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In [3] K. Radziszewski has given the definition of the z-geodesic in
the n-dimensional space with the affine connection and with a given tensor .
This paper deals with =-geodesics on a surface S « E; determined by
tensors associated in 2 natural way with the surface and it gives their
interpretation by means of a parallel displacement.

Analogously to the definition of the projective surface [2] we intro-
duce the definition of the z-projective surface and deal with mappings
that map the z,-geodesics on the surface 8, into the ny-geodesics on the
surface §,. We start with some definitions and notations.

Let S be the surface in the Euclidean space E, given in the local
chart U:

z: (u'y u?)—>x(ul, u?), u = (u, u?)e D

where z(u!, u?)is the radius vector of a point X (ul, u%)e E; and D is
the domain in R x R (R — the set of real numbers). Let g,; denote com-
ponents of the metric tensor g of the surface 8 in the local chart U or
more Pprecisely:
Ixw): (FDxwysy ©xg)) Oxmw W xw)
- g‘j(u)”:\'(u)wa(un Vxw) = Dy Ti(U) € Ty
Wy = wa(u) Zi(u)e TX(u)

where Ty i8 tangent vector space to S at the point X (u).

i Gy(u) = Z(u)x;(u),

g: X(“)”’!I.‘z(u) = g(u), gy: X(u)—>gy(u)
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Let n: X—>m,, iyt (B Pxg) (%) V5w Whe be a tensor of
the type (0, 2) on 8 and let ny: X (u)—>my(u) be components of » in U.
A covariant derivative of the function n;; with respect to g is denoted
by V,,.’ﬂ‘j.

If 9: X—>bge Ty, Xe8 is a vector field on § (¥ = o'Z; in U), then
the functions a} = myv’ are the components of the covector »° in U.
The symbol V ay =V, = v" denotes the value of the covariant differential
Dny of the components ny of the tensor = on the field 7.

The tensor = is called non-singular if det(z;) # 0 at cach local chart U.

Definition 1 [3]. A vector field % on the surface S:
z: (ul, u®)>T(ul, ut)
is said to be =-geodesic, if:
(1) Vaal = A,

where d¢ F(8) and z is non-singular. (F(8S) denotes a set of differentiable
functions defined on S).

The integral curves of z-geodesic vector field on § are called =-geodesic
lines.

This definition is equivalent (in the 2-dimensional case) to the following:

Definition 1'. A vector field @ on S is said to be n-geodesic, if there
exists such vector field ¥ (@ # ¥) on 8 that:

(2) 77 =0 and Vgals' =0, =1,2,9 #0.

Let’s write the equation (1) in the extended form. If we get rid of 4, then
wo obtain:

auw’

@3) WV onf — ¥ Vnf =0 or if w = d“t
a*u’ du® du® du’
(4) i g + (Vg + 745 The) I i Amy =

The equation (1) can be expressed :
V‘-,(:'r”w’) - Aﬂqwj, where @ = wj:_t,.

Multiplying both sides of this equation by ¢* (an inverse tensor to the
i

metric tensor g;;) and setting w' == e obtain the equivalent equation:

i

o du . du
(6) VG(”ijgtkW) = lnijgik it

i
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which constitutes the necessary and sufficient condition for the existence
of a vector @(t) having the dircction of the vector:
(6) = ng* aw

dt
and simultaneously for the vector a(t) to be displaced parallel along the
curve

Z: t>Z(u(t), u¥(t))

We shall now deal with n-geodesic that are determined by the tensors
associated in a natural way with a surface. Consider now the tensor of
the form:

) hy = aby +Bgy (a, B — scalar functions)
Then the vector (6) takes the form:

- L dw
h = (aby +Bgy) g’ Txk
. _duw!
— ab“g kxk df "E‘_‘
du‘ du?
= —— N -L o*'
aN;—— +Bdjz, dt
_ .dz  aN B xE,
h=pf— —a—" where N —

() e M il Sl
dZ _ du' AN - du’
T | ’ = N(
dt dat ° dt dt

Ny = —b(kglm'ip

and we get the following:

Theorem 1. The necessary and sufficient condition for the curve I':
Z: t—>E(ul(t), u¥(t)) on the surface 8: Z: (ul, u®)—>E(ul, u?) to be h-geodesic
(s.e. the integral curve of h-geodesic field, hj; = aby +Bgy) is the existence
of a veclor having the direction of the vector (8) and which is displaced parallel
along this curve.

Using the Bonnet — Kowalewski formulas:

dt - —
— =Lk B+Ek, N
ds (il
dB h =

(9) P — kit -7, N
dN

T —k,t—1,B
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where i =£, B = N xi

ds
k, — the geodesic curvature
T, — the geodesic torsion
k, — the normal curvature,

the vector % can be expressed in the following form:
¢ aN [ dE dN\ ds

H—ﬁ — -r\ﬂ_._.

. b — ds
—— ] — = (Pt +ak,i Bf =
dt di as ds,d‘l (et TkaleivaT, )dt

ds 1 —
i (B +ak,)t +ar,B)

~ h
Let A = -—-, then
||

g (B + ak,)t +ar,if
l/(ﬂ + ak,)? + (a;—‘,Tz

=

(10)

Now we can state:

Theorem 1’'. The necessary and sufficient condition for a curve I' on
a surface S to be h-geodesic (determined by the tensor h; = aby+Pyy) is
that, the vector:

5 (B + ak,)t +ar,B
= =

l/(ﬁ + ak,)? + (at,)?

be displaced parallel along I'.

From the equation (3) of the n-geodesic line it follows, that if # = A=,
then n-geodesics and 7-geodesics are the same curves, where 0 % ie F(8)
Put in (7) @ = 0, gy = Pgy. Then the vector (10) takes the form:

? = t, or g-geodesic is a geodesic in the usual sense; in particular we can
state:

Theorem 2. The Ricct tensor R = Kg (K + 0) determines the R-geodesic
being the geodesic in the usual sense.

Let’s put a = 2H and § = —K in (7), then the tensor (7) becomes
the third fundamental tensor of the surface S:

Yy = 2Hbi} v K!I.'j;

where H is the mean curvature and K is the Gaussian curvature of

the surface S. The vector (10) takes the form:
. (2Hk,— K)t +2Hz,B
w = =— -
V(2Hk,— K)* +4H*<}

hence, we get:
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Theorem 3. The necessary and sufficient condition for a curve I’ to be
y-geodesic line (yy — 2Hb,; — Kgy;) provided that y i8 non-singular, i8 that,
the vectlor:

(2Hk, — K)t +2Ht,B
V(2Hk,— K)* +4H*<?

w =

be displaced parallel along I'. J
If we put g =0 in (7), we'll get b,; — aby; and then the vector (8)
is given by:

hence, we get:

Theorem 4. The necessary and sufficient condition for a curve I' on
a surface S to be b-geodesic (i.e. determined by the tensor by = aby and
provided that b i8 non-singular) is that, there exists a vector % having a di-

dN
rection of the vector v and displaced parallel along I';

or equivalent:

Theorem 4'. The necessary and sufficient condition for a curve I' on 8
to be b-geodesic is that, the veclor:

ki+t,B
=252 G (10) we put 8 = 0)

/1.8 3 .2
} Ln - ] Tir

<y

be displaced parallel along I

Definition 2. A curve I’ on a surface S is said to be a line of shadow
i
if there cxists a vector field ¥ +# W = ddltij defined on I' such that:
dz;? = 0 and V¥ = 0, where d;? denotes d,5w'.

This definition means that the line of shadow I'on S is such a curve that
there exists a vector field ¥ defined on I' which is tangent to S, butis
not tangent to this line and is displaced parallel along I" and simultancously
in Ey, what means that 7 is constant in E,. If ¥ is displaced parallel in Ej;,
then it defines generating lines of a cylindrical surface W which is tangent
to § along a line of shadow. This property allows us to define a line of
shadow as a curve I" on 8 such, that there exists some cylindrical surface
which is tangent to § along I' what justifies the name for these lines.
Observe that, if we neglected the condition % s #, then every straight
line on § would be a line of shadow (of course, if there exists a straight
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line on 8). Tt is easy to see that a vector field @ satisfying the following
conditions:

(2" a) nfv’ = 0 (@ and ¥ are n-conjugate) and
b) Vgyo' = ' Ae F(S)

is n-geodesic vector field.

In particular, if = is the second fundamental tensor b of a surface S,
then the conditions (2’) are equivalent to the condition (2), so we can
state:

Definition 2'. A curve I' on a surface S c E, is a line of shadow if
there exists a vector field ¥ defined on I' which is conjugate to tangent
vector to I' and is displaced parallel along I

From the definition 2’ it follows immediately :

Theorem 5 [3]. An b-geodesic on a surface S, b-being the second funda-
mental tensor of 8 with detb 5 0, is its line of shadow and conversely.

Now we shall express a vector field ¥ defined on a line of shadow I':
Z: 1> (ul(t), u%(t)) in an invariant form. Vectors of the field 7 satisfy at
each point of I' following conditions:

B(ul(t), uX(t)) N(ul(?), u%(t)) = 0 and

o(ul(t), u¥(t)) —M(ul{z' =0 - 0,

hence, we get

B(ul(t), u¥(t)) = A [i’(‘n Y1), u¥(t)) E'Wl]

Using formulas (9), we have:

Ji—k.B
(11) Blut(t), wi(t)) = Lo
Vi, + ki
We get:

Theorem 6. If I" on S is a line of shadow, then the vector:
_ml— k,B
Vo
Vit + k2
18 comstant vector in Eg and conversely, if the vector (11) is displaced parallel

along I' (in Levi-Civita sense), then I' i8 a line of shadow and the vector (11)
18 constant vector in F,.
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The second part of the theorem 6 one can obtain in the following
way: If the vector (11) is displaced parallel along a curve I' then the
vector: -

inb + 7, B
- L"—_T"——
Vi, +;
(according to the theorem 4') is also displaced parallel along (|3 = val,
9 | ) and from this it follows that I' is a line of shadow.

Corollaries

From the shape of the vector (11) it is easy to observe that, if the
curve I' is a curvature line (respectively an asymptotic line) then I is
a line of shadow if and only if it is simultaneously a geodesic line. As
the vector (11) is constant vector in E,; and as the cases when 7, = 0
or k, = 0 were considered, we can assume now that, z, # 0 and %, # 0,
and then we get:

i‘l =0, or
ds
d [ti—Fk,B)\
o e &1 A
8 \ l"r,-}-k, /
d ’ dkn ¥ '] di | =g l_;
Denoting Ei}’ =17, and g k., we get (t,t + 1, F —k,B—k, %)
o oK. 4 k k' - =
Vii+ kg — ﬂi—"—"(r,t—k,,B) = 0. Using the formulas (9), we have:
Ve +k
'l n

(k1% + Ky 12— K7y + T, k) (ki +7,B) = 0

From this we get the following equation of a line of shadow:

(12) ko (K% 4 12) —knt, + 7.k, = O oF

3 -

If a line of shadow is a geodesic in usual sense (i.e. k, = 0) then from
(12') we have:

k
—2 — const.
Tg

o -
and conversely, if — = const, then k, = 0, so we can state:
To



12 Andrzej Bucki, Andrzej Miernowski
Theorem 7. The necessary and sufficient condition for a line of shadow
lo be a geodesic line, is that it be a so called cylindrical (or general) helixz
k
(i.e. — = const).
Ty
We shall prove the following:

Theorem 8. Let S « E, be a surface and K + 0, being ils Gaussian
curvature. A family of lines of shadow of the surface S coincides with a family
of geodesic lines of this surface if and only if K = const and H = const.

Proof. Let the equations of the lines of shadows (b-geodesics [3])
and the geodesic lines (g-geodesic) on the surface 8 be given respectively:

d*u’ (Vb b,“.+(".)du’ du®*  _ du
g T Wbt Gy) = A
du odu! du’ du’

aw Yy Tw T P

Substracting the second cquation from the first one, we have:
du! du’ du’

T | et A— p)—
Vebd™ - = =M,

Having got rid of (41— x) and symmetrizing over lower indices, we get:
F'"bjl,“.b"‘ o — Flab}ur;bh d:-l =0

Putting r = ¢ and summing over ¢, we have:

(13) Vb = p, 8 +p;6;, where

1 K, 0K

= 2 K =

S (2D, K, =——

As the spherical image of the line of shadow is the geodesic line [3], the
spherical mapping of the surface S is the geodesic mapping [2], but the
only surfaces which can be geodesically mapped upon the surface of
the constant Gaussian curvature are those of constant curvature [1],
hence, we get:

1
y = — Vb, b™ =
p 3 k

K = const,
which means, that: K, = 0. The condition (13) can be cxpressed now:

Vb d® =0
from this it follows that:
Veby = 0
and it is cquivalent to:

K = const and H = const ([2]).
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Now, conversely, let K — const and H = const. These conditions are
equivalent to the condition V,6b, = 0, so it follows from this that the
lines of shadow and the geodesic lines coincide.

According to the theorem 7 and 8 we can state the following:

Theorem 9. The only surfaces of the Gaussian curvature K +# 0 on which
geodesic lines are the so called cylindrical (or general) helices are those of
the constant Gaussian curvature and the constant mean curvature.

In [2] Kagan has given the definition of the projective surface. Analo-
gously we give the following:

Definition 3. A surface § is said to be a local n-projective if there
exists such coordinate system on 8, that n-geodesics are expressed by
linear equations.

The equation of the =-geodesic, provided that det =, # 0, has the
form [3]:

a*ut du" du’ du*
. 4 ik -
a5Vt ¥ ey Zsei= 2
Let: P¥ = V,myn™ +Gy; Let us assume, that: u® = a’t+b' are the equa-
tions of the z-geodesic. By replacing «f in the equation of the n-geodesic
with these u', we get:

Pia"a’ = Ad

Pip)) =0,

where (...) denotes the symmetrization and [...] the alternation, hence,
putting:

Removing 4, we have:

3 -}iP;ﬂ’ Pous %Pfu
we get:
. Py Py G PrpTe
(14) Plap) '—‘—i’.d,—ﬁ_ R e ~ e

-

Now, let the equation (14) be satisfied. Writting the equation of the
n-geodesic two times:

du* du" du’ du*
G =}
“an Temgnt o) g =15
d’u® e L vdadn” vt
e P L TaR T
and adding them and dividing them by 2, we have:
d’u* . du du du

an e T e T
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Putting suitable values P’{,,) from (14) in this equation, we get:

d*u* ( du? du\ du*  du*
ar P\egr el a = e
or
d*uk du® du* | du*
at & at dt
s
where A, = P, ;_P'
du®
Let @ — 24, — 4.
So we have:
d*u* du*
g g

Removing @, we have:
d2ul du? d2u? du?! .
drn  dt de2  dt

And from this, it follows that:

e RaNd = e Mol dGpEmEne™
n are linear .e.
% 5, 2re linear dependent i.e
du’
A; = 0, where A,, A, — const.

Yodt
hence, the equation of the =-geodesic, if the condition (14) is satisfied,
has the form:

Alul +A2u2 = As

so it means that the surface is n-projective. We can state now:

Theorem 10. The condition (14) i8 necessary and sufficient for the surface
S to be =m-projective, provided that detn; +# 0.
When the surface S is a b-projective surface (K # 0), the condition
(14) can be written like this:
Pl =P8 +P,6
Because :
‘P;ﬂ = Vubpyby"‘*‘G:p
a:nd Va bpyby‘ = I‘::,—G:ﬁ’
where I'j; are the Christoffel symbols of the spherical image [3] of the
surface S, we have: ‘
Ily = P8 +P, 8
and this is a necessary and sufficient condition for geodesic lines of the
spherical image to be expressed in a linear form [2]. We get:
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Theorem 11. Each surface S of The Gaussian curvature K + 0 is a locally
b-projective surface, that is the lines of shadow can be expressed by means
of linear equations on each surface S of K +# 0. (locally)

Theorem 12. Given two surfaces S, and S, < E;. Suppose, that the
Gaussian curvature of S, 18 different from zero, and there exists a mapping
¢: S,—>8, which maps b-geodesics on the surface S, into g-geodesics on the
surface S,. Then S, 18 the surface of the constant Gaussian curvature.

Proof. As the spherical image of the b-geodesic is the g-geodesic, there
exists the geodesical mapping of the spherical image of &, into S, induced
by ¢. The Gaussian curvature of the spherical image is constant, and
the only surfaces which can be geodesically maped upon the surface
of the constant curvature are those of constant Gaussian curvature [3],
hence S; must have constant Gaussian curvature.

Q.E.D
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STRESZCZENIE

K. Radziszewski w pracy [1] podal definicje linii zn-geodezyjnych
w przestrzeniach o koneksji aficznej. W pracy tej zajmujemy sie badaniem
tych linii w przypadku powierzchni S « E, i okre§lonych przez tensory
zwigzane w naturalny sposéb z powierzchnig. Podajemy ich interpretacje
geometryeczng za pomocy przeniesienia rownoleglego wektoréw. Nastepnie,
analogicznie do definicji powierzchni rzutowych wprowadzonych przez
W. F. Kagana w [2] podajemy definicje powierzchni z-rzutowych.

Na koniec rozpatrujemy odwzorowania dwoch powierzehni na siebie
przeprowadzajace m,-geodezyjne w xz,-geodezyjne.

PE3IOME

K. PanmeBckn B pabote [3] ompenesnns NOHATHE T-TeONE3HYECKHX B MIPOCTPAH-
cTBe adHMHHON CBA3HOCTH. ABTOPHI HACTOSIUEH PabOTHl H3Y4alOT Z-re0ne3uyYecKue
Ha NOBEPXHOCTH Splh E3 ONnpeaAcIuMbIE TEHCOPAMH, KOTOPbIC HATYypaJIbHbIM 06pa-
30M CBA3aHbl C IIOBEPXHOCTBIO. S. JlaeTcs UX reoMeTpHYeckast HHTepNpeTauus OpH
NOMOILHM NapaUleIbHOro IMNEPEHOCA BEKTOPOB. 3aTeM, AHANOTHYHO AeHUHHLHK
NPOEKTUBHBIX MOBEpXHOCTeil [2] AaeTcss nepHHULUMS TT-TIPOEKTUBHEIX MOBEPXHOCTEH -
B 3akinoYeHHe aBTOpbl M3y4alOT OTOOpaXeHHs MOBEPXHOCTeH, nepeBOAsILHE
7,-TEONIE3IUYECKHE B 7T,-TE€OJE3NYECKHE.






