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1. Introduction
If f(2) is regular in the open unit disk 4, 4 = {z: [2| < 1}, then f(2)

is univalent in 4 if and only if
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is defined and convergent in A x 4. This observation has been useful
to investigators of Geometric Function Theory, particularly for deriving
“Grunsky-type” inequalities for functions which are univalent or carry
some similar restriction (see Hummel, [2]); the techniques used and
the results so obtained have often been unusually difficult and compli-
cated. Jenkins [3], and other authors [1], [2], simplified and enhanced
much of this work by the application of generalized area principles.
In a subsequent paper [4], Jenkins used the area method to derive
inequalities for functions which are of the Bicberbach-Eilenberg or similar
classes. The purpose of this note is to illustrate applications of these
techniques to pairs of univalent functions which are bounded and have
non-overlapping domains and to bounded univalent functions; the novelty
of these applications stems in part from using the unit circle as a boundary
component for the region of integration. Some bounds for functions and
their derivatives are obtained as corollaries. These appear to be new;
some have meaning for functions considered earlier by Nehari [6].

2. One Method

The following notation is used. For a suitable set 8, k[S] denotes
the image of S under the function h(z). 4, is the open disk centered at
the origin with radius » and y, is its boundary; 4 = 4, and y = y,.
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18 Richard Libera

Theorem 1. If f(z) and g(z) are regular and wunivalent in A; g(z) + 0,

ze A; f[A] and g[A] are disjoint and both contained in A; (1.1) holds along
with

(2.1) log ’l {z)——q{C}l 2" B th, ze A, te 4,
Eh=0

and
(2.2) log Il— /@ } = X1 hneth ze A, Le 4;

(NPTES)

K h=0
and if for k =1,2,...,n and j = 1,2, ..., m, 2, and {; are arbitrary num-
bers in A whereas a, and B; are any complex numbers such that
n m
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To simplify the notation of the proof we let I = f[y,], 2, = g[y,]
and D, , be the region in 4 whose boundary is I,UQ,Uy, i.e.,, D, , is 4
without f{4,] and g[4,].

Let

(2.4) D(w) = X a(w—1w)" + ¥ B (w0—0,) 7,

=1 g=1
where w; = f(2;), j =1,2,...,n and o, =¢({,), ¢ =1,2,...,m and r
and o are taken sufficiently large to make @(w) regular in D, ,. It follows
that

(2.5) 4,,= [ [ 1®(w)?2d4

ik
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is strictly positive for all r and p. sufficiently close to and smaller than 1.
Because of the restrictions Xa; — 2B, = 0 we can define

g(w) = X a;log(w—w))+ 3 Blog(w— w,)

j=1 q=1

to be regular in D, ,; and, by an application of Green’s Theorem [6] or
“integration by parts in the complex plane’” [1] we obtain

26 4,,=| [ Fuasi— [apun - [ e},

the integrals being taken in the positive direction (with respect to their
own interiors) in each case.

Again making use of the restrictions on the a;, and B, to eliminate
terms containing logw, we have on y, with w = €%, that

n

B(0) = N ayloglo—f(z)) + ) Bologlw—g(z,)
J=1 g=1
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Therefore
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Then, if w is on I',, w — f(z) for z = re* and

$(w) = ; ajlog(f(2) —f(z)) + Z Blog(f(#) —9 (L)

¥ y 1og(f“"‘ —f(z n) > i
;-l j-l

)
+2ﬁ,hvs(1—% /}Jﬂqhg( 9(2)

-}-‘_,\._:ﬁq Z A1 K

a=1 k,A=0

K is a constant which depends on the way in which logarithms are chosen,
it disappears in the subsequent operation.

| $(w0)dg(w) = j $F(re")) dg (f(re"))

on a3 S oS -
k=1 Je=1
- SHSw
=1 J=1
Finally, on 2,,w = g(2) for z = ge, therefore
$w) = a,log(g(z) —fle) + X‘ﬂ,,log(g(z)—y(a)
-ga,log(l J;({fn Zﬁq (g(z) 7fkg) } +,,2_1 Bolog(z—Cg) + K

©o n (- ]
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and consequently

%Dj'mdw) = j #(9(ec™) 4 (g 0e")

Q‘

(2.10) { V h >1 \1 Aih“j A .\1 Be \1 Bnkaqr ph
=1 "1 l q-l k-l
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Now, combining (2.3), (2.7), (2.8), (2.9) and (2.10) gives

oo

TR AR SRS
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Then letting r—1 and g—>1 and observing that

L L n n
N1 O 2 1 == =
(2.12) Z—IZ aef| = — ) Za,a,,log(l—z,z,,),
= p o dd

j=1 h=1
we see that (2.11) implies the conclusion of the theorem, (2.3).

Corollary 1.1. If along with the conditions of Theorem 1 we suppose
that z, and y; are generic points in A, fork =1,2,..., Nandj = 1,2, ..., M,
M M

and > 8 = DY'e, = 0 for arbitrary complex numbers 6, and ¢;, then

Jj=1 Jj=1
By & f(ay)— IIC,} A : f(%)r
d 4,1 1 e
:zf_az L g a—t )7 gg’:ﬁ' s S

& \ dn0,log (1 — a,7;)
A i=1
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rn M -
R "T 1 l—f{ J)l - \7 v;f 1¢ {g{yl} Q(Cq}
Jﬁ: el W) I T
- Zshé‘log(l—y,.i,)
h,t=1
(2.13)
X ll n m
+E}“| M af(5) + N 8,
a=1 =1 a=1

T 2 = ) R -
< - 2.1 a; aplog (1 —2z;2,) — L BiBrlog (1 —&;ln).
fih=1 Jh=1
This is obtained by showing that the first two terms in (2.13) do not
exceed those in (2.3). Making use of the Cauchy-Schwarz inequality we
see that

]2":2”: X {f(m TG L X N4 g10g [ SN
=1 A= g =& qu-f‘ &= fy ™ ) g(%,)
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1995 9 8,8,log (1 — 2, 3;) ‘Zm‘k‘éaj f‘Aksz;+ ) ﬂqu,wc;z
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A similar calculation enables us to compare the second terms of (2.3)
and (2.13), respectively.

For specific choices of the parameters appearing in (2.13) we may
obtain inequalities which are more easily interpreted. For example,
choosing m =n =N =M =2, a, =08, =6 =§, =1, a3 =3 = 6,
=g =1, @ =0 =2 =y9,=0, 5, ={; =2 and 2, =¥, ={, gives
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|1 {zzf )\ +lo l(g(z)-— 2)(g(0)

F@ =70 " U{g(z) —f(0))(g(0)—f(z)) j
—log(1—[2]?)

l(y(&)—f(c)(yw) —JON e —9(0) [ ¢
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90 |F
(9(2)—g(0)))

il
(2.16)

+E%I(f(c)‘—f(0)’) +(g(2) —g(0y)[2 < —log(1 — 2] —log(L— [2]%):

8=1

Now if the first term in (2.15) is dropped and we let f(0) = 0 and z = 0,
then we can conclude that

9O —f(8) g(0) 1 1)) 1
!19(0)—1’(6) gm} <l°g( 1— (e ) l°g(1—m=}

for any ¢ in 4. Taking the square root of both sides in (2.16) and making
use of the relation 2ab < a? +b? which holds for any real numbers a and b,
we obtain

y(C)—f(C),y(O)'__, [VI-1f(O)P)
= e o116 ot <18

In summary we have the following.

(2.16) ‘

Corollary 1.2. If f(2) and g(2) are univalent in A, f[A] and g[4] are
non-intersecting and both contained in A, and f(0) = 0, then for any L in A

(248) — g2 x_‘g(t)—f(:),g(m _ Vi-ife

' ;/1 FOlE 1 90—F©Q) ¢~ 1—1Z2

and

219) Tog LK JO—TE) 9O o Vi IFd)e

v’1 For - Elgo—f@0 gl T %1

Different choices of terms and variables in (2.15) and of the para-
meters in (2.13) will yield other bounds on f(2) and g(z), however no
further illustrations will be given here. It should be observed that some
of the preceding methods and results may be extended to the case
when there are more than two bounded univalent functions with non-
-overlapping images. The case where we have a single function is suffi-
ciently important to be considered separately.
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Theorem 2. If f(z) 18 regular and univalent in 4 and f[A] = A, then

=

5 >ﬂ1 a,a,log !______14(;,-,;@

7 ’

=] i=1

(2.20) Yklz a, L A
h=1

L 1_—%£h

x

Jh=1
where the A,, are defined by (1.1), z;e A for all j and the numbers a; are
restricted only by Y a; = 0.

i=1

Using the notation defined above we let D, be the region bounded
by y U I', with r chosen sufficiently large to insure that w;¢ D,, and w; = f(t;)
j=12,...,n Let
(2.21) ¥ (w) = N a(w—w,)7,
J=1

then

1 B —_—
(2.22) Df v eras = ] J‘ vlwdy(o) - | v(w)dy ()]

r

1 r o | 2
(S ) (S S Sraat
=1 J=1 k=0 =1  h=0
15 \"—1 2
7 %~ a,zf r ’
k=1 k ﬁ )

which is non-negative. Letting r—~1 and making use of (2.12) gives (2.20).
Choosing 8, and z;, as in Corollary 1.1 we may Wwrite

n N .
(2.23) 1S Sladlog [ f@a) —f(z)]]
!;Ef ﬁul l m*-‘% |
- 1 L - olE1 2
=i 1 __) ( \1 6h$§) kl!: (Z a ‘}.‘ Ak,,Z‘f)
i \ N7 - s F— )

having made use of the Cauchy-Schwarz inequality. Using (2.12), (2.20)
nad (2.23) give the following results.

Corollary 2.1. If in addition to the conditions of Theorem 2, numbers ;
N

and &, j =1,2,..., N are chosen so that z;e A for each j and 38, = 0,
J=1
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then
{ - S!a 3 Ing(ﬂh)_ f(-?;))m
Ij-l h=1 o Tn— % '
<l \:‘ ( } \" 1—1(2)f () |
(2.24) l,‘%i 66,,]0g i ..-',a',, {J,;.]aahlu ( 52 )

Choosing n =N =2, @, =2, =2, Ty =2,=0, a;, =6, =1 and
8 = a; = —1 in (2.24) yields

; 2f(2)f'(0) | ' _ 1 J1-f@)* l—lf(O)I’ ]

logi————————| <1 |

o8 {[f(z) ORI oe (5 l:l‘,) 1R n-f@f0)r!

If for simplicity, we let f(0) = 0 and again make use of the relation
2ab < a? + b3, then

(21 G0\ _
Uofeer N
Separating real and imaginary parts on the left of (2.25) gives the follow-
ing interesting bounds.

Corollary 2.2. If f(z) i8 univalent in A, f(0) = 0 and f[A] = A, then
for any z in 4

Vl 21

(2.25)
— 2|2

log

- (EE@SO) o V1-If(@)

2.26 log ————< =< y
(2:26) o T ey ) B TR
and

f(z) f  1—|2 f(z) V1—|f(2)
227 (0 X
(2.27) . T < If () (0)] < r

These results can be generalized ecasily by choosing z, = 2, = ¢ in
the substitutions following Corollary 2.1 and in this case (2.25) is replaced
by an inequality which relates the values of f(2) and its derivative at
two distinct points of the disk 4. Choosing values of » and N exceeding
2 or non-real values for the a;’s and d,’s in (2.24) will of course give new
incqualities, they are, however, extremely cumbersome and difficult
to interpret.

3. A Second Method

In thig section we apply the method of Section 2 replacing y as a com-
ponent of the boundary of the region of integration with the image of y,
under 1/f(z), when f(0) = 0. The calculations are similar to thosc above.
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Theorem 3. If f(2) and g(z) are regular and univalent in A, f[A] = 4;
g[d] < 4; f[41ng[4] = ®; f(0) = 0; (1.1) and (2.1) hold;

(3.1) log(1—f(2)g(2)) = > wad*t;
=
and, for k =1,2,...,mn and j =1,2,...,m,2, and {; are in 4 and a,

and B; are complex numbers such that 2 B; = 0; then

(3.2) kZ: ‘ZajéAkhz?‘F%jﬂq; +
+2k1\_: Zﬂvuhsz-{-i:ﬂa
k=1 j=1 R
féjmz-:a’ahlog(l—jh) Zﬂjﬂhlog(l Cish)

The method of proof is similar to that of Theorem 1. Let I be the
closed Jordan curve defined by the set of points 1/f(re), 0 < 6 < 2=,
which has positive direction with respect to its own interior; and let A,
be the annular region bounded by I'"'u Q,, 0 < r < 1, 2, = g[y,]. Choose r
sufficiently large so that

n

yw) = Y \j

y (1 —ww,) {u —wq)

w; =f(), j=12,...,m and o, = !I(Cq)7 g=12,...,m is regular
in A,; this can be done since y'(w) has only simple poles at the points
1/f(2;) and g({,). Letting
n M
2(w) = 2“’ log (1 —ww;) - Zﬂqlog(w._wq)’
j=1 q=1
we have

[y pdd = 2(0)dy ().
o 3
A' gr

Carrying out these calculations as was done in Section 2 gives (3.2).
Comparison of (2.3) and (3.2) suggests that (2.3) may be stronger
due to the presence of the additional term on the left side of (2.3). However,
the significant feature of (3.2) is that the numbers a; may be chosen
without restriction, whereas in (2.3) their sum must be zero. This leads,
for example, to bounds on the Grunsky-type coefficients defined in (1.1)
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and (3.1). Choosing {, =0 all ¢, a;, =1, 2, =2z and n = 1 in (3.2) yields
the following.

Corollary 3.1. If the conditions of Theorem 3 are fulfilled, then for z

tn 4
(|3 4l +| Sl <rog( 2]
(3.3) pa (ﬁ{ kh T{—_{““ < og\l—lzi‘/'

Again choosing {, = 0 in (3.1) and using the methods of Section 2,
we can derive inequalities like those in (2.13).

Corollary 3.2. If along with the conditions of Theorem 3 we have Z a;
j=1
Ed,, = 0, for complex numbers a; and 8, and x, i in 4, forh = 1,2, ... N,

A=1
then

Jlay) —flz) \
(3.4) _\ o8 log{ } +1 a;8,log (1 —f(zn)g (2|

% h=- In =4 = hz—{ ' R
N n
e 1
’21 d‘ log(l 3'»5'-:) ,..,Z_: a,a,log(l_zjé;).
Now, choosing a;, =6, =1, a; =8, = —1, 2, =&, =2, 2, =T, =0
and n = N =2 in (3.4) gives
a £/ O)f'(z) l2 -}

3.5 1(if_(——),+1 1-J@I@N _ oe(1 — 122
o ‘ oe (i) +| s (=) < tocr—

This can be reduced further to give bounds like those in (2.18) and (2.19).
In conclusion we will apply the method of the last theorem to the
case of a single univalent function.

Theorem 4. If f(z) is univalent in A4, f(0) =0, f[4] = 4, and (1.1)
holds along with

oo

(3.6) log(L—f()f(2)) = D wad ",
k.h=0
then
mj "‘. <‘ T1 T“ 2
(3.7) ) k‘i-d a,‘:vkh4'+;‘ﬂq_‘ A0 +
k=1 =1 h=1 2=1 h=1
SHESTES IR S
‘*“_\_JL')‘IIZAuz?‘*’éﬁq VinCg
k=1 =1 h=1 q=1 h=1
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for complex numbers a; and P; such that > a; = 0 and 2; and [, are in A.
f=1
Using the notation defined above we let B, be the annular region

bounded by I,UI; for 0 <r<1. And, let w; =f(z), j =1,2,...,n
and W; =f({), j =1,2,..., m. Then for » sufficiently large

" m
A () = ¥ aj(w—w) " + Eﬁeu—qur‘
j=1 a=1

A(w) = N ajlog(w—1w;) + _ \ 3 Blog(1—wW,)

J—] q—]

are regular in B, and

JA (0)|?d A =-1:[ ‘A(w)dA(w)—— | A(w)dA(w)]

.4
T fr

is non-negative. Carrying through the calculations as above gives (3.7).
To illustrate an application of (3.7) we first choose {; = 0 for all ¢

in (3.7); this gives
- S IZ , 3 4t

00

(3.8) ;‘L‘ Vn‘a,svw:“

H
=1 q=1 =1 g=1
Z a;log (———1 )
\§ ;g =1
i et 1—2121‘

Making calculations similar to (2.12) and (2.14) we can obtain the follow-
ing from (3.8).

Corollary 4.1. If along with the conditions of Theorem 4 we assumc
N
that e Ay k =1,2,..., N and ) 6, = 0 for generic complex numbers §,,
k=1
then

n N n N
(3.9) 122“"5» {fm) fwlll +|: jaéklog{l fanfe)f

J=1 k=1
N n
= B — XV = =
< 24 61‘ 6,10g(1—kaj)' 2_} a,‘a,log(l —z,‘z,-).
k,J=1 k,j=1

As an example, we choose n = N =2, a; =6, =1, 2, = 2; = z and
Z, = 2z, = 0. The result can be rephrased as follows.
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Corollary 4.2. If f(z) is regular and univalent in A, f(0) =0 and
If(2)] < 1, ze A, then, for z in A4,
221 (0)f' (2) |
fer |

Dropping the first term on the left of (3.10) reduces it to the Schwarz
Lemma, whereas dropping the next term gives

+ llog {1 — f(2)*}1* < {log (1 — |2[%)}%.

(3.10) ’}og {

2fOf () |_ 1
fzr 1T 11—’
or
o' (2) 1f(2)]

f2) 1 e ()@ —lz)
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STRESZCZENIE

W pracy tej stosuje si¢ metode nieréwnoéci Grunsky’ego do par funkeji
jednolistnych i ograniczonych, majgcych rozlgczne zbiory przyjmowanych
wartoéci. Otrzymano w ten sposéb pewne nowe oszacowania dla funkeji
jednolistnych i ograniczonych.

PE3IOME

B Hacrosiueit pabote mpuMeEHAETCA METOA HepaBeHCTB Ipysckoro mis map
OMHOJNHCTHBIX M OrPaHHUYEHHBIX, KOTOPbIc NPHHEMAIOT 3HAYEHHSA H3 Henepeceka-
IoWHXcs obiacteid.

IMonydeHnl HEKOTOPHIE HOBLIE OLEHKH [UIS OIHOJMCTHBIX M OrPAHHYEHHbLIX
dyukuni.






