

any fixed e R™. In view of (1) |f(t, )| < m(t) || +n(t). Thus the function f
fulfills all the hypotheses of the well known theorem by Carathecodory
concerning the generalised solutions of ordinary differential cquations.
Therefore, there exists on absolutely continuous function g such that

(9) g'(t) = f(t, g(t)) a.e. in <0, 1)
and

(10) g(0) = z,.

By the lemma 2 we have

(11) (Ptg)(t) = F(t, g(t)) for every te 0, 1).
Now suppose there exists a te (0, 1> such that

(12) (Ptg)(t) # F(t, g(t)).

Therefore in F(t, g(t)) there must exists a point  not belonging to (Ptg)(t).
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As the set |f.(t, 9(t))}a-o,s,... is dense on F(t, g(t)) one can choose a sequence
Ja, such that

(13) gty g () — 2 < 2%

On the other hand, from the continuity of the functions f, and measu-
rable density of the sets A, [cf (iii)] it follows that there exists a sequence
e (0,1>, k =1,2,... satisfying the following conditions

tki A“k’ lim tk =t

k—++c0
(14) 9' (k) = fnk‘tk’ g(t))
and
(15) oty 9(8) —Fa, [ty 9 ()] < 275

Now in view of (14) we can choosc¢ another sequence s,, k¥ = 1,2, ...
such that |8, —t] <27 8, 1., s.¢¢0,1)> and

9(8x) —g(t) 7
l—sk_tk ~fu (ter g(t0))| < 275
From (13) and (15) we shall have
8,)—g(t
.f]( x) — 9 () —a| < 3.9-*
8 — U

and by the same — ze (Ptg)(t) despitc the assumption (12). Finally there
must be (Ptg)(t) =F(t,g(t)) for every te{0,1) which completes the
proof of our theorem.
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STRESZCZENIE

W pracy tej rozwazany jest problem istnienia rozwigzania réwnania
paratyngensowego (Ptz)(t) = F(t, z(t)). Zakladajac, ze funkcja wielo-
znaczna F jest ciagla i spelnia (1) udowodniono, ze istnieje co najmniej
jedna funkcja ¢: (0,1)—R™, ktéra spelnia (2) i (3).
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PE3IOME

B paboTe paccMaTpuBaeTcs npobiema CyllecTBOBaHHs pELUEHAS NapaTHHIEH-
cHoro ypaBHenus (Ptx)(t) = F(t, x(t)). Ilpeanonaras, 910 HenpephIBHAS MHOTIO-
3Ha4Has QyHEnus F ynoBineTBopseT ycioBmio (1), noka3niBaercs, 9TO CymIeCTBYeT
0o kpaiHeii Mepe ogHa dyuximsa @: (0, 1) — R™, nns KoTOpo# BEINOJHEHH YCJIO-
BHa (2) B (3).



