
ANNALES
UNIVERSITÄT IS MARIAE CURIE-SKŁOUOWSKA 

LUBLIN-POLONIA

VOL. XXVI, 2 SECTIO A 1972

Department of Mathematics, University of Delaware, Newark, Delaware, USA

RICHARD LIBERA

Some Inequalities For Bounded Univalent Functions

0 pewnych nierównościach dla funkcji jednolistnych ograniczonych 

Некоторые неравенства для однолистных ограниченных функций

1. Introduction

If f(z) is regular in the open unit disk A, A — {z: \z\ < 1}, then f(z) 
is univalent in A if and only if

(1-1) log
/(*)-/(£)

г-f

oo
= V Лмг*С*

Jfc.A-O

is defined and convergent in A x A. This observation has been useful 
to investigators of Geometric Function Theory, particularly for deriving 
“Grunsky-type” inequalities for functions which are univalent or carry 
some similar restriction (see Hummel, [2]); the techniques used and 
the results so obtained have often been unusually difficult and compli­
cated. Jenkins [3], and other authors [1], [2], simplified and enhanced 
much of this work by the application of generalized area principles.

In a subsequent paper [4], Jenkins used the area method to derive 
inequalities for functions which are of the Bieberbach-Eilenberg or similar 
classes. The purpose of this note is to illustrate applications of these 
techniques to pairs of univalent functions which are bounded and have 
non-overlapping domains and to bounded univalent functions; the novelty 
of these applications stems in part from using the unit circle as a boundary 
component for the region of integration. Some bounds for functions and 
their derivatives are obtained as corollaries. These appear to be new; 
some have meaning for functions considered earlier by Nehari [6].

2. One Method

The following notation is used. For a suitable set S, 7i[$] denotes 
the image of 8 under the function h(z). Ar is the open disk centered at 
the origin with radius r and yr is its boundary; A = and y = yi-
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Theorem 1. If f(z) and g(z) are regular and univalent in J; g(z) 0, 
zt. A; /[J] and g[A] are disjoint and both contained in A; (1.1) holds along 
with

(2-1)

and

log t .. i
00

= £ 

k,h=O

ze A ^A,

(2.2) iOg{i_2i|L!= V Xkhzk^, zeA, fed;
k,h=O

and if for k = 1, 2, ..., n and j — 1,2, ..., m, zk and are arbitrary num­
bers in A whereas ak and ff are any complex numbers such that
£ ak = ^Pj = 0; then

&=1 >=1

oo n co m oo

ai Pg ^kh^g +

h=l q=l /i=l&=l i-l

(2-3)

+Zh\Sa> 2l +A 2S ***4+
/1=1 J = 1 /c=l 7=1 fc=l

oo n m

.8=1 7—1 7=1

n wi

To simplify the notation of the proof we let r, =/[yr], 12 e = g [ye] 
and DrQ he the region in A whose boundary is r,uflcUy, i.e., DTQ is A 
without f[Ar] and g[Ae].

Let
n m

(2-4) 0(w) =^’a/№-wJ)“I + ^1/59(w-ojg)-1,
i=i 9=i

where Wj = f(zj), j =l,2,...,n and eoa = g(fa), q = 1, 2, ..., m and r 
and g are taken sufficiently large to make 0(w) regular in J>r e. It follows 
that

(2.5) Ar,e = f f |0(w)|MJ 
n,„
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is strictly positive for all r and q sufficiently close to and smaller than 1. 
Because of the restrictions Zaj = Zpk — 0 we can define

^(w) = ^’aJlog(w-№y) + ^V’^log(w-wa) 
j-l g=l

to be regular in Dr>e; and, by an application of Green’s Theorem [6] or 
“integration by parts in the complex plane” [1] we obtain

(2.6) Ar>B =-^r{J 4>(w)d<f>(w)- J J ^(w)<ty(w)},

r rr ae
the integrals being taken in the positive direction (with respect to their 
own interiors) in each case.

Again making use of the restrictions on the are and pk'B to eliminate 
terms containing logw, we have on y, with w — e10, that

n m

j=l

oo n m

s=l J = 1 9=1

Therefore

— J </>(w)d(/>(w) =~ f 4>(ei0)d</>(e<e)

y 0

oo n m

S=1 j-l 9=1

(2.8) V[+ £ fWq)s] (~ie-is°)dO
8=1 j = l <1 = 1
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= ~71212ajf(Zi}S+2
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Then, if w is on rr, w = f(z) for z — re'9 and

^(w) = ajlog(f(z)-f(zf)j + ^ß9\og(f(z)-g(Ca)) 

j-ï «»i

y-i ' * ' i-i

Q=1
n 00 . .

Cl 1 Z^p=2«>2^-2^2y 2 +
y-1 k,h — Q /-1 P = 1 r ' '

m 00

Wtf+Æ.
9=1 fc,A=0

£ is a constant which depends on the way in which logarithms are chosen 
it disappears in the subsequent operation.

2tt

| ^(w)<ty(w) =-|vJ <t>(f(re<9)}d<f>(f(rei9)}

co n m 00

(2.9) = n^k\^ai^A kh^j + 2^-2 M

fc=l j = l A«0 9=1 A=0

-2yl2 »44D=1 r j-1

Finally, on £ie, w — g(z) for z = ge19, therefore

n m
= Jjj a;log(ff(a) -/(a,)) + \ P^0g(g(z)-g^q) 

y-1 <z«i
00 m m

-2^ +2'.**(’"B- +2^-««y-1 ' V\ tf QM=1 \ I Q-l
00 n 00 moo 00 . m

- 212 2M+2'’« 2 M - 2! 7,2 «12”+£:ipP=1 x 9=1A=1 j-1 fc=l 9=1 *=1
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and consequently

-i- I J <f,{g(eei^)d<f>(g(gei))

iiQ 0

n oo oo m oo
(2.10) = n { V h | V Oj V + V 2Jk

A-l j'=l fc=l 9-1 t=l

p=l 3=1

Now, combining (2.5), (2.7), (2.8), (2.9) and (2.10) gives

. oo n oo m oo

a.
k=l j=} A = 1 9=1 A = 1

oo n oo m oo

~ | ai y, ^khZj + J}-! P<1 y,
a=i i-i fc-i 9=1 *=i

oo n oo m

p=i J —1 JJ-l 9=1

(2-11)

oo n m

r2fc
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n-tp

> 0.
8=1 / = 1 3 = 1

Then letting r->l and g-*l and observing that

(2.12) I-P\E
P‘-1 T J=1

= _ \/J 2 ajaft1°g(1-J!A)i 

>-I A —1

we see that (2.11) implies the conclusion of the theorem, (2.3).

Corollary 1.1. If along with the conditions of Theorem 1 we suppose
that xk and yf are generic points in A, for k — 1,2,..., N and j = 1, 2,..., M, 

M M
and y^ôj = £ ek = 0 for arbitrary complex numbers ôk and e}, then 

i-i >=i

M
\ àhôt\og(l — xhxt) 

A,(=l
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m M

(2.13)

- X e^^-Vhyi)
h,t=\

Uh £q

00 n
1 IV-
8 I

«-1 J—I 7=*1

+ M

+

< - <*h log (1 - Zj zh) - V fa fa log (1 - fa fa).

J,h=l i,K-l

This is obtained by showing that the first two terras in (2.13) do not 
exceed those in (2.3). Making use of the Cauchy-Schwarz inequality we 
see that

n N m N

(2.14)

nN oo mN oo

= I ] , °j &h AteXfâ + Jfa faÔh fas^htq

J = 1 ft=l fc,8=-l

N

g=l fc-=l fc,8=l

n oo m oo

lfc-l ' ' /1=1 7 = 1 8=1 3=1 8=1

oo N oo n oo m oo
<2ll2M-2‘l2-2^+2^2M

fc—1 /c=l fc=l >—1 8—1 g=l 8 = 1

N oo n oo m oo
= - <V,log(l-xKxt) • k I JT aj A^ + V fa J? fa,?q

fc=l J = 1 8=1 5=1 S=1/>,<-1

A similar calculation enables us to compare the second terms of (2.3) 
and (2.13), respectively.

For specific choices of the parameters appearing in (2.13) we may 
obtain inequalities which are more easily interpreted. For example, 
choosing m - n = N = M — 2, ar = = et = fa — 1, a2 = fa = d2 
= e2 = -1» = fa = -2 = 2/a = 0, a?! = = a and aq = = C, gives
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, pvw'wi ,, r(g(*)-/(*)№»)-/(Q)HI2 
g l(/(g)-/(O)H PUiz(g)-/(O))(g(O)-/(g)Ui

-log(l-|«|2)

lnlb(O-/(O)(j(0)-A0)l| ,JbW-J(O) ( & 1 g'(0) 1|
g Ug(C)-/(0))(g(0)-/(O) 1 ' gl(g(*)-g(O)) U-fJ (g(f)-g(O))Jl

-log(l-|fla)
(2.15)

00

+7I (/(08 -/(°)s) +(g(*)8 -g(°)8)|a < - los(i - If I2) -i°g(i- l*l2) •
8-1

Now if the first term in (2.15) is dropped and we let /(0) = 0 and z — 0, 
then we can conclude that

(2.16)
log I*»-'«’ ■^r<log(1~№)',l -logM—)

for any £ in d. Taking the square root of both sides in (2.16) and making 
use of the relation 2ab < u2 + 62 which holds for any real numbers a and b, 
we obtain

(2.17)
g(f)-/(f) . g(0)|| J/l-|/(f)lM
g(O)-/(C) g(£)JP Ogl (l —ICI2) P

In summary we have the following.

Corollary 1.2. If f(z) and g(z) are univalent in A, /[J] and g[A] are 
non-intersecting and both contained in A, and f(Q) — 0, then for any £ in A

1— ICI2 
Pl — l/COI2

(2.18)

and

(2.19)

g(f)-/(f) ,g(0) Vi-|/(C)I2 
g(O)-/(f) g(f) " l —Ifl2

i —ICI2 Jg(O—/(0 g(0)P, /l-inoi1
ai& lg(0) —/(0 g(C)I ' °to l —|f|2

Different choices of terms and variables in (2.15) and of the para­
meters in (2.13) will yield other bounds on f(z) and g(z), however no 
further illustrations will be given here. It should be observed that some 
of the preceding methods and results may be extended to the case 
when there are more than two bounded univalent functions with non- 
-overlapping images. The case where we have a single function is suffi­
ciently important to be considered separately.



24 Richard Libera

Theorem 2. If f (z) is regular and univalent in A and f[A] c A, then

*1 j;«, jw5;tog

j-l A-l J,A = 1 ' J h >
?■(2.20)

Jk«xl >-i A-l

where the Akh are defined by (1.1), Zjc A for all j and the members aj are
n

restricted only by £ aj =0.

Using the notation defined above we let Dr be the region bounded 
by y u I\ with r chosen sufficiently large to insure that w;-4 Dr, and Wj = f (tf) 
j =1,2,...,«. Let

(2.21) y/(w) =^V’a,(w-w,)“1,
y=i

then

(2.22) J* j" |y/(w)|2<L4 = AH r(w)dV(w)- J y>(tt>)dy(w)J

n, * r rr

y=l fc=# >—1 A“0

k=l j=l '

which is non-negative. Letting r->l and making use of (2.12) gives (2.20). 
Choosing bh and xh as in Corollary 1.1 we may write

n N

(2.23) v v x №»)-/(*>) 1!:

J=1 Zi^i

'fc=l ' ' A-l j=l p=l

2Vi
—J k

A—1

N

*■=1 j=i

having made use of the Cauchy-Schwarz inequality. Using (2.12), (2.20) 
nad (2.23) give the following results.

Corollary 2.1. If in addition to the conditions of Theorem 2, numbers x}
N

and 6j, j — 1, 2,..., N are chosen so that x}e A for each j and = 0, 
i-i
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then
n N

11J-l A”1

(2.24) <

Choosing n — N - 2, xx = z± = z, x2 
<52 = a2 = —1 in (2.24) yields

0, a, = <5j = 1 and

log j WW
![/(«)-/(0)]2

(0) log (_J_) log H-W'1.J-w.).

If for simplicity, we let /(0) =0 and again make use of the relation 
2ab a2 + 62, then

, MVW'W \ 
1 №)■ I

(2.25) < log
A-mi2

l-kl*

Separating real and imaginary parts on the left of (2.25) gives the follow­
ing interesting hounds.

Corollary 2.2. If f(z) is univalent in J, /(0) = 0 and f[A] c A, then 
for any z in A

(2.26)

and

(2.27)
/(*) 1—l«l2

a-mi2

M2/W'(Q)\ ... A-I./W 
\ W P Og 1-Ma

< l/WWK
/(s) A-mi2 

1—1*1«

1 — 1*1« 

A —1/(«)|*
< arg

These results can be generalized easily by choosing x2 = z2 — £ in 
the substitutions following Corollary 2.1 and in this case (2.25) is replaced 
by an inequality which relates the values of f(z) and its derivative at 
two distinct points of the disk A. Choosing values of n and N exceeding 
2 or non-real values for the afs and <5fc’s in (2.24) will of course give new 
inequalities, they are, however, extremely cumbersome and difficult 
to interpret.

3. A Second Method

In this section we apply the method of Section 2 replacing y as a com­
ponent of the boundary of the region of integration with the image of yr 
under Ilf(z), when /(0) = 0. The calculations are similar to those above.
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Theorem 3. If f(z) and g(z) are regular and univalent in A, /[zl] <= A; 
g[A] c zl; f [A] ngrfzJ] = 0; /(0) = 0; (1.1) and (2.1) hold-,

00

(3.i) iog(i-/(«)ff(o) =2>****f*;
it-i
A=0

and, for k — 1, 2, ..., n and j = 1, 2, ..., m, zk and are in A and ak 
m

and are complex numbers such that £ fa = 0; then 
j-i

(3.2)

The method of proof is similar to that of Theorem 1. Let I'* be the 
closed Jordan curve defined by the set of points l//(rc’9), 0 0 < 2n,
which has positive direction with respect to its own interior; and let Ar 
be the annular region bounded by T* u I2r, 0 < r < 1, I2r = g [yr]. Choose r 
sufficiently large so that

m
V ß«/(«>) =

— OjWj 

(1 — WWj)

wj=f(zj), j=l,2,...,n and <wa =<?(£<,), q=l,2,...,m is regular 
in Ar; this can be done since %'(w) has only simple poles at the points 
l//(z,) and g(£q). Letting

n M
z(n) = X -WWj) + J^log  ̂;-«,),

i-1 9=1
we have

) f \x'W\2dA z(w)dx(w)- Jz(w)dx(w)j.

•^r r*

Carrying out these calculations as was done in Section 2 gives (3.2). 
Comparison of (2.3) and (3.2) suggests that (2.3) may be stronger

due to the presence of the additional term on the left side of (2.3). However, 
the significant feature of (3.2) is that the numbers a3- may be chosen 
without restriction, whereas in (2.3) their sum must be zero. This leads, 
for example, to bounds on the Grunsky-type coefficients defined in (1.1)
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and (3.1). Choosing C9 = 0 all q, ar = 1, zk = z and n = 1 in (3.2) yields 
the following.

Corollary 3.1. If the conditions of Theorem 3 are fulfilled, then for z 
in A

(3.3)
Jfc-l A-l A-l \ I I Z

Again choosing = 0 in (3.1) and using the methods of Section 2, 
we can derive inequalities like those in (2.13).

n

Corollary 3.2. If along with the conditions of Theorem 3 we have £
N i-i

= V<5a = 0, for complex numbers a} and dh, and xh is in A, for h = 1,2, ... N,
a-i

(3.4) y a, <5hlog {—f + IJ, “i Vog(l -/(®ft)0(%))|2
j=i a—i 1 h 1 ;=i a=i

* St (i^d •

Now, choosing at = <\ = 1, a2 = d2 = —1, zk = xk — z, zt = xt — 0 
and n = N = 2 in (3.4) gives

(3.5)
log/^W2?)jr |log/W(^\ 

g\ fw /1 ! \ i_/(z)ÿ(o) / < (iog(i- m)*

This can be reduced further to give bounds like those in (2.18) and (2.19). 
In conclusion we will apply the method of the last theorem to the

case of a single univalent function.

Theorem 4. If f(z) is univalent in A, /(0) = 0, /[d] <= A, and (1.1) 
holds along with

(3.6) 

then

(3.7) +

log(l-/(«)/(?)) = £ W??,
k,h=Q

oo n co m oo

\ h 1 \ aj vkhtf + \ Pa y AkhÇg

fc-1 j = l A = 1 9=1 A=1
oo n oo m oo

+j a> 2ï+zt ..zj Vkn^
fc-1 y-l A-l 9=1 A=1

" I 1 \ m — I 1 \

<2 “-s‘1os(ï^ï) + 2
fc=l J»«*—1
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for complex numbers aj and such that =0 and z} and fa are in A.
i-i

Using the notation defined above we let Br be the annular region 
bounded by for 0 < r < 1. And, let wj=f(zj), j = 1,2,...,»
and Wj — f(£j), j = 1, 2, ..., m. Then for r sufficiently large

A'(w) = and
j-i a-i

yl(w) = £ aj\og(w-wj) + P9log(l-wWg)
1-1 9=1

are regular in Br and

J J /T(m>)|2ćZA =^t[ J A(w)dA(w) — I A(w)d4(w)j
is non-negative. Carrying through the calculations as above gives (3.7). 

To illustrate an application of (3.7) we first choose fa = 0 for all q
in (3.7); this gives

(3.8)
oo n oo

fc—1 9=1

Making calculations similar to (2.12) and (2.14) we can obtain the follow­
ing from (3.8).

Corollary 4.1. If along with the conditions of Theorem 4 we assume 
N

that xke A, k = 1, 2, ..., N and àk = 0 for generic complex numbers ik, 
k— 1

then

(3.9) <5ftl°g + 2È 2 aj <5fcl0g^1
I>=l fc-i k 1 i-l k=l

N

W=i

d*«,log(l-«*^)- J? akajiog(l-zkzj).
k,i~l

As an example, we choose n = N — 2, a2 = = 1, x2 = z2 = e and
x2 = z2 — 0. The result can be rephrased as follows.
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Corollary 4.2. If f(z) is regular and univalent in A, /(0) = 0 and 
|/(«)| <1, ze A, then, for z in A,

(3.10)
, hv'(0)/'(2)|2

+ Ilog {1 -/(2)'|l* « {log(l - |S|■)}

Dropping the first term on the left of (3.10) reduces it to the Schwarz 
Lemma, whereas dropping the next term gives

or

sa/W'(g)
/(7s

1
1- l«ls ’

<

7(7 < 1/(71
fW " |гГ(0)(1-1*1,)Г
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STRESZCZENIE

W pracy tej stosuje się metodę nierówności Grunsky’ego do par funkcji 
jednolistnych i ograniczonych, mających rozłączne zbiory przyjmowanych 
wartości. Otrzymano w ten sposób pewne nowe oszacowania dla funkcji 
jednolistnych i ograniczonych.

РЕЗЮМЕ

В настоящей работе применяется метод неравенств Грунского для пар 
однолистных и ограниченных, которые принимают значения из непересека- 
ющихся областей.

Получены некоторые новые оценки для однолистных и ограниченных 
функций.




