ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. XXVI, 7

SECTIO A

1972

Instytut Matematyki, Politechnika Łódzka, Łódź

ROMUALD ZAWADZKI

On the Radius of Convexity of Some Class of Analytic k-Symmetrical Functions

O promieniu wypukłości pewnej klasy funkcji analitycznych k-symetrycznych

Раднус выпуклости некоторого класса к-симметричных аналитических функций

Let $a, 0 \le a < 1$, be an arbitrary fixed number and let k be an arbitrary fixed natural number.

Denote by S_k the family of regular and univalent functions of the form

(1)
$$f(z) = z + \sum_{j=1}^{\infty} a_{jk}^{(k)} z^{jk+1}$$

defined in the circle $K = \{z: |z| < 1\}$ while $S_k^*(a)$ stands for the subclass of the family S_k made up of all functions of form (1) of the family S_k which satisfy the condition

(2)
$$\left|\frac{\frac{zf'(z)}{f(z)} - a}{1 - a} - 1\right| < 1$$

i.e. which satisfy the condition

 $\left|\frac{zf'(z)}{f(z)}-1\right|<1-a.$

Moreover we accept the following denotations:

- $S_1 = S$ the family of all regular and univalent functions of form (1) defined in the circle K,
- S^* the subclass of all starlike functions of the family S, i.e. the subclass of functions of form (1) which map the circle K onto starlike regions with respect to the origin,
- S_k^* the subclass of all starlike functions of the family S_k ,
- $S_k^*(a)$ the family of all functions of form (1) which are starlike of order a i. e. satisfy the condition

$$\operatorname{re} rac{zf'(z)}{f(z)} > lpha \quad ext{ for every } z \, \epsilon \, K \, .$$

Evidently the family $\widetilde{S}_k(a)$ is a subclass of the family $S_k(a)$. In fact, condition (2) means that

$$\zeta = rac{rac{zf'(z)}{f(z)} - a}{1-a} \ \epsilon \ K(1,1) = \{z \colon |z-1| < 1\}$$

by which

$$\operatorname{re}rac{rac{zf'(z)}{f(z)}-a}{1-a}<0$$

and thus

$$\operatorname{re}rac{zf'(z)}{f(z)}>a$$

Since $S_k^*(a) \subset S_k^*$ and $S_k^*(a) \subset S_k^*(a)$

$$\overline{S}_k^{\bullet}(a) \subset S_k^{\bullet}$$

The problem formulated in this paper consists in determining the radius of convexity r_0 of the family $\overline{S}_k^*(a)$, i.e. the radius of the largest circle |z| < r < 1 which is mapped by every function of the class $\overline{S}_k^*(a)$ onto a convex region. A function $f(z) \in S$ is convex, i.e. it maps the circle K onto a convex region if and only if

$$\mathrm{re}\left(1+rac{zf^{\prime\prime}(z)}{f^{\prime}(z)}
ight)>0 ~~\mathrm{for}~~\mathrm{every}~~z\,\epsilon~K.$$

Page intercheres association for

Now we shall come back to the definition of the radius of convexity which is to be made more precise. Let for every fixed function $f = f(z) \in S_k(a)$

$$egin{aligned} r(f) &= \sup \left\{ r\colon \operatorname{re}\left(1 + rac{zf''(z)}{f'(z)}
ight) > 0\,, \, |z| < r
ight\} \ r_0 &= \inf_{f \in \widetilde{S}_k^*(a)} r(f)\,. \end{aligned}$$

Since the family $\tilde{S}_k^*(a)$ is compact and since it is a subclass of the family S, r_0 is the radius of the largest circle which is mapped onto a convex region by every function of the class $\tilde{S}_k(a)$, or which is the same, r_0 is the smallest root of the equation w(r) = 0 contained in the interval (0, 1) where

(3)
$$w(r) = \min_{\substack{|z|=r<1, f(z)< S_k^{(a)}}} \operatorname{re}\left[1 + \frac{zf''(z)}{f'(z)}\right].$$

Next denote by $\bar{\mathscr{P}}_k(\alpha)$ the family of all regular functions of the form

(4)
$$P(z) = 1 + \sum_{j=1}^{\infty} b_{jk}^{(k)} z^{jk}$$

defined in the circle K which satisfy the condition

$$\left| \frac{P(z)-a}{1-a} - 1 \right| < 1 ext{ for every } z \in K$$

and by $\mathcal{P}_k(a)$ the family of all functions p(z) of form (4) such that

$$\operatorname{re} p(z) > a$$
 for every $z \in K$.

It follows from what has been said above that $\mathscr{P}_1(0) = \mathscr{P}$, where \mathscr{P} is the family of Carathéodory functions, and that $\tilde{\mathscr{P}}_k(a) \subset \mathscr{P}_k(a)$. It follows from the definitions of the families $\tilde{S}_k^*(a)$ and $\tilde{\mathscr{P}}_k(a)$ that $f(z) \in \tilde{S}_k^*(a)$ if and only if $\frac{zf'(z)}{f(z)} \in \widetilde{\mathscr{P}}_k(a)$. Let f(z) be an arbitrary function of the class $\tilde{S}_k^*(a)$. Then

(5)
$$\frac{zf'(z)}{f(z)} = P(z)$$

for some function $P(z) \in \mathcal{P}_k(a)$. Hence by differentiating we easily obtain equation (5) and after simple transformations the relationship

(6)
$$1 + \frac{zf''(z)}{f'(z)} = P(z) + \frac{zP'(z)}{P(z)}.$$

Thus by (3) and (6) we have

$$w(r) = \min_{|z|=r<1, P(z) \in \widetilde{\mathscr{P}}_k(a)} \mathrm{re} igg[P(z) + rac{z P'(z)}{P(z)} igg].$$

Let $p(z) \in \mathscr{P}_k(a)$ then, as it is easily seen, the function

(7)
$$P(z) = \frac{(1+\beta)p(z)+1-\beta}{p(z)+1}, \ \beta = 1-a,$$

belongs to the family $\mathscr{P}_k(a)$, the converse being also true. In fact, the function P(z) defined by formula (7) is the superposition of the function $\zeta = p(z)$ which maps the circle K onto the semiplane $\operatorname{re} \zeta > a$ and of the homograph function $w(\zeta) = \frac{(1+\beta)\zeta + (1-\beta)}{\zeta+1}$ which maps the

semiplane $\operatorname{re} \zeta > a$ on to the circle $|w-1| < \beta$. Thus |P(z)-1| < 1-a

6 - Annales

and consequently $\operatorname{re} P(z) > a$. The function P(z) defined by formula (7) is regular in the circle K as the superposition of regular functions, we also have P(0) = 1. Consider the functional

(8)
$$F(P) = P(\zeta), P(z) \in \mathscr{P}_k(a).$$

Lemma 1. The set of values of functional (8) is the closed circle $K(C, \varrho)$ with the centre at C and the radius ϱ , where C = 1 and $\varrho = \beta r^k$, r = |z|.

Proof. Every boundary function $P_0(z)$ of the family $\mathscr{P}_k(\alpha)$ with respect to functional (8) is of form (7) where

(9)
$$p_0(z) = \frac{1 + \varepsilon z^k}{1 - \varepsilon z^k}, \ |\varepsilon| = 1 \ (\text{comp. [1]}).$$

Thus

$${P}_{\mathfrak{o}}(z) = 1 + eta arepsilon z^k.$$

Consequently for $z=r{
m e}^{iarphi}, \ 0\leqslant arphi\leqslant 2\pi,$ $P_0(z)=C+arrho\cdot\eta_0,$

where

$$n_{o} = \varepsilon e^{ik\varphi}$$

which ends the proof. Further denote by $\mathscr{P}_{k,2}(a)$ the subclass of the family $\widetilde{\mathscr{P}}_k(a)$ consisting of all functions of form (7) with

(10)
$$p(z) = \frac{1+\lambda}{2} p_1(z) + \frac{1-\lambda}{2} p_2(z)$$

(11)
$$p_j(z) = \frac{1+\varepsilon_j z^k}{1-\varepsilon_j z^k}, \ |\varepsilon_j| = 1, \ j = 1, 2, \ -1 \leqslant \lambda \leqslant 1.$$

Next let F(u, v) be an arbitrary analytic function defined in the semiplane reu > 0 and in the plane v and let $|F'_u|^2 + |F'_v|^2 > 0$ at every point (u, v). Then it is known that every boundary function p(z) with respect to the functional F(p(z), zp'(z)), |z| = r is of form (10) [1]. Thus every boundary function with respect to the functional

$$Fig(P(z),zP'(z)ig), \ \ P(z)\,\epsilon\,\, ilde{\mathscr{P}}_k(a)\,,\, |z|\,=r$$

is of form (7) where p(z) is of form (10). Therefore

$$w(r) = \min_{|z|=r\leqslant 1, P(z)\in \widetilde{\mathscr{F}}_{k^*2}(a)} \operatorname{re}\left[P(z) + rac{zP'(z)}{P(z)}
ight].$$

Now we shall prove the following lemma:

Lemma 2. If $P(z) \in \tilde{\mathscr{P}}_{k,2}(a)$ and $z = r e^{i\varphi}$, $0 \leq \varphi \leq 2\pi$, then

(12)
$$zP'(z) = k[P(z)-1] - ka[\varrho^2 - |P(z)-1|^2] \cdot \eta,$$

with

(13)
$$\varrho = \varrho(r^k) = \beta r^k, a = a(r) = \frac{1}{\beta(1-r^{2k})} \text{ and } |\eta| = 1.$$

Proof. Differentiating function (7) with respect to z and then multiplying the result by z we get

(14)
$$zP'(z) = \frac{2\beta zp'(z)}{(p(z)+1)^2}$$

According to formula (11) we have

$$p_j(r\mathrm{e}^{i\varphi}) - rac{1+r^{2k}}{1-r^{2k}} = rac{2r^k}{1-r^{2k}}\cdot rac{arepsilon_j \mathrm{e}^{ik\varphi} - r^k}{1-arepsilon_j r^k \mathrm{e}^{ik\varphi}},$$

thus

$$p_j(r\mathrm{e}^{iarphi}) \;= rac{1+r^{2k}}{1-r^{2k}} + rac{2r^k}{1-r^{2k}} \cdot rac{arepsilon_j \mathrm{e}^{ikarphi} - r^k}{1-arepsilon_j r^k \mathrm{e}^{ikarphi}}$$

If $p_i(z)$ is of form (11), we have for $z = r e^{i\varphi}$

(15)
$$p_j(re^{i\varphi}) = c^* + \varrho^* \gamma_j, \quad j = 1, 2$$

with

(16)
$$c^* = \frac{1+r^{2k}}{1-r^{2k}}, \ \varrho^* = \frac{2r^k}{1-r^{2k}},$$

$$\gamma_{m{j}} = arepsilon_{m{j}} \mathrm{e}^{ikarphi} \cdot rac{1 - arepsilon_{m{j}} r^k \mathrm{e}^{-ikarphi}}{1 - arepsilon_{m{j}} r^k \mathrm{e}^{ikarphi}}, \; |\gamma_{m{j}}| = 1, \; j = 1, \, 2.$$

Let now p(z) be of form (10), then taking into account formula (15) we obtain

(17)
$$p(z) = \frac{1+\lambda}{2}(c^* + \varrho^*\gamma_1) + \frac{1-\lambda}{2}(c^* + \varrho^*\gamma_2), \quad z = re^{i\varphi},$$

 c^* , ϱ^* and γ_j , j = 1, 2 being defined by formulas (16). By (17) we find that for $z = r e^{i\varphi}$

$$p\left(z
ight) = c^{st} + arepsilon^{st} \cdot \left(rac{1+\lambda}{2} \, \gamma_1 + rac{1-\lambda}{2} \, \gamma_2
ight)$$

holds.

Let

(18)
$$\times \mu_1 = \varrho^* \left(\frac{1+\lambda}{2} \gamma_1 + \frac{1-\lambda}{2} \gamma_2 \right)$$

with according to the first of the first of

(19)
$$\varkappa = \varrho^* \cdot \left| \frac{1+\lambda}{2} \gamma_1 + \frac{1-\lambda}{2} \gamma_2 \right|, \quad |\mu_1| = 1.$$

Multiplying both sides of (18) by $\overline{\times \mu_1}$ we get the formula

$$\varkappa^{\mathfrak{a}} = \frac{\varrho^{\mathfrak{a}_2}}{4} \left[(1+\lambda)^2 + (1-\lambda)^2 + (1-\lambda^2) \cdot (\gamma_1 \overline{\gamma}_2 + \overline{\gamma}_1 \gamma_2) \right].$$

Putting

 $\gamma_j=\mathrm{e}^{ieta_j}, \quad j=1,2$

we get

(20)

$$e^{s} = e^{s_2} \left[1 - (1 - \lambda^s) \sin^2 \frac{\beta_1 - \beta_2}{2} \right]$$

i.e.

(21)
$$\kappa^{2} = \varrho^{*2} - \varrho^{*2} (1 - \lambda^{2}) \sin^{2} \frac{\beta_{1} - \beta}{2}$$

It follows from formula (21) that

$$0 \leqslant \varkappa \leqslant \varrho^*$$

Thus if p(z) is of form (10), then according to formulas (18) and (19) we have

$$(22) p(re^{i\varphi}) = e^{i\varphi} + \varkappa \mu_1.$$

Now we shall evaluate the expression zp'(z) for $z = re^{i\varphi}$, p(z) being of form (10) and then multiplying both sides of the result by z we get on some transformations the formula

(23)
$$zp'(z) = \frac{k}{2} [p^2(z) - 1] + \frac{k}{2} \frac{1 - \lambda^2}{4} [p_1(z) - p_2(z)].$$

Further applying formula (15) to the function $p_j(z)$, j = 1, 2 for $z = re^{i\varphi}$ we find, with the denotations of (20) that

(24)
$$[p_1(z) - p_2(z)]^2 = \varrho^{*2} \gamma_1 \gamma_2 \cdot [2\cos(\beta_1 - \beta_2) - 2].$$

Denoting

(25)
$$\gamma_1 \gamma_2 = e^{i(\beta_1 + \beta_2)} = \eta$$
.

We reduce formula (24) to the form

(26)
$$[p_1(z) - p_2(z)]^2 = -4\varrho^{*2} \cdot \eta \sin^2 \frac{\beta_1 - \beta_2}{2}.$$

84

Taking into account formula (21) in formula (26) we obtain

$$\frac{1-\lambda^2}{8} [p_1(z) - p_2(z)]^2 = -\frac{\eta}{2} [\varrho^{*2} - \varkappa^2].$$

Thus formula (23) becomes

(27)
$$zp'(z) = \frac{k}{2} [p^2(z) - 1] - \frac{k}{2} \eta [e^{*2} - \varkappa^2], \ z = r e^{i\varphi}.$$

From formula (22) we have 1. P. (11) 1.

$$arkappa | = |p(re^{i\varphi}) - c^*|.$$

Substituting the obtained value for $|\varkappa|$ into formula (27) we get ultimately

(28)
$$zp'(z) = \frac{k}{2} [p^2(z) - 1] - \frac{k}{2} [e^{*2} - |p(z) - c^*|^2] \cdot \eta, \ |\eta| = 1.$$

Thus taking into account (14) and (28) we have for |z| = r

$$zP'(z) = rac{eta}{(p(z)+1)^2} \cdot \{k[p^2(z)-1] - k[arrho^{*2} - |p(z)-c^*|^2]\eta\}.$$

From formula (7) we obtain

(29)
$$p(z) = \frac{1-\beta-P(z)}{P(z)-(1+\beta)}$$

Hence

(30)
$$p(z)+1 = \frac{-2\rho}{P(z)-(1+\beta)}, \ p(z)-1 = \frac{2(1-P(z))}{P(z)-(1+\beta)}, \ \frac{p(z)-1}{p(z)+1} = \frac{P(z)-1}{\beta}.$$

Then we get for $z = r e^{i \varphi}, \ 0 \leqslant \varphi \leqslant 2 \pi$ and then we shall find the tailes of conversive e. of the fundie Mich.

(31)
$$\varrho^{*2} - |p(z) - c^*|^2 = 4 \frac{\varrho^2 - |P(z) - 1|^2}{(1 - r^{2k})|P(z) - (1 + \beta)|^2}$$

By (29) - (31) we obtain ultimately formula (12) which ends the proof of lemma 2. According to lemma 2 we have

(32)
$$w(r) = \min_{\substack{|z|=r<1\\P(z)\in\mathscr{P}_{k,2}(a)}} \operatorname{re}\left[P(z) + \frac{zP'(z)}{P(z)}\right]$$
$$= \min_{\substack{|z|=r<1\\P(z)\in\mathscr{P}_{k,2}(a)}} \operatorname{re}\left\{P(z) + k\left[1 - \frac{1}{P(z)}\right] - ka[\varrho^2 - |P(z) - 1|^2]\frac{\eta}{P(z)}\right\}.$$
Let

$$P(re^{i\varphi}) = se^{it}, \quad s > 0, \text{ im } t = 0.$$

By lemma 1 s and t satisfy the conditions

$$1-\varrho \leqslant s \leqslant 1+\varrho \text{ and } -\Psi(s) \leqslant t \leqslant \Psi(s),$$

with

(33)
$$\Psi(s) = \arccos \frac{1+s^2-\varrho^2}{2s}.$$

Moreover we introduce the denotations

$$egin{aligned} G &= \{(s,t)\colon 1-arrho < s < 1+arrho, \ -\Psi(s) < t < \Psi(s)\}, \ \partial G &= \{(s,t)\colon 1-arrho \leqslant s \leqslant 1+arrho, \ t &= \pm \Psi(s)\}, \end{aligned}$$

$$I = \{s: 1-\varrho < s < 1+\varrho\}.$$

Then formula (44) becomes

$$w(r) = \min_{\substack{|z|=r<1\\ (s,t)=G \cup \partial G}} \left\{ s\cos t + k - \frac{k\cos t}{s} - ka[-s^2 + 2\cos t - (1-\varrho^2)] \operatorname{re} \frac{\eta}{P(z)} \right\},$$

where $2s\cos t - s^2 - (1 - \varrho^2) \ge 0$ for $(s, t) \in G \cup \partial G$. Since

(34)
$$\operatorname{re} \frac{\eta}{P(z)} \leq \frac{1}{|P(z)|}$$

(35) w(r)

$$\min_{|x|=r<1, P(s) extsf{cd}_{k,2}(a)} \operatorname{re} \left[P(z) + rac{z P'(z)}{P(z)}
ight] \geqslant \min_{|s|=r<1, (s,t) extsf{cd} \cup \partial G} B(s,t) = \omega(r)$$

where

$$(36) B(s,t) = \left[\left(s - \frac{k}{s}\right) \cos t + k \right] + ka \left[s - 2\cos t + \frac{1 - \varrho^2}{s}\right].$$

Now we proceed to determining the minimum of the function B(s, t)and then we shall find the radius of convexity r_0 of the family $\tilde{S}_k^{\bullet}(\alpha)$. We consider two cases: I $(s, t) \in G$, II $(s, t) \in \partial G$. I. $(s, t) \in G$. Consider the system of equations

$$B'_t(s,t) = \left(-s + \frac{1}{s} + 2ak\right)\sin t = 0$$

 $B'_s(s,t) = \frac{1}{s^2}\left[(1+ka)s^2 + k(1-a(1-\varrho^2))\right] = 0$

_

Finding that
$$-s + \frac{k}{s} + 2ak \neq 0$$
 for $s \in I$ we get that $\sin t = 0$ and because

of $\cos t > 0$, we have $\cos t = 1$. Thus

$$\omega(r) = \min_{\substack{|s|=r<1, (s,t)=G}} B(s,t) = \min_{\substack{|s|=r<1, s\in I}} C(s),$$

where

$$C(s) = B(s, 0) = s - \frac{k}{s} + k + ka \left[s - 2 + \frac{1 - e^2}{s}\right].$$

Since the finglering in it descentions (88).

D. D. subily world.

$$C'(s) = rac{1}{s^2} \left[(1+ka)s^2 - k \left(a \left(1 - \varrho^2 \right) - 1 \right) \right]$$

and

$$C''(s) = \frac{2k[a(1-\varrho^2)-1]}{s^3}$$

the function C(s) attains a local minimum at the point

(37)
$$s_1 = \sqrt{k \frac{a(1-\varrho^2)-1}{1+ka}}$$

if 81 e I.

Now we shall find out for what values of $r \in (0, 1)$, $s_1 \in I$. It is easily verified that the inequality $s_1 < 1 + \rho$ always holds. In order to determine the values of r for which $1-\rho < s_1$ holds we assume the following notation

(38)
$$l(r) = (1-\varrho)^2 = (1-\beta r^k)^2$$
$$m(r) = s_1^2(r) = k(1-\beta) \frac{1+\beta r^{2k}}{(\beta+k)-\beta r^{2k}}$$

Then 1 $\rho < s_1$ if

l(r)-m(r)<0.

Since

$$l(0) = 1, \ l(1) = (1 - \beta)$$

and

$$l'(r) = 2(1-\beta r^k) \cdot (-k\beta r^{k-1}) < 0 \text{ for } r \in (0, 1),$$

l(r) is a decreasing function for $r \in (0, 1)$. By an analogous argument we obtain

$$m(0) = rac{k(1-eta)}{k+eta}, \ m(1) = 1-eta^2$$

and

$$m'(r) = 2k^2 \beta (1-\beta) r^{2k-1} \cdot rac{k+eta+1}{[(eta+k)-eta r^{2k}]^2} > 0$$

thus m(r) is an increasing function in the interval (0, 1). Moreover taking into account that

$$(1\!-\!eta)^2 < rac{k\,(1\!-\!eta)}{k\!+\!eta} < 1\!-\!eta^2 < 1$$

we get $1 - \varrho < s_1$ for $r > r^*$ where r^* is the only root, $0 < r^* < 1$, of the equation

(39)
$$l(r) - m(r) = 0.$$

Now we shall transform equation (39). Employing in it denotations (38), (37) and (13) we obtain

$$l(r) - m(r) = \frac{-\beta}{k + \beta(1 - r^{2k})} \cdot h(r^k) = 0,$$

with

(40)
$$h(r^k) = \beta^2 r^{4k} - 2\beta r^{3k} +$$

+
$$[(1-2\beta)k+(1-\beta^2)]r^{2k}+2(k+\beta)r^k-(k+1).$$

Since

 $rac{-eta}{k+eta\,(1-r^{2k})} < 0 \, ext{ for } \, r\,\epsilon\,(0\,,1)$

$$r^*, \ 0 < r^* < 1$$
 is the only root of the equation
(41) $h(r^k) = 0$ for $r \in (0, 1)$.

It follows from the above considerations that

$$h(r^k) > 0 \; \, {
m for} \; \, r^* < r < 1$$

and that

$$h(r^k) \leqslant 0 \text{ for } 0 < r \leqslant r^*$$

Summing up we find that $s_1 \in I$ for $r \in (r^*, 1)$ and then

$$\log \min_{|s|=r<1, (s, t) \in G} B(s, t) = \log \min_{|s|=r<1, s \in I} C(s)$$

$$= (1+ak)s_1 - k(2a-1) + \frac{\kappa}{s_1}[a(1-\varrho^2)-1].$$

By (37) and (13)

(43) $C(s_1) = \min_{|s|=r<1, s\in I} \operatorname{loc} C(s)$

1.00

$$\frac{k U(r^{2k})}{\beta (1-r^{2k})^2 [2 (1+ak)s_1 + k(2a-1)]} \text{ for } r^* < r < 1$$

where

(44)
$$U(r^{2k}) = -\beta [k+4(1-\beta)]r^{4k} - - 2[k\beta+2(1-\beta)^2]r^{2k} - [k\beta-4(1-\beta)]$$

and

$$\beta (1-r^{2k})^2 [2(1+ka)s_1+k(2a-1)] > 0$$
 for $r \in (0, 1)$

We have

 $U(0) > 0 \, ext{ for } \, k < k_1(eta) \, ,$

where

(45)
$$k_1(\hat{\rho}) = \frac{4(1-\rho)}{\hat{\rho}}$$

It is easily verified that if

 $k < k_1(\beta)$

then function (44) of the variable r^{2k} has in the interval (0, 1) exactly one root given by the formula

(46)
$$X = \frac{2(1-\beta)\sqrt{2\beta(k+2) + (1-\beta)^2 - k\beta - 2(1-\beta)^2}}{\beta[k+4(1-\beta)]}$$

while if $k > k_1(\beta)$, then $U(r^{2k}) < 0$ for 0 < r < 1. Accepting $r_1 = \sqrt[2k]{X}$ we have by (46)

(47)
$$r_{1} = \sqrt[2k]{\frac{2k}{2(1-\beta)\sqrt{2\beta(k+2) + (1-\beta)^{2} - k\beta - 2(1-\beta)^{2}}}{\beta[k+4(1-\beta)]}}$$

with, according to (43)

$$\min_{|\mathfrak{s}|=r<1,\,(\mathfrak{s},t)\in G}B(\mathfrak{s},t)=C(\mathfrak{s}_1)=0 ext{ for } r=r_1>r^*.$$

II. $(s, t) \in \partial G$. Then we obtain from formula (33)

$$\cos t = \frac{1+s^2-\varrho^2}{2s}$$

and substituting this value for cost in formula (36) we get

$$B(s, \Psi(s)) = H(s) = \frac{s^4 + (k+1-\varrho^2)s^2 - k(1-\varrho^2)}{2s^2},$$

Hence

$$H'(s)=s+rac{k(1-arrho^2)}{s^3}>0 \, ext{ for } s \, \epsilon \, ar{I}\, \equiv \langle 1-arrho \,,\, 1+arrho
angle.$$

Thus H(s) is an increasing function in the interval \overline{I} and thus it attains its minimum at the point $s_2 = s_2(r^k)$, $s_2(r^k) = 1 - \varrho(r^k)$ equal to

$$\min_{|s| \to s > 1, s \neq I} H(s) = H(1-\varrho) = \frac{\varrho^2 - (k+2)\varrho + 1}{1-\varrho}$$

By $\varrho(r^k) = \beta r^k$

(48)
$$\min_{|s|=r<1, (\theta, t)\in\partial G} B(s, t) = H(s_2) = \frac{F(r^*)}{1-\beta r^k},$$

(49)

F(0) > 0.

It is easily verified that if

$$k > k_2(eta)$$

 $F(r^k) = \beta^2 r^{2k} - (k+2)\beta r^k + 1.$

with

(50)
$$k_2(\beta) = \frac{(1-\beta)^2}{\beta}$$

then function (49) of the variable r^k has exactly one root given by the formula

(51)
$$y = \frac{k+2-\sqrt{k(k+4)}}{2\beta}$$

in the interval (0, 1), while if $k < k_2(\beta)$, then $F(r^k) > 0$ for 0 < r < 1. Accepting $r_2 = \sqrt[k]{y}$, by (51) we have

(52)
$$r_2 = \sqrt[k]{\frac{k+2-\sqrt{k(k+4)}}{2\beta}} \text{ when } k \ge k_2(\beta).$$

We sum up the results obtained. According to the performed considerations the function C(s) = B(s, 0) attains its local minimum at the point $s_1(r)$; this minimum is equal zero for $r = r_1$ only if $r_1 > r^*$. Next the function $H(s) = B(s, \Psi(s))$ attains its local minimum at the point $s_2(r^k)$; this minimum is equal zero for $r = r_2$ independently of the position of the number r_2 relatively to r^* . Moreover if $r_2 < r^*$, then the function B(s, t)defined in the region $G \cup \partial G$ attains its absolute minimum equal zero at the point r_2 . It is easily verified that $H(s_2) = C(s_2) > C(s_1)$. In fact for $s \in \overline{I}$ we have

$$C(s) - C(s_1) = (s - s_1)C'(s_1) + \frac{(s - s_1)^2}{2}C''(s_1 + (s - s_1)\theta), \ 0 < \theta < 1$$

Thus taking into consideration that $C'(s_1) = 0$ and C''(s) > 0 for $s \in \overline{I}$ we obtain $C(s) - C(s_1) \ge 0$ for every $s \in \overline{I}$, thus $C(s_2) \ge C(s_1)$. Hence it immediately follows that if $r > r^*$ then minimum $B(s, t) = C(s_1)$, thus if $r_1 > r^*$, the function B(s, t) attains its absolute minimum at the point r_1 . Since

$$H_{r^k}'ig| egin{aligned} &H_{r^k}'ig| s_2(r^k)ig) = rac{-keta -eta (1-eta r^k)^2}{(1-eta r^k)^2} < 0 ~~ ext{for}~~r\,\epsilon~(0\,,\,1) \end{aligned}$$

we have moreover that $r_1 < r_2$ for $r_1 > r^*$. Thus, because of the definition of the radius of convexity r_0 and inequality (35) we have proved

Lemma 3. The radius of convexity r_0 of the family $\tilde{S}_k^*(a)$ satisfies the inequalities

$$(53) r_0 \geqslant \begin{cases} r_2 \text{ when } 0 < r_2 \leqslant r^* \text{ and } k > k_2(\beta) \\ r_1 \text{ when } r_1 > r^* \text{ and } k < k_1(\beta) \end{cases}$$

where r_1 and r_2 are defined by formulars (47) and (52) and r^* is the only root of equation (41) which belongs to the interval (0,1) Now we shall prove

Lemma 4. The radius of convexity r_0 of the family $S_k(a)$ satisfies the inequalities

$$_{0} \leqslant egin{bmatrix} r_{2} \ when \ 0 < r_{2} \leqslant r^{*} \ and \ k \geqslant k_{2}(eta) \ r_{1} \ when \ r^{*} < r_{1} < 1 \ and \ k < k_{1}(eta) \end{cases}$$

By which, because of lemma 3 we will prove that $r_0 = r_2$ or $r_0 = r_1$ respectively.

Proof. We distinguish two cases:

A. $r_2 \leq r^*$ and $k > k_2(\beta)$, B. $r^* < r_1$ and $k < k_1(\beta)$.

A. Let P(z) be a function of the family $\wp_{k,2}(a)$ such that for $z = r_2 e^{i\varphi}$, $0 \leq \varphi \leq 2\pi$, B(s, t) attains its minimum equal zero. Since this minimum is attained at the point t = 0, $s = s_2(r_2)$ where $s_2(r) = 1 - \rho(r^k)$, $\rho(r^k) = \beta r^k$,

$$(54) P(r_2 e^{i\varphi}) = 1 - \varrho(r^k).$$

Formula (7) assigns uniquely some function p(z) of the family $\wp_k(a)$ to the function P(z), p(z) being uniquely defined by the formulas (10) and (11). By (54) and (31) we have for $z = r_2 e^{i\varphi}$ and $r = r_2$

$$\rho^{*2} - |p(z) - c^*|^2 = 0.$$

Thus by formula (22) we have

$$\varkappa(r_2) = \varrho(r_2).$$

Therefore according to formula (22)

(55) $p(r_2 e^{i\varphi}) = C^*(r_2) + \varrho^*(r_2)\mu_1, \ |\mu_1| = 1$

Hence it follows that

(56)
$$p(z) = \frac{1 + \varepsilon z^{k}}{1 - \varepsilon z^{k}}, \ |\varepsilon| = 1.$$

and consequently

r

$$P(z) = 1 + \beta \varepsilon z^k$$

is not manying in the oth

We have to determine ε .

From formula (54) it follows that $im P(r_2 e^{i\varphi}) = 0$ thus by (41) also im $p(r_2 e^{i\varphi}) = 0$. Consequently (55) implies $\mu_1^2 = 1$. On the other hand by (54) and (29) we have

(57)
$$p(r_2 e^{i\varphi}) = \frac{1 - r_2^k}{1 + r_2^k}.$$

Thus because of (16), (55) and (57) we find that $\mu_1 = -1$. Accepting $z = r_2 e^{i\varphi}$ in (56) we get by (57) $\varepsilon e^{ik\varphi} = -1$, hence voet of aunition (11) which belowns to the fatewal (0.1) Now we shall

$$\varepsilon = -e^{-ik\varphi}$$

Thus have been been been at the station of the sublet will be sublet

$$(58) P(z) = 1 + \beta \varepsilon z^k = 1 - \beta e^{-ik\varphi} z^k.$$

Denote by f(z) a function of the class $\tilde{S}_k^{\bullet}(\alpha)$ which satisfies the equation a the set of the set o

$$\frac{zf'(z)}{\hat{f}(z)} = P(z)$$

with P(z) defined by formula (58). This equation is equivalent to the following

$$\frac{f'(z)}{\hat{f}(z)} - \frac{1}{z} = -\beta e^{-ik\varphi} z^{k-1}.$$
 Hence

$$\lograc{\hat{f}\left(z
ight)}{z}=-rac{eta\mathrm{e}^{-ikarphi}}{k}z^{k},\ \log 1=0$$

Thus

(59)
$$\hat{f}(z) = z \exp\left(-\frac{\beta e^{-ik\varphi}}{k} z^k\right).$$

We have for the function (59)

$$1 + \frac{z\hat{f}''(z)}{\hat{f}'(z)} = \frac{F(\mathrm{e}^{-ik\varphi}z^k)}{1 - \beta \mathrm{e}^{-ik\varphi}z^k}$$

with $F(r^k)$ given by (49). Thus at the point $z = r_2 e^{i\varphi}$

$$\operatorname{re}\Bigl(1+rac{z{\widehat{f}}\,''(z)}{{\widehat{f}}\,'(z)}\Bigr)=0$$

holds. Thus the function f(z) is not convex in the circle |z| < r for $r > r_2$. Consequently $r_0 \leqslant r_2$ and by $r_0 \geqslant r_2$ [comp. (53)] we find

 $r_0 = r_2$ when $0 < r_1 \leq r^*$ and $k \geq k_2(\beta)$.

B. Let now P(z) be a function of the family $\wp_{k,2}(a)$ such that for $z = r_1 e^{i\varphi}$, $0 \le \varphi \le 2\pi$, B(s, t) attains its minimum equal zero. Since this minimum is attained at a point t = 0, $s = s_1(r_1)$,

(60)
$$P(r_1 e^{i\varphi}) = s_1(r_1)$$
 when $r^* < r_1 < 1$ and $k < k_1(\beta)$.

Since $\eta = 1$ [comp. (34)], by (25)

$$\gamma_2 = \gamma_1.$$

Thus taking into account (16) we obtain

$$\epsilon_2 \mathrm{e}^{ik\varphi} \cdot rac{1 - ar{\epsilon}_2 r_1^k \mathrm{e}^{-ik\varphi}}{1 - \epsilon_2 r_1^k \mathrm{e}^{ik\varphi}} = ar{\epsilon}_1 \mathrm{e}^{-ik\varphi} \cdot rac{1 - \epsilon_1 r_1^k \mathrm{e}^{ik\varphi}}{1 - ar{\epsilon}_1 r_1^k \mathrm{e}^{-ik\varphi}} \,.$$

Hence we have

(61)
$$\varepsilon_1 \varepsilon_2 = e^{-2ik\varphi}$$

and because of (7), (10) and (11) the function P(z) becomes

(62)
$$P(z) = 1 + \beta + 2\beta \frac{\varepsilon_1 \varepsilon_2 z^{2k} - (\varepsilon_1 + \varepsilon_2) z^k + 1}{[(\varepsilon_1 + \varepsilon_2) - \lambda(\varepsilon_1 - \varepsilon_2)] z^k - 2}$$

Therefore

$$P(r\mathrm{e}^{iarphi}) = 1 + eta + 2eta \cdot rac{arepsilon_1 arepsilon_2 \mathrm{e}^{2ikarphi} r^{2k} - (arepsilon_1 + arepsilon_2) \mathrm{e}^{ikarphi} r^k + 1}{[(arepsilon_1 + arepsilon_2) - \lambda(arepsilon_1 - arepsilon_2)] \mathrm{e}^{ikarphi} r^k - 2},$$

thus because of (60) and (61)

$$s_1(r_1) = 1 + \beta + 2\beta \cdot \frac{r_1^{2k} - (\varepsilon_1 + \varepsilon_2) e^{ik\varphi} r^k + 1}{[(\varepsilon_1 + \varepsilon_2) - \lambda(\varepsilon_1 - \varepsilon_2)] e^{ik\varphi} r_1^k - 2}$$

By (61) we have

$$\epsilon_1 + \epsilon_2 = \mathrm{e}^{-ik\varphi} (\epsilon_1 \mathrm{e}^{ik\varphi} + \overline{\epsilon}_1 \mathrm{e}^{-ik\varphi}) \, .$$

Accept further

(63)
$$d = \varepsilon_1 e^{ik\varphi} + \overline{\varepsilon}_1 e^{-ik\varphi} = 2 \operatorname{re}(\varepsilon_1 e^{ik\varphi}),$$

then

(64)
$$s_1 = 1 + \beta + 2\beta \cdot \frac{r_1^{2k} - dr_1^k + 1}{[d - \lambda(\varepsilon_1 - \varepsilon_2) e^{ik\varphi}]r_1^k - \epsilon_2}$$

It follows from (64) that (65) $im \{\lambda(\varepsilon_1 - \varepsilon_2)e^{ik\varphi}\} = 0.$

2

By (61)

(66)
$$(\varepsilon_1 - \varepsilon_2) e^{ik\varphi} = \varepsilon_1 e^{ik\varphi} - \overline{\varepsilon}_1 e^{-ik\varphi}$$

holds, thus condition (65) because of (66) becomes

$$\lambda(\varepsilon_1 \mathrm{e}^{ik\varphi} - \overline{\varepsilon}_1 \mathrm{e}^{-ik\varphi}) = 0$$

hence

$$\lambda(\varepsilon_1^2 e^{2ik\varphi} - 1) = 0$$

By (67) we have

 $1^{\circ} \ \varepsilon_1^2 \mathrm{e}^{2ik\varphi} - 1 = 0,$

 $2^{\circ} \lambda = 0.$

10

We shall prove that case 1° does not occur. In fact, assuming for the sake of proof, that the opposite holds we would have

(68)
$$\varepsilon_1 = \chi e^{-ik\varphi}$$
 where $\chi = \pm 1$

and then by (68) we would get from (61)

and thus

 $\varepsilon_1 = \varepsilon_2.$

The function p(z) would then be of form (9), thus we would have

$$P(r_1 e^{i\varphi}) = 1 + \beta \varepsilon r_1^k.$$

Hence because of $\operatorname{Im} P(r_1 e^{i\varphi}) = 0$ [comp. (60)] and $|\varepsilon| = 1$ we would have $\varepsilon = 1$ or $\varepsilon = -1$ which is impossible because of

$$P(r_1\mathrm{e}^{iarphi}) = 1 + eta r_1^{m k}
eq s_1(r_1)$$

as well as

$$P(r, e^{i\varphi}) = 1 - \beta r_1^k \neq s_1(r_1).$$

Thus

$$\lambda = 0.$$

Then formula (64) becomes

$$s_1(r_1) = 1 + \beta + 2\beta \frac{r^{2k} - dr_1^k + 1}{dr_1^k - 2}$$

Hence we get

(69)
$$d = 2 \frac{\beta r_1^{2k} + s_1(r_1) - 1}{[s_1(r_1) - (1 - \beta)]r_1^k}.$$

$$s_a = \gamma e^{-ikq}$$

$$\varepsilon_2 = \gamma e^{-it}$$

Now we can determine the function P(z) which satisfies condition (60). By formulas (61), (62) and (63) we find

(70)
$$P(z) = \frac{2\beta e^{-2ik\varphi} z^{2k} + (1+\beta) e^{-ik\varphi} z^k - 2}{e^{-ik\varphi} dz^k - 2}$$

with d defined by formula (69). Similarly as in case A denote by f(z) a function of the class $\tilde{S}_{k}^{*}(a)$ which satisfies the equation

$$rac{z ilde{f}'(z)}{ ilde{f}(z)}=P(z),$$

P(z) being a function defined by formula (70) with $d \neq 0$. This equation is equivalent to

$$rac{f'(z)}{ ilde{f}(z)}-rac{1}{z}=rac{2eta}{d}\,\mathrm{e}^{-ikarphi}z^{k-1}+rac{eta(4-d^2)}{d}\cdotrac{\mathrm{e}^{-ikarphi}z^{k-1}}{\mathrm{e}^{-ikarphi}dz^k-2}\, ext{ with }\,d
eq 0\,.$$

Hence

$$\log rac{ ilde{f}(z)}{z} = eta rac{4-d^2}{kd^2} \log \left(1-rac{d}{2}\,\mathrm{e}^{-ikarphi} z^k
ight) + rac{2eta}{kd}\,\mathrm{e}^{-ikarphi} z^k, \ \log \ 1 = 0 \,.$$

Thus

(71)
$$\tilde{f}(z) = z \cdot \exp\left[\beta \frac{4-d^2}{kd^2} \log\left(1-\frac{d}{2}e^{-ik\varphi}z^k\right) + \frac{2\beta}{kd}e^{-ik\varphi}z^k\right]$$
 with $d \neq 0$.

For function (71) we have

$$1 + \frac{z\bar{f}''(z)}{\bar{f}'(z)} = \frac{kU(e^{-2ik\varphi}z^{2k})}{\beta(1 - e^{-2ik\varphi}z^{2k})^2[2(1 + ak)s_1 + k(2a - 1)]},$$

with $U(r^{2k})$ given by formula (44). Thus at the point $z = r_1 e^{i\varphi}$ we have

$$\operatorname{re}\left(1+rac{zf^{\prime\prime}(z)}{ ilde{f}^{\prime}(z)}
ight)=0$$
 .

So the function f(z) is not convex in the circle |z| < r for $r > r_1$. Thus $r_0 \leq r_1$ and by $r_0 \geq r_1$ [comp. (53)] we obtain

$$r_0 = r_1$$
 when $r^* < r_1 < 1$, $k < k_1(\beta)$ and $d \neq 0$.

Let further d = 0. Then

$$P(z) = \, -eta \mathrm{e}^{-2ikarphi} z^{2k} \!-\! rac{1+eta}{2} \mathrm{e}^{-ikarphi} z^k \!+\! 1$$

thus

$$\frac{f'(z)}{\tilde{f}(z)} - \frac{1}{z} = -\beta e^{-2ik\varphi} z^{2k-1} - \frac{1+\beta}{2} e^{-ik\varphi} z^{k-1}$$

Hence

$$\log rac{ar{f}(z)}{z} = -rac{1}{2k} \mathrm{e}^{-ik arphi} z^k [eta \mathrm{e}^{-ik arphi} z^k + (1+eta)], \quad \log 1 = 0,$$

and consequently

$$ilde{f}(z) = rac{z}{\exp\left\{rac{1}{2k}\,\mathrm{e}^{-ikarphi} z^k \cdot \left[eta \mathrm{e}^{-ikarphi} z^k + (1+eta)
ight]
ight\}} \,\,\,\mathrm{with}\,\,\, d = 0\,.$$

Similarly as before we find that in the case d = 0 we also have

$$r_0 = r_1, ext{ when } r^* < r < 1, ext{ } k < k_1(eta) ext{ and } d = 0.$$

In lemmas 3 and 4 inequalities are given which being satisfied imply $r_0 = r_2$ or $r_0 = r_1$ respectively. They do not specify explicitly the conditions for β and k under which the radius of convexity is determined by one or the other formula. Such conditions will be found now.

Lemma 5. Let

$$egin{aligned} D_1 &= \{(eta,\,k)\colon\, 0 < eta \leqslant 1\,,\,\,k \geqslant k_1(eta)\}\,, \ D_2 &= \{(eta,\,k)\colon\, 0 < eta \leqslant 1\,,\,\,k_2(eta) < k < k_1(eta)\}\,, \ D_3 &= \{(eta,\,k)\colon\, 0 < eta \leqslant 1\,,\,\,k \leqslant k_2(eta)\}\,, \end{aligned}$$

with $k_1(\beta)$ and $k_2(\beta)$ defined by the formulas (45) and (50). Then

$$r_0 = \begin{cases} r_2 \text{ when } (\beta, k) \in D_1 \text{ or } (\beta, k) \in D_2 \text{ and } r_2 \leqslant r^* \\ r_1 \text{ when } (\beta, k) \in D_2 \text{ and } r_2 > r^* \text{ or } (\beta, k) \in D_3. \end{cases}$$

Proof. Retaining the denotations accepted earlier, by (48) and (43) we have

(72)
$$w(r) = \min_{|s|=r<1, f(z)\in S_k^{*}(a)} \operatorname{re}\left(1 + \frac{zf''(z)}{f'(z)}\right) \\ = \begin{cases} \frac{F(r^k)}{1 - \beta r^k} & \text{for } 0 < r \leqslant r^* \\ \\ \frac{kU(r^{2k})}{\beta (1 - r^{2k})^2 [2(1 + ka)s_1 + k(2a - 1)]} & \text{for } r^* < r < 1. \end{cases}$$

By (49) we find that if $(\beta, k) \in D_1 \cup D_2$, then the function $F(r^k)$ is positive for $0 < r < r_s$, negative when $r_s < r < 1$ and equal zero at the point $r = r_{s}$. Similarly, it follows from (44) that the function $U(r^{2k})$ is positive in the interval $(0, r_1)$, negative in the interval $(r_1, 1)$ and equal zero for $r = r_1$. Hence by (72) and by the definition of the radius of convexity we obtain the assertion of the lemma.

Lemma 6. Let $(\beta, k) \in D_2$ and let

$$S(\beta, k) = \beta^2 (k+2)^3 - 2\beta (\beta^2 - \beta + 1)(k+2)^2 - (1-\beta^2)^2 (k+2) - 2(1-\beta)^4.$$

The condition $r_2 \leqslant r^*$ is satisfied if and only if $S(\beta, k) \ge 0$.

Proof. Let $r_2 \leq r^*$. Then by (40) and (42)

(73)
$$h(y) = \beta^2 y^4 - 2\beta y^3 + [(1-2\beta)k + (1-\beta^2)]y^2 + 2(k+\beta)y - (k+1)$$

 $\leq 0, y = r_2^k$

holds. We have

(74)
$$F(y) = \beta^2 y^2 - (k+2)\beta y + 1 = 0.$$

Thus

$$(75) \quad (1-y^2)F(y) = -\beta^2 y^4 + \beta(k+2)y^3 - (1-\beta^2)y^2 - \beta(k+2)y + 1 = 0.$$

Adding side-wise (73) and (75), then dividing by k and finally adding to both sides (74) we obtain

$$\beta y^3 + (1-\beta)^2 y^2 + (2-k\beta - 3\beta) y \leq 0.$$

Ultimately we multiply both sides of this inequality by β/y and then subtract F(y). In this way we obtain the inequality

$$\beta [(k+2) + (1-\beta)^2] y - [(1-\beta)^2 + \beta^2 (k+2)] \leq 0.$$

Thus if $r_2 \leqslant r^*$, then

$$r_2^{k} \leqslant rac{eta^2(k+2) + (1-eta)^2}{eta [(k+2) + (1-eta)^2]}.$$

Hence we get the inequality $S(\beta, k) \ge 0$. It follows from the above argument that if the last inequality is satisfied, then $r_2 \leqslant r^*$.

Corollary. $r_2 > r^*$ if and only if $S(\beta, k) < 0$.

Lemma 7. The equation $S(\beta, k) = 0$ with unknown k has one solution $k(\beta)$ for every β , $0 < \beta \leq 1$; this solution satisfies the condition $k_2(\beta) < k(\beta)$ $< k_1(\beta)$, with $k_2(\beta)$ and $k_1(\beta)$ defined by the formulas (50) and (45).

Proof. Since

(76)
$$S(\beta, k_1(\beta)) > 0 \text{ and } S(\beta, k_2(\beta)) < 0 \text{ for } 0 < \beta \leq 1$$

7 — Annales

the equation $S(\beta, k) = 0$ has at least one solution in the interval $(k_{\alpha}(\beta), k) = 0$ $k_1(\beta)$). Then we have

(77)
$$S'_{k}(\beta, k) = 3\beta^{2}(k+2)^{2} - 4\beta(\beta^{2} - \beta + 1)(k+2) - (1 - \beta^{2})^{2}$$

and
$$S_{kk}^{\prime\prime}(eta\,,\,k)\,=\,6eta^2k-4eta(eta^2-4eta+1)\,.$$

By $S_{kk}(\beta, k) > 0$ for $k_2(\beta) \leq k \leq k_1(\beta)$ and $0 < \beta \leq 1$ the derivative (77) is an increasing function of the variable k for every $\beta \in (0, 1]$. Moreover we have $S'_k(0, k_2(0)) < 0$ and $S'_k(1, k_2(1)) > 0$, thus there exists a number $\beta^*, 0 < \beta^* < 1$ such that for every $\beta \in (0, \beta^*) S_k(\beta, k_2(\beta)) < 0$ holds, while $S_k^{\prime}(\beta, k_2(\beta)) > 0$ for $\beta \in (\beta^*, 1]$. In the first case since the derivative (77) increases there exists $k^*(\beta)$ such that for $k_2(\beta) < k < k^*(\beta)$ the function $S(\beta, k)$ of the variable k decreases, while it increases in the interval $(k^*(\beta), k_1(\beta))$, because of (76) the lemma has been proved in this case. In the other case i.e. if $\beta^* < \beta \leq 1$ we have $S'_{k}(\beta, k_{2}(\beta)) > 0$ and since $S'_k(\beta, k)$ increases, $S(\beta, k)$ is an increasing function of the variable k defined in the interval $(k_2(\beta), k_1(\beta))$. Consequently because of (76) the lemma has been proved in the second case. The lemmas (6) and (7) imply:

Corollary. If $k \ge k(\beta)$, then $r_2 \le r^*$, while if $k < k(\beta)$ then $r_2 > r^*$. Lemmas 4 - 7 immediately imply the following

Theorem. Let

$$k_1(eta)=rac{4\left(1-eta
ight)}{eta}\,,\,\,k_2(eta)=rac{\left(1-eta
ight)^2}{eta}\,\, ext{for}\,\,\,0$$

 $S(\beta, k) = \beta^2(k+2)^3 - 2\beta(\beta^2 - \beta + 1)(k+2)^2 - (1-\beta^2)^2(k+2) - 2(1-\beta)^4$

and let $k(\beta)$ be the only solution of the equation $S(k, \beta) = 0$ with the unknown k in the interval $(k_2(\beta), k_1(\beta))$. Accept

$$egin{aligned} E_1 &= \{(eta,\,k)\colon\, 0 < eta \leqslant 1\,,\,\,k < k(eta)\}\ E_2 &= \{(eta,\,k)\colon\, 0 < eta \leqslant 1\,,\,\,k \geqslant k(eta)\}. \end{aligned}$$

Then the radius of convexity of the family $S_k(a)$

$$\mathrm{r.c}\, ilde{S}_k^*(lpha) = egin{cases} r_2 & if \ (eta,\,k)\,\epsilon\, E_2 \ r_1 & if \ (eta,\,k)\,\epsilon\, E_1, \end{cases}$$

with

$$r_2 = \sqrt[k]{rac{k+2-\sqrt{k(k+4)}}{2eta}}$$

$$r_{1} = \sqrt{\frac{2k}{2(1-\beta)\sqrt{2\beta(k+2)} + (1-\beta)^{2} - k\beta - 2(1-\beta)^{2}}{\beta[k+4(1-\beta)]}}$$

and

$$eta = 1 - a, \ a \epsilon \langle 0, 1 \rangle.$$

With $\mathbf{r.c}\{f(z)\} = r_1$ and $\mathbf{r.c}\{f(z)\} = r_1$ where

$$\hat{f}\left(z
ight) = rac{z}{\exp\left(rac{eta}{k}\,\mathrm{e}^{-\,\imath k arphi} z^k
ight)}$$

and

$$\left\{z \exp\left\{rac{eta}{kd}\left[rac{4-d^2}{d}\log\left(1-rac{d}{2}\,\mathrm{e}^{-ikarphi}z^k
ight)+2\mathrm{e}^{-ikarphi}z^k
ight\},\ \log 1=0
ight.$$

with
$$d \neq 0$$

$$f\left(z
ight)=\left\{rac{z}{\exp\left\{rac{1}{2k}\,\mathrm{e}^{-ikarphi}z^k\left[eta\mathrm{e}^{-ikarphi}z^k+\left(1+eta
ight)
ight]
ight\}}
ight.$$
 with $d=0$

and

$$d = 2 \frac{\beta r_1^{2k} + s_1 - 1}{[s_1 - (1 - \beta)]r_1^k}, \ s_1 = \sqrt{k(1 - \beta) \frac{1 + \beta r_1^{2k}}{(k + \beta) - \beta r_1^{2k}}}.$$

REFERENCES

[1] Robertson, M. S., Extremal Problems for Analytic Functions with Positive Real Part and Aplications, Trans. Amer. Math. Soc., 106, 2 (1963), 236-253.

STRESZCZENIE

Niech a, $0 \le a < 1$, bedzie dowolną ustaloną liczbą i niech k będzie dowolną ustaloną liczbą naturalną. Oznaczmy przez $S_{k}^{\bullet}(a)$ rodzinę wszystkich funkcji postaci

$$f(z) = z + \sum_{j=1}^{\infty} a_{jk+1}^{(k)} z^{jk+1}$$

holomorficznych, jednolistnych i gwiaździstych w kole $K = \{z: |z| < 1\}$ spełniających warunek

$$\left| rac{zf'(z)}{f(z)} - a \over 1 - a} - 1
ight| < 1$$
 dla każdego $z \in K$.

Oznaczmy następnie przez $\mathcal{P}_k(a)$ rodzinę wszystkich funkcji postaci

(1)
$$P(z) = 1 + \sum_{j=1}^{\infty} b_{jk}^{(k)} z^{jk}$$

holomorficznych w kole K, spełniających warunek

$$\left| rac{P(z)-a}{1-a} - 1
ight| < 1$$
 dla każdego $z \in K$

oraz przez $\mathscr{P}_k(a)$ rodzinę wszystkich funkcji p(z) postaci (1) takich że rep(z) > a dla każdego $z \in K$.

Z powyższego wynika, że $\mathscr{P}_1(0) = \mathscr{P}$, gdzie \mathscr{P} jest rodziną funkcji Caratheodory'ego oraz że $\mathscr{P}_k(a) \subset \mathscr{P}_k(a)$. Korzystając z własności rodziny $\mathscr{P}_k(a)$ oraz ze związków, jakie zachodzą między odpowiednimi funkcjami rodzin $\widetilde{S}_k^{0}a$, $\mathscr{P}_k(a)$ i $\mathscr{P}_k(a)$ wyznaczam dokładną wartość promienia wypukłości rodziny funkcji $\widetilde{S}_k(a)$.

РЕЗЮМЕ

Пусть $a, 0 \le a < 1$ будет произвольным фиксированным числом, а k — произвольным фиксированным натуральным числом.

Пусть $S_{k}^{*}(a)$ обозначает семейство всех функций вида

$$f(z) = z + \sum_{j=1}^{\infty} a_{jk+1}^{(k)} z^{jk+1}$$

голоморфных, однолистных и звездных в круге $k = \{z : |z| < 1\}$ удовлетворяющих условию

$$\frac{\frac{zf'(z)}{f(z)}-a}{1-a}-1 \left| < 1 . \qquad \bigwedge_{z \in K} \right|$$

alona officen veh. Jedne lattag

Пусть $\mathcal{P}_k(a)$ обозначает семейство всех функций вида

(1)
$$P(z) = 1 + \sum_{j=1}^{\infty} b_{jk}^{(k)} z$$

голоморфных в круге К, удовлетворяющих условию

$$\left|\frac{P(z)-a}{1-a}-1\right| < 1.$$

а $\mathcal{P}_{k}(a)$ — семейство всех функций p(z) вида (1), таких, что

$$\operatorname{re} p(z) > a. \bigwedge_{z \in K}$$

Из вышесказанного следует, что $\mathscr{P}_1(0) = \mathscr{P}$ где \mathscr{P} – семейство функций Каратеодори и $\mathcal{P}_k(a) \subset \mathcal{P}_k(a)$. Используя свойства семейства $\mathcal{P}_k(a)$ а также свойства, которые возникают между соответствующими функциями семейств $\widetilde{\mathscr{S}}_{k}^{*}(a), \ \widetilde{\mathscr{P}}_{k}(a)$ и $\mathscr{P}_{k}(a)$ определяется точная величина радиуса выпуклости семейства функций $\overline{S}_k^*(a)$.