UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN — POLONIA

VOL. XXVI, 8

SECTIO A

1972

Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, Lublin

WOJCIECH ZYGMUNT

On the Full Solution of the Paratingent Equations

O pełnym rozwiązaniu równania paratyngensowego

О полном решении паратингенсного уравнения

In this paper we shall deal with the problem of existence of the solution of a paratingent equation

$$(Ptx)(t) = F(t, x(t)).$$

The classical theory of paratingent equations considers the weaker problem

$$(Ptx)(t) \subset F(t, x(t)),$$

(cf [1], [4]). We shall prove that with somewhat stronger assumptions than the classical ones we obtain the existence of the solution in our stronger sense.

I. We shall use the following notations: Let |x| denote the Euclidian norm of $x=(x^1,\ldots,x^m)\in R^m$, \mathscr{M} — the family of all convex compact and non-empty subsets of R^m , $(t,x)\in R^{1+m}=R\times R^m$, $D=\langle 0,1\rangle\times R^m$ $\subset R^{1+m}$.

Having a continuous function $g: \langle 0, 1 \rangle \rightarrow \mathbb{R}^m$ and $t \in \langle 0, 1 \rangle$ the set of all limit points

$$x = rac{g(t_i) - g(s_i)}{t_i - s_i}$$

where s_i , $t_i \in \langle 0, 1 \rangle$, $s_i \rightarrow t$, $t_i \rightarrow t$ and $t_i \neq s_i$, will be called paratingent of g at the point t and denoted by (Ptg)(t). It is easy to see that $Ptg: \langle 0, 1 \rangle \rightarrow R^m$ maps the interval $\langle 0, 1 \rangle$ into the family of the non-empty closed subsets of R^m (cf [1], [4]). Taking only the limit points for which $s_i = t$ and $t_i \rightarrow t$ one obtains the subset $(Ctg)(t) \subset (Ptg)(t)$ — contingent of g at the point t.

Let F be a continuous mapping: $D \rightarrow \mathcal{M}$, the distance between the two sets in \mathcal{M} being understood in the Hausdorff sense. We shall put $||F(t,x)|| = \sup\{|y|: y \in F(t,x), (t,x) \in D\}$.

II. Theorem. If the continuous mapping $F\colon D o M$ satisfies the condition

(1)
$$||F(t,x)|| \leq m(t)|x| + n(t) \text{ for } (t,x) \in D$$

where the functions m and n are non-negative and integrable in $\langle 0, 1 \rangle$ and if $x_0 \in \mathbb{R}^m$ then there exists an absolutely continuous function $g: \langle 0, 1 \rangle \rightarrow \mathbb{R}^m$ such that

(2)
$$(Ptg)(t) = F(t, g(t)), t \in \langle 0, 1 \rangle$$

and

$$g(0) = x_0.$$

The proof of this theorem will be based on the following lemmas.

III. Lemma 1. There exists a sequence of sets $A_n \subset \langle 0, 1 \rangle$, n = 0, 1, ... such that

$$A_i \cap A_j = \emptyset \ \ if \ \ i \neq j$$

$$(ii) \qquad \bigcup_{n=0}^{\infty} A_n = \langle 0, 1 \rangle$$

μ being the Lebesque measure.

Proof. Having an interval Δ and a positive number d we denote by $C(\Delta, d)$ a Cantor set of the measure d contained in Δ and such that the length of $(\alpha, \beta) \subset \Delta \setminus C(\Delta, d)$ does not extend beyond a half of the length of Δ . Now let C_1, C_2, \ldots be a sequence of sets defined as follows:

$$C_1 = C(\langle 0, 1 \rangle, 3^{-1}), \ 0 \in C_1, \ 1 \in C_1$$

$$C_{n+1} = \bigcup_{(a, \beta) \in K_n} C((a, \beta), 3^{-n-1}(\beta - a))$$

where K_n denotes the set of all intervals (a, β) contained in $\langle 0, 1 \rangle \setminus C_n^*$, $C_n^* = C_1 \cup C_2 \cup \ldots \cup C_n$ such that $a \in C_n^*$ and $\beta \in C_n^*$. It is easy to verify that

$$(\mathbf{w_i})$$
 which is $C_i \cap C_j = \emptyset$ if $i \neq j$

$$\mu(C_{n+1}) = 3^{-n-1}\mu(\langle 0, 1 \rangle \setminus C_n^*) < 3^{-n-1}$$

$$\mu(C_n^*) < \sum_{i=1}^n 3^{-i} < \frac{1}{2}$$

$$(\mathbf{w_4})$$
 $(\beta - \alpha) < 2^{-n} \text{ for } (\alpha, \beta) \in K_n$

In view of the fact that the formula

$$n = 2^{r}(2s-1), r = 0, 1, ..., s = 1, 2, ...$$

establishes the one to one correspondence $T: N_1 \rightarrow N_0 \times N_1$ where $N_k = \{k, k+1, \ldots\}$ and bearing in mind (w_1) , the sets

$$A_{f}=igcup_{r=0}^{\infty}C_{2^{r}(2j-1)},\ j=1,2,\ldots$$

$$A_0 = \langle 0,1
angle igcup_{j=1}^\infty A_j = \langle 0,1
angle igcup_{i=1}^\infty C_i$$

satisfy (i) and (ii). To verify (iii) we take an arbitrary interval $(a, b) \subset \langle 0, 1 \rangle$ and some $j \ge 1$. Then if $r_0 \in N_0$ and

$$\frac{1}{2^{r_0}(2j-1)}<\frac{b-a}{3}$$

it follows from (w_1) that there exists an interval $\Delta \in K_{2^{p_0(2j-1)-1}}$ contained in (a, b). Thus

(4)
$$\triangle C_i = \emptyset \text{ for } i = 1, 2, ..., 2^{r_0}(2j-1)-1$$

(5)
$$\mu(\Delta \cap C_{2^{r_0}(2j-1)}) = \mu(\Delta) \cdot 3^{-2^{r_0}(2j-1)}$$

(6)
$$\mu(\Delta \cap C_i) \leqslant \mu(\Delta) \cdot 3^{-i} \text{ for } i > 2^{r_0}(2j-1)$$

Since $C_{2^{p_0}(2^{j-1})} \subset A_j$ and $\Delta \subset (a, b)$ in view of (5) we obtain

$$\mu((a,b)\cap A_j)\geqslant \mu(A\cap C_{2^{r_0}(2j-1)})=\mu(A)\cdot 3^{-2^{r_0}(2j-1)}>0.$$

In order to complete the proof in the case j=0 let us notice that

$$\mu(\Delta) = \mu(\Delta \cap \bigcup_{i=1}^{\infty} C_i) + \mu(\Delta \cap A_0)$$

and

$$\mu(\Delta \cap \bigcup_{i=1}^{\infty} C_i) = \sum_{i=1}^{\infty} \mu(\Delta \cap C_i) < \mu(\Delta)$$

thence

$$\mu\big((a,b)\cap A_0\big)\geqslant \mu(\varDelta\cap A_0)=\mu(\varDelta)-\mu(\varDelta\cap\bigcup\limits_{i=0}^{\infty}C_i)>0.$$

Lemma 2. If the absolutely continuous function $g: \langle 0, 1 \rangle \rightarrow \mathbb{R}^m$ satisfies the condition

(7)
$$g'(t) \in F(t, g(t))$$
 a.e. almost everywhere in $(0, 1)$

then

(8)
$$(Ptg)(t) \subset F(t, g(t)) \text{ everywhere in } \langle 0, 1 \rangle.$$

Proof. Let $t \in (0, 1)$, $\varepsilon > 0$ and $F_{\varepsilon} = \{ y \in \mathbb{R}^m : \forall [x \in F(t, g(t)) \land |y - x| \}$ $\leq \varepsilon$]. Since the function F is continuous, there exists an interval (a, β) such that $t \in (a, \beta)$ and $F(s, g(s)) \subset F_s$ if $s \in (a, \beta) \cap (0, 1)$. Thence, by (7) $g'(s) \in F_s$ a.e. in $\Delta = (\alpha, \beta) \cap \langle 0, 1 \rangle$ and in view of the lemma 1[3] we have

$$\frac{g(t_1)-g(t_2)}{t_1-t_2} \epsilon F_\epsilon \text{ for } t_i \epsilon \Delta, \ i=1,2,t_1 \neq t_2.$$

It follows that $(Ptg)(t) \subset F_s$ for any $\varepsilon > 0$ and thus condition (8) is fulfilled (owing to the optionality of ε).

IV. The proof of the theorem. Let A_n , $n=0,1,\ldots$ be a sequence of sets satisfying (i) - (iii). By a lemma 5.2 in [2], there exists a sequence of continuous selections $f_n: D \to \mathbb{R}^m$, $n = 0, 1, \ldots$ such that $f_n(t, x) \in F(t, x)$ for every $(t, x) \in D$, $n = 0, 1, \ldots$ and the set $\{f_n(t, x)\}_{n=0,1,\ldots}$ is dense in F(t,x) for each $(t,x) \in \hat{D}$. Let us put

$$f(t, x) = f_n(t, x)$$
 if $(t, x) \in A_n \times R^m$, $n = 0, 1, ...$

The function f is continuous on R^m for every fixed $t \in (0, 1)$. Putting

$$h_n(t,x) = \begin{vmatrix} f_n(t,x) & \text{if } t \in A_n \\ 0 & \text{if } t \notin A_n \end{vmatrix}$$

and $\sup_n h_n(t,x) = \left(\sup_n h_n^1(t,x), \ldots, \sup_n h_n^m(t,x)\right)$ (analogically $\inf_n h_n(t,x)$) the function $f(t,x) = \sup_n h_n(t,x) + \inf_n h_n(t,x)$ is measurable on $\langle 0,1 \rangle$ for any fixed $x \in \mathbb{R}^m$. In view of (1) $|f(t,x)| \leq m(t)|x| + n(t)$. Thus the function f fulfills all the hypotheses of the well known theorem by Caratheodory concerning the generalised solutions of ordinary differential equations. Therefore, there exists on absolutely continuous function g such that

$$(9) \hspace{1cm} g'(t) = f \big(t, \, g(t) \big) \hspace{1cm} \text{a.e. in} \hspace{1cm} \langle 0 \, , \, 1 \rangle$$

and

and
$$g(0) = x_0.$$

By the lemma 2 we have

(11)
$$(Ptg)(t) \subset F(t, g(t)) \text{ for every } t \in \langle 0, 1 \rangle.$$

Now suppose there exists a $t \in (0, 1)$ such that

$$(Ptg)(t) \neq F(t, g(t)).$$

Therefore in F(t, g(t)) there must exists a point x not belonging to (Ptq)(t).

As the set $\{f_n(t, g(t))\}_{n=0,1,...}$ is dense on F(t, g(t)) one can choose a sequence f_{n_k} such that

$$|f_{n_k}(t, g(t)) - x| < 2^{-k}.$$

On the other hand, from the continuity of the functions f_n and measurable density of the sets A_n [cf (iii)] it follows that there exists a sequence $t_k \in (0, 1)$, $k = 1, 2, \ldots$ satisfying the following conditions

$$t_k \in A_{n_k}, \lim_{k \to +\infty} t_k = t$$

(14)
$$g'(t_k) = f_{n_k}(t_k, g(t_k))$$

and

$$|f_{n_k}(t_k, g(t_k)) - f_{n_k}(t, g(t))| < 2^{-k}.$$

Now in view of (14) we can choose another sequence s_k , k = 1, 2, ... such that $|s_k - t_k| < 2^{-k}$, $s_k \neq t_k$, $s_k \in (0, 1)$ and

$$\left|\frac{g(s_k)-g(t_k)}{s_k-t_k}-f_{n_k}(t_k,g(t_k))\right|<2^{-k}.$$

From (13) and (15) we shall have

$$\left|\frac{g(s_k)-g(t_k)}{s_k-t_k}-x\right|<3\cdot 2^{-k}$$

and by the same $-x \in (Ptg)(t)$ despite the assumption (12). Finally there must be (Ptg)(t) = F(t, g(t)) for every $t \in (0, 1)$ which completes the proof of our theorem.

REFERENCES

- [1] Bielecki, A., Sur certaines conditions necessaires et suffisantes pour l'unicite des solutions des systèmes d'equations différentielles ordinaires et des equations au paratingent, Ann. Univ. M. Curie-Skłodowska, Sectio A, 2, 2 (1948), 49-106.
- [2] Michael, E., Continuous Selections I, Ann. Math. ser. 2, 63, Nr 2 (1956), 361-382.
- [3] Ważewski, T., Sur une condition equivalente a l'equation au contingent, Bull. Acad. Polon. Sci., Ser. sci. math. astr. et phys., 9 (1961), 865-867.
- [4] Zaremba, S. K., O równaniach paratyngensowych, Ann. Soc. Polon. Math., Suppl. 9 (1935).

STRESZCZENIE

W pracy tej rozważany jest problem istnienia rozwiązania równania paratyngensowego (Ptx)(t) = F(t, x(t)). Zakładając, że funkcja wieloznaczna F jest ciągła i spełnia (1) udowodniono, że istnieje co najmniej jedna funkcja $\varphi \colon \langle 0, 1 \rangle \rightarrow \mathbb{R}^m$, która spełnia (2) i (3).

PE3IOME

В работе рассматривается проблема существования решения паратингенсного уравнения (Ptx)(t) = F(t,x(t)). Предполагая, что непрерывная многозначная функция F удовлетворяет условию (1), доказывается, что существует по крайней мере одна функция $\varphi \colon \langle 0,1 \rangle \to R^m$, для которой выполнены условия (2) и (3).