Dópartement de Mathématiques Université de Montréal, Montréal, Canada

QAZI IBADUR RAHMAN

The Number of Distinct Zeros of the Product of a Polynomial and its Successive Derivatives

0 ilósci różnych zor iloczynu wielomianu i jego kolejnych pochodnych
Об оценке числа различных нулей произведения многочлена и өго послөдовательных производных
0. Let $p(z)\left(\equiv p^{(0)}(z)\right)$ be a polynomial of degree n and let $p^{(j)}(z)$ denote the j-th derivative of $p(z)$. How many distinct zeros does the product $P(z)=\prod_{j=0}^{n-1} p^{(j)}(z)$ have ? This is the essence of a question asked by T. Popoviciu. We wish to investigate this problem in the present paper. In § 1 we consider polynomials whose zeros are all real. In § 2 we allow the zeros to be complex.

The notation " $f(z) \approx g(z)$ " will stand for " $f(z)$ is a constant multiple of $g(z)$ ".
1.0 Let $x_{1}, x_{2}, \ldots, x_{m}$ be the distinct zeros of a polynomial $p(x)$ of degree n with only real zeros. We suppose $x_{1}<x_{2}<\ldots<x_{m}$. If n_{j} is the multiplicity of the zero at x_{j} then

$$
p(x) \approx \prod_{j=1}^{m}\left(x-x_{j}\right)^{n_{j}}, \quad \sum_{j=1}^{m} n_{j}=n
$$

According to Rolle's theorem there is at least one zero of $p^{(1)}(x)$ in each of the $m-1$ intervals $\left(x_{j}, x_{j+1}\right), j=1,2, \ldots, m-1$. But taking multiplicity into account $p^{(1)}(x)$ has a total of $n-m$ zeros at the points $x_{j}, j=1,2, \ldots, m$. This means that only $m-1$ of its zeros remain to be accounted for. Hence $p^{(1)}(x)$ has one and only one zero (necessarily simple) in each of the intervals $\left(x_{j}, x_{j+1}\right), j=1,2, \ldots, m-1$. We find this observation very useful in our study of the above question for polynomials with only real zeros.
1.1 If the zeros of $p(z)$ are coincident then $P(z)$ has only one distinct zero.
1.2 Let $p(z)$ be a polynomial with noncoincident zeros. If [a,b] is the smallest interval containing all the zeros of $p(z)$ then both a and b are zeros of $p(z)$. Let k be the multiplicity of the zero at a and l the multiplicity of the zero at b. Since the product $(\pm 1) \prod_{j=0}^{n-1} p^{(j)}(a+b-z)$ has the same number of distinct zeros as the product $P(z)=\prod_{j=0}^{n} p^{(j)}(z)$ we may assume $k \leqslant l$. Besides, if

$$
f(z) \equiv p\left(\frac{(a+b)-(a-b) z}{2}\right) \text { then } P(z)=\prod_{j=1}^{\overline{0}-i} p^{(j)}(z) \text { and } F(z)=\prod_{j=0}^{\overline{0}-1} f^{(j)}(z)
$$

have the same number of distinct zeros, and hence there is no loss of generality in assuming $a=-1, b=1$.
1.2.1 In the case when $k+l=n$, i.e. $p(z)$ has two distinct zoros, we distinguish the following subcases.
i) $p(z) \approx(z+1)(z-1)^{n-1}$,
ii) $p(z) \approx(z+1)^{2}(z-1)^{n-2}$,
iii) $p(z) \approx(z+1)^{k}(z-1)^{l}$ where $3 \leqslant k<l$,
iv) $p(z) \approx(z+1)^{k}(z-1)^{l}$ where $k=l=n / 2$.
1.2.1. (i). If $p(z) \approx(z+1)(z-1)^{n-1}$ then for $j=1,2, \ldots, n-2$ the j-th derivative $p^{(j)}(z)$ has a zero of multiplicity $n-1-j$ at 1 and a simple zero at $-1+2 j / n$. Hence along with the zero $(n-2) / n$ of $p^{(n-1)}(z)$ the product $\prod_{j=0}^{n-1} p^{(j)}(z)$ has precisely $n+1$ distinct zeros.
1.2.1. (ii) If $p(z) \approx(z+1)^{2}(z-1)^{2}$ then elementary direct calculation shows that $P(z)$ has $5(=n+1)$ distinct zeros.

Now let $p(z) \approx(z+1)^{2}(z-1)^{n-2}$ where $n \geqslant 5$. Then

$$
\begin{gathered}
p^{(1)}(z) \approx\{n z+(n-4)\}(z+1)(z-1)^{n-3} \\
p^{(2)}(z) \approx\left\{n(n-1) z^{2}+2(n-1)(n-4) z+n^{2}-9 n+16\right\}(z-1)^{n-4} \\
p^{(3)}(z) \approx\left\{n(n-1) z^{2}+2(n-1)(n-6) z+(n-4)(n-9)\right\}(z-1)^{n-5}
\end{gathered}
$$

whereas

$$
\begin{array}{r}
p^{(4)}(z) \approx n z+(n-6) \text { or } \approx\left\{\left(n(n-1) z^{2}+2(n-1)(n-8) z+\left(n^{2}-\right.\right.\right. \\
\\
-17 n+64)\}(z-1)^{n-6}
\end{array}
$$

according as $n=5$ or $n \geqslant 6$.
The product $p(z) \boldsymbol{p}^{(1)}(z)$ has 3 distinct zeros, namely $-1,-(n-4) / n$, +1 . The second derivative $p^{(2)}(z)$ has a simple zero $c_{2,1}$ in the open interval
$(-1,-(n-4) / n)$ and a simple zero $c_{2,2}$ in the open interval ($\left.-(n-4) / n, 1\right)$. Thus the product $p(z) p^{(1)}(z) p^{(2)}(z)$ has 5 distinct zero. The third derivative $p^{(3)}(z)$ has a simple zero $c_{3,1}$ in the open interval ($c_{2,1}, c_{2,2}$), a simple zero $c_{3,2}$ in the open interval $\left(c_{2,2}, 1\right)$ and a zero of multiplicity $n-5$ at 1 if $n \geqslant 6$. By direct substitution we see that $p^{(3)}(-(n-4) / n) \neq 0$, i. e. neither $c_{3,1}$ nor $c_{3,2}$ can be equal to $-(n-4) / n$. Hence neither of the two numbers $c_{3,1}, c_{3,2}$ is a zero of $p(z) p^{(1)}(z) p^{(2)}(z)$. The product $p(z) p^{(1)}(z) p^{(2)}(z) p^{(3)}(z)$ has therefore 7 distinct zeros. If $n=5$ then $p^{(4)}(z)$ has only one (simple) zero at $-(n-6) / n$ which is obviously not a zero of $p^{(3)}(z)$. It can be verified directly that it is also not a zero of $p^{(1)}(z)$ or of $p^{(2)}(z)$. Hence the product $P(z)=\prod_{j=0}^{1} p^{(j)}(z)$ has $8(=n+3)$ distinct zeros. If $n \geqslant 6$ then $p^{(4)}(z)$ has two simple zeros $c_{4,1}, c_{4,2}$ in the open interval $(-1,1)$. In fact, $c_{4,1}$ lies in the open interval ($c_{3,1}, c_{3,2}$) whereas $c_{4,2}$ lies in ($c_{3,2}, 1$). Both these zeros are different from $-(n-4) / n$ since $p^{(4)}(-(n-4) / n) \neq 0$. They are also different from the two zeros of $p^{(2)}(z)$. In fact, $p^{(2)}(\beta)=0$, $p^{(4)}(\beta)=0$ imply that $\beta=1$ or $\beta=-(n-6) /(n-1)$. But since

$$
p^{(2)}(-(n-6) /(n-1)) \neq 0,
$$

$p^{(2)}(z), p^{(4)}(z)$ have no common zero except possibly 1 . It fololws that the product $p(z) p^{(1)}(z) \ldots p^{(4)}(z)$ has 9 distinct zeros. In particular, if $n=6$ then $P(z)$ has at least $n+3$ distinct zeros. If $n \geqslant 7$ then for $5 \leqslant j$ $\leqslant n-2$ the largest zero $c_{j, 2}$ of $p^{(j)}(z)$ in the open interval $(-1,1)$ is simple and $c_{j-1,2}<c_{j, 2}$. Hence the product $p(z) p^{(1)}(z) p^{(2)}(z) \ldots p^{(n-2)}(z)$ has at least $9+(n-2-5+1)=n+3$ distinct zeros.
1.2.1. (iii). If $p(z) \approx(z+1)^{k}(z-1)^{l}$ where $3 \leqslant k<l$ then

$$
\begin{gathered}
p^{(1)}(z) \approx\{(k+l) z+(l-k)\}(z+1)^{k-1}(z-1)^{l-1}, \\
p^{(2)}(z) \approx\left\{(k+l)(k+l-1) z^{2}+2(k+1-1)(l-k) z+(l-k)^{2}-k-\right. \\
-l\}(z+1)^{k-2}(z-1)^{l-2}, \\
p^{(3)}(z) \approx\left\{k(k-1)(k-2)(z-1)^{3}+3 k l(k-1)(z-1)^{2}(z+1)+\right. \\
\left.3 k l(l-1)(z-1)(z+1)^{2}+l(l-1)(l-2)(z+1)^{3}\right\}(z+1)^{k-3}(z-1)^{l-3},
\end{gathered}
$$

whereas

$$
\begin{array}{r}
p^{(4)}(z) \approx\left\{24 l(z-1)^{3}+36 l(l-1)(z-1)^{2}(z+1)+12 l(l-1)(l-2)(z-1)(z+\right. \\
\left.+1)^{2}+l(l-1)(l-2)(l-3)(z+1)^{3}\right\}(z-1)^{l-4}
\end{array}
$$

or

$$
\begin{gathered}
\approx\left\{k(k-1)(k-2)(k-3)(z-1)^{4}+4 k l(k-1)(k-2)(z-1)^{3}(z+1)\right. \\
-6 k l(k+l-k l-1)(z-1)^{2}(z+1)^{2}+4 k l(l-1)(l-2)(z-1)(z+1)^{3}+ \\
\left.+l(l-1)(l-2)(l-3)(z+1)^{4}\right\}(z+1)^{k-4}(z-1)^{l-4}
\end{gathered}
$$

according as $k=3$ or $k>3$. The product $p(z) p^{(1)}(z)$ has 3 distinct zeros namely $-1,-(l-k) /(l+k), 1$. The second derivative $p^{(2)}(z)$ has a simple zero $\gamma_{2,1}$ in the open interval $(-1,-(l-k) /(l+k))$ and another simple zero $\gamma_{2,2}$ in the open interval $(-(l-k) /(l+k), 1)$. The product $p(z) p^{(1)}(z) p^{(2)}(z)$ has therefore 5 distinct zeros. The third derivative $p^{(3)}(z)$ has a simple zero in each of the open intervals $\left(-1, c_{2,1}\right),\left(c_{2,1}, c_{2,2}\right),\left(c_{2,2}, 1\right)$. None of these zeros can be equal to $-(l-k) /(l+k)$ since $p^{(3)}(-(l-k) /$ $\mid(l+k)) \neq 0$ if $k \neq l$ which is in fact the case. Thus the product $p(z) \times$ $p^{(1)}(z) p^{(2)}(z) p^{(3)}(z)$ has 8 distinct zeros. The fourth derivative $p^{(4)}(z)$ has 3 or 4 simple zeros in the open interval $(-1,1)$ according as $k=3$ or $k \geqslant 4$. It is clear that none of these zeros can be a zero of $p^{(3)}(z)$. Besides, it is easily checked that $p^{(3)}(-(l-k) /(l+k)) \neq 0$ and hence $p^{(4)}(z), p^{(1)}(z)$ have no zero in common except possibly $-1,1$. Now we wish to show that the zeros $\gamma_{2,1}, \gamma_{2,2}$ of $p^{(2)}(z)$ cannot both be zeros of $p^{(4)}(z)$. Suppose if possible that both $\gamma_{2,1}, \gamma_{2,2}$ are zeros of $p^{(4)}(z)$. Then

$$
p^{(4)}(z)=\left\{(k+l)(k+l-1) z^{2}+2(k+l-1)(l-k) z+(l-k)^{2}-k-l\right\} q_{1}(z)
$$

where $q_{1}(z)$ is a polynomial. But

$$
\begin{gathered}
p^{(4)}(z) \approx \frac{d^{2}}{d z^{2}}\left[\left\{(k+l)(k+l-1) z^{2}+2(k+l-1)(l-l) z+(l-k)^{2}-k-l\right\} \times\right. \\
\left.\times(z+1)^{k-2}(z-1)^{l-2}\right]=\left[2(k+l)(k+l-1)\left(z^{2}-1\right)+2\{2(k+l)(k+l-1) z\right. \\
+2(k+l-1)(l-k)\}\{(k+l-4) z+(l-k)\}] \times \\
\times(z+1)^{k-3}(z-1)^{l-3}+\left\{(k+l)(k+l-1) z^{2}+2(k+l-1)(l-k) z+\right. \\
\left.+(l-k)^{2}-k-l\right\} \frac{d^{2}}{d z^{2}}\left\{(z+1)^{k-2}(z-1)^{l-2}\right\}
\end{gathered}
$$

Hence

$$
\begin{gathered}
{\left[2(k+l)(k+l-1)\left(z^{2}-1\right)+2\{2(k+l)(k+l-1) z+2(k+l-1)(l-k)\}\right.} \\
\times\{(k+l-4) z+(l-k)\}](z+1)^{k-3}(z-1)^{l-3}=\left\{(k+l)(k+l-1) z^{2}+2(k+\right. \\
\left.+l-1)(l-k) z+(l-k)^{2}-k-l\right\} q_{2}(z)
\end{gathered}
$$

where $q_{2}(z)$ is again a polynomial. This is possible only if $(k+l)(k+$ $+l-1)(2 k+2 l-7) z^{2}+4(k+l-1)(l-k)(k+l-2) z+(k+l-1)\left\{2(l-k)^{2}-\right.$ $-k-l\}$ is a constant multiple of $(k+l)(k+l-1) z^{2}+2(k+l-1)(l-k) z+$ $+\left\{(l-k)^{2}-k-l\right\}$. But such is not the case as one can easily soe. Thus the product $p(z) p^{(1)}(z) \ldots p^{(4)}(z)$ has at least 10 distinct zeros if $k=3$ and at least 11 distinct zeros if $k \geqslant 4$. In particular if $k=3, l=4$ then $P(z)$ has at least $10(=n+3)$ distinct zeros. If $k=3$ and $l \geqslant 5$ then for $5 \leqslant j \leqslant n-3$ the largest zero $\gamma_{j, 3}$ of $p^{(j)}(z)$ in the open interval $(-1,1)$ is simple and $p^{(i)}\left(\gamma_{j, 3}\right) \neq 0$ for $i<j$. Hence the product $P(z)$ has at least $10+(n-3)-5+1=n+3$ distinct zeros. If $k=4$ then for $5 \leqslant j \leqslant n-4$
the largest zero $\gamma_{j, 4}$ of $p^{(j)}(z)$ in $(-1,1)$ is simple and $p^{(i)}\left(\gamma_{j, 4}\right) \neq 0$ for $i<j$. Hence again the product $P(z)$ has at least $11+(n-4)-5+1=n+3$ distinct zeros. If $k \geqslant 5$ then for $5 \leqslant j \leqslant k$ the smallest zero $\gamma_{j, 1}$ and the largest zero $\gamma_{j, j}$ of $p^{(j)}(z)$ in $(-1,1)$ are simple and $p^{(i)}\left(\gamma_{j, 1}\right) \neq 0, p^{(i)}\left(\gamma_{j, j}\right) \neq 0$ for $i<j$. Besides, for $k<j \leqslant l$ the largest zero $\gamma_{j, k}$ of $p^{(j)}(z)$ in $(-1,1)$ is simple and $p^{(i)}\left(\gamma_{j, k}\right) \neq 0$ for $i<j$. Hence the product $P(z)$ has at least $11+2(k-5+1)+l-k=n+3$ distinct zeros.
1.2.1. (iv). Let $p(z) \approx\left(z^{2}-1\right)^{n / 2}$.

If $n=6$ then $p^{(1)}(z)$ has a double zero at each of the points $-1,1$ and a simple zero at the origin. The second derivative has a simple zero at each of the points $-1,-1 / \sqrt{5}, 1 / \sqrt{5}, 1$. The third derivative vanishes at the points $-\sqrt{(3 / 5)}, 0, \sqrt{(3 / 5)}$, the fourth at $-1 / \sqrt{5}, 1 / \sqrt{5}$, whereas the fifth derivative vanishes at the origin. Hence $P(z)$ has precisely $7(=n+1)$ distinct zeros.

Now let $n=2 k$ where $k \geqslant 4$. The polynomial $p^{(1)}(z)$ has zeros of multiplicity $k-1$ at the points $-1,1$ and a simple zero at the origin. The second derivative $p^{(2)}(z)$ has zeros of multiplicity $k-2$ at $-1,1$ and simple zeros at $\gamma_{2,1}=-1 / \sqrt{(2 k-1)}, \quad \gamma_{2,2}=1 / \sqrt{(2 k-1)}$. The third derivative $p^{(3)}(z)$ has zeros of multiplicity $k-3$ at $-1,1$ and simple zeros at $\gamma_{3,1}=$ $=\sqrt{\{3 /(2 k-1)\}}, \gamma_{3,2}=0, \gamma_{3,3}=\sqrt{\{3 /(2 k-1)\}}$. Now we note that $p^{(4)}(z)$ which is a constant multiple of $\left(z^{2}-1\right)^{k-4}\left\{(2 k-1)(2 k-3) z^{4}-6(2 k-3) z^{2}\right.$ $+3\}$ has four simple zeros $\gamma_{4,1}, \gamma_{4,2}, \gamma_{4,3}, \gamma_{4,4}$ in the open interval $(-1,1)$ and none of these zeros is a zero of $p^{(j)}(z), j<4$. Hence the product $p(z) p^{(1)}(z) \ldots p^{(4)}(z)$ has 11 distinct zeros. This implies that if $k=4$ (i. e $n=8)$ then $P(z)$ has at least $n+3$ distinct zeros. If $k \geqslant 5$ then for $5 \leqslant j \leqslant k$ the smallest zero $\gamma_{j, 1}$ and the largest zero $\gamma_{j, j}$ of $p^{(j)}(z)$ in $(-1,1)$ are simple and $p^{(i)}\left(\gamma_{j, 1}\right) \neq 0, p^{(i)}\left(\gamma_{j, j}\right) \neq 0, i<j$. Hence the product $p(z) p^{(1)}(z) \ldots p^{(k)}(z)$ and a fortiori $P(z)$ has at least $11+2(k-5+1)=n+3$ distinct zeros

1.2.2. Let $k+l=n-1$.

First we consider the subcase $k=1, l=n-2$, i. e. $-1,1$ are supposed to be zeros of $p(z)$ of multiplicity $1, n-2$ respectively. Let c be the zero of $p(z)$ which lies in $(-1,1)$. Then for $n \geqslant 5$:

$$
\begin{gathered}
p(z) \approx(z+1)(z-c)(z-1)^{n-2}, \\
p^{(1)}(z) \approx\left[n z^{2}+\{-(n-1) c+(n-3)\} z-(n-3) c-1\right](z-1)^{n-3}, \\
p^{(2)}(z) \approx\left[n(n-1) z^{2}+\{-(n-1)(n-2) c+(n-1)(n-6)\} z-(n-2)\right. \\
\times(n-5) c-2(n-3)](z-1)^{n-4}, \\
p^{(3)}(z) \approx\left[n(n-1) z^{2}+\{-(n-1)(n-3) c+(n-1)(n-9)\} z-\{(n-3) \times\right. \\
\times(n-7) c+3(n-5)\}](z-1)^{n-5} .
\end{gathered}
$$

The polynomial $p(z)$ has 3 distinct zeros. The derivative $p^{(1)}(z)$ has a simple zero $c_{1,1}$ in the interval ($-1, c$) and another simple zero $c_{1,2}$ in the interval $(c, 1)$. The second derivative $p^{(2)}(z)$ has a simple zero $c_{2,1}$ in the interval $\left(c_{1,1}, c_{1,2}\right)$ and another simple zero $c_{2,2}$ in the interval ($c_{1,2}, 1$). However, if $c=-(n-3) /(n-1)$ then $c_{2,1}=c$ and $p^{(2)}(z)$ contributes only one new zero to the product $p(z) p^{(1)}(z) p^{(2)}(z)$. Thus the product $p(z) p^{(1)}(z) p^{(2)}(z)$ has 6 or 7 distinct zeros according as $c=-(n-3) /(n-1)$ or $c \neq-(n-$ $-3) /(n-1)$. Now if $c=-(n-3) /(n-1)$ then $p^{(3)}(z)$ has a simple zero $c_{3,1}$ in the interval ($c, c_{2,2}$) and a simple zero $c_{3,2}$ in the interval ($c_{2,2}, 1$). It is clear that $c_{3,2}$ is necessarily a new zero. Also $c_{3,1}$ is a new zero. For it is clearly not a zero of $p(z)$ or of $p^{(2)}(z)$. Besides, if it were a zero of $p^{(1)}(z)$ then $p^{(1)}\left(c_{3,1}\right)=0, p^{(3)}\left(c_{3,1}\right)=0$ would together lead to the conclusion that $c_{3,1}=-\left(2 n^{2}-13 n+17\right) /\{(n-1)(2 n-3)\}$. Thus we would have

$$
\begin{gathered}
-\left(2 n^{2}-13 n+17\right) /\{(n-1)(2 n-3)\}=c_{3,1}=c_{1,2}=-\{(n-1)(n-3)- \\
-\sqrt{(5 n-9)(n-1)\}} /\{n(n-1)\}
\end{gathered}
$$

or

$$
(2 n-3) \sqrt{(5 n-9)(n-1)}=2 n^{2}+n-9
$$

which is false for $n \geqslant 5$. Hence the product $p(z) p^{(1)}(z) p^{(2)}(z) p^{(3)}(z)$ has 8 distinct zeros. In case $c \neq-(n-3) /(n-1)$ it is enough for our purpose to obsorve that the largest zero of $p^{(3)}(z)$ in $(-1,1)$ is not a zero of $p(z) p^{(1)}(z) p^{(2)}(z)$ and therefore $p(z) p^{(1)}(z) p^{(2)}(z) p^{(3)}(z)$ has at least 8 distinct zeros. For $4 \leqslant j \leqslant n-2$ the largest zero of $p^{(j)}(z)$ in the open interval $(-1,1)$ is simple and is not a zero of the product $p(z) p^{(1)}(z) \ldots$ $\ldots p^{(j-1)}(z)$. Consequently the product $p(z) p^{(1)}(z) \ldots p^{(n-2)}(z)$ and a fortiori $P(z)$ has at least $8+(n-2-4+1)=n+3$ distinct zeros.

If $n=4$ then direct calculation shows that $P(z)$ has $7(=n+3)$ distinct zeros if $c=-1 / 3$ or $1 / 3$; otherwise it has 8 distinct zeros.

If $n=3$ then $P(z)$ has 5 or 6 distinct zeros according as $c=0$ or $c \neq 0$.

Now we consider polynomials of the form $(z+1)^{k}(z-c)(z-1)^{n-k-1}$ where $2 \leqslant k \leqslant n-k-1,-1<c<1$. We have

$$
\begin{gathered}
p^{(1)}(z) \approx\left[n z^{2}+\{(n-2 k-1)-(n-1) c\} z-1-\right. \\
-(n-2 k-1) c](z+1)^{k-1}(z-1)^{n-k-2},
\end{gathered}
$$

$$
\begin{gathered}
p^{(2)}(z) \approx\left[n(n-1) z^{3}+(n-1)\{2(n-2 k-1)-(n-2) c\} z^{2}+\left\{(n-2 k-1)^{2}-\right.\right. \\
-3(n-1)-2(n-2)(n-2 k-1) c\} z-2(n-2 k-1)-\left\{(n-2 k-1)^{2}-\right. \\
-n+1\} c](z+1)^{k-2}(z-1)^{n-k-3} .
\end{gathered}
$$

The first derivative $p^{(1)}(z)$ has a simple zero $c_{1,1}$ in the open interval $(-1, c)$ and a simple zero $c_{1,2}$ in ($c, 1$). The second derivative $p^{(2)}(z)$ has a simple zero $c_{2,1}$ in ($-1, c_{1,1}$), a simple zero $c_{2,2}$ in ($c_{1,1}, c_{1,2}$) and a simple zero $c_{2,3}$ in ($c_{1,2}, 1$). However, $c_{2,2}=c$ if $c=-(n-2 k-1) /(n-1)$. Hence the product $p(z) p^{(1)}(z) p^{(2)}(z)$ has 7 distinct zeros or 8 distinct zeros according as $c=-(n-2 k-1) /(n-1)$ or $c \neq-(n-2 k-1) /(n-1)$. Now if $k=2, \quad c \neq-(n-2 k-1) /(n-1)$ then for $3 \leqslant j \leqslant n-3$ the largest zero of $p^{(g)}(z)$ in the open interval $(-1,1)$ is simple and is not a zero of $p^{(i)}(z)$ for $i<j$. Hence the product $p(z) p^{(1)}(z) \ldots p^{(n-3)}(z)$ has at least $8+n-3-3+1=n+3$ distinct zeros. If $k \geqslant 3, c \neq-(n-2 k-$ $-1) /(n-1)$ then for $3 \leqslant j \leqslant k$ the smallest zero of $p^{(j)}(z)$ is simple and is not a zero of $p^{(i)}(z)$ for $i<j$; the same is true of the largest zero of $p^{(j)}(z), 3 \leqslant j \leqslant n-k-1$ in $(-1,1)$. Hence the product $\prod_{j=0}^{n-k-1} p^{(j)}(z)$ has at least $8+k-3+1+n-k-1+3+1=n+3$ distinct zeros. We remark that the third derivative $p^{(3)}(z)$ has a simple zero in each of the intervals $\left(c_{2,1}, c\right),\left(c, c_{2,3}\right)$ but we have ignored these zeros to allow the possibility that they may be zeros of $p(z) p^{(1)}(z)$. We verify that if $c=-(n-2 k-1)$ / $/(n-1)$ then they cannot both be zeros of $p(z) p^{(1)}(z)$. It is clear that neither of the two is a zero of $p(z)$. If both are zeros of $p^{(1)}(z)$ then we must have

$$
\begin{aligned}
&{ }_{n}(z+1)^{k-1}(z-1)^{n-k-2}+2\{n z+(n-2 k-1)\}\{(n-3) z+(n-2 k-1)\}(z+ \\
&+1)^{k-2}(z-1)^{n-k-3} \equiv\left\{n z^{2}+2(n-2 k-1) z-1+(n-2 k-1)^{2} /(n-1)\right\} A(z) .
\end{aligned}
$$

where $A(z)$ is a polynomial. This is possible only if

$$
\begin{aligned}
& n(2 n-5) z^{2}+2(2 n-3)(n-2 k-1) z-n+2(n-2 k-1)^{2} \\
& \approx n \tilde{z}^{2}+2(n-2 k-1) z-1+(n-2 k+1)^{2} /(n-1) .
\end{aligned}
$$

But this is obviously false unless $n=\tilde{5}, k=2$. Excluding this latter case we may now argue as above to conclude that the product $P(z)$ has at least $n+3$ distinct zeros. In the case just excluded $P(z)$ has $7(=n+2)$ distinct zeros.
1.2.3. Now let $k+l \leqslant n-2$.

In this case $l=\max (k, l) \leqslant n-3$. For $k \leqslant j \leqslant n-2$ the smallest zero $a^{(j)}$ of $p^{(j)}(z)$ is simple and

$$
-1<a^{(k)}<a^{(k+1)}<\ldots<a^{(n-2)} .
$$

Besides, for $l \leqslant j \leqslant n-2$ the largest zero $b^{(j)}$ of $p^{(j)}(z)$ is simple and

$$
1>b^{(l)}>b^{(l+1)}>\ldots>b^{(n-2)}>a^{(n-2)} .
$$

Thus the product $p(z) p^{(1)}(z) \ldots p^{(n-2)}(z)$ has at least $2 n-k-l$ distinct
zeros, namely, $-1, a^{(k)}, a^{(k+1)}, \ldots, a^{(n-2)}, b^{(n-2)}, b^{(n-3)}, \ldots, b^{(l)}, 1$. Including the zero $\left(a^{(n-2)}+b^{(n-2)}\right) / 2$ of $p^{(n-1)}(z)$ the product $P(z)$ has at least $n+3$ distinct zeros.

The following theorem summarizes our discussion of polynomials with only real zeros.

Theorem 1. If $p(z)$ is a polynomial of degree n with real zeros then the product $P(z)=p(z) p^{(1)}(z) \ldots p^{(n-1)}(z)$ has
i) 1 distinct zero if $p(z) \approx(z-a)^{n}$,
ii) $n+1$ distinct zeros if $p(z) \approx(z-a)(z-b)^{n-1}$ or $p(z) \approx(z-a)^{2}(z-$ $-b)^{2}$ or $p(z) \approx(z-a)^{3}(z-b)^{3}$,
iii) $n+2$ distinct zeros if $p(z+b)$ is a constant multiple of $z\left(z^{2}-a^{2}\right)$ or of $z\left(z^{2}-a^{2}\right)^{2}$ for some b,
iv) at least $n+3$ distinct zeros in any other case.

In the above theorem we only need to assume that the zeros of $p(z)$ are collinear.
2.0 Now we wish to consider polynomials whose zeros are not collinear. Let us denote the convex hull of the zeros of $p(z)$ by H_{p}. According to Gauss-Lucas theorem

$$
H_{p} \supseteq H_{p^{(1)}} \supseteq \ldots \supseteq H_{p^{(n-1)}}
$$

If the zeros of $p^{(k-1)}(z)$ are not collinear, $p^{(k)}(\xi)=0$ for some $\xi \in \partial H_{p^{(k-1)}}$ and some $k(1 \leqslant k \leqslant n-1)$ if and only if ξ is a multiple zero of $p^{(k-1)}(z)$ $\left(p^{(0)}(z) \equiv p(z)\right)$.

We note that if $H\left(z_{1}, \ldots, z_{n}\right)$ is the convex hull of the points z_{1}, \ldots $\ldots, z_{m} \in C$ and v_{1}, \ldots, v_{k} are the vertices of $H\left(z_{1}, \ldots, z_{m}\right)$ then $\left\{v_{1}, \ldots, v_{k}\right\}$ $\subseteq\left\{z_{1}, \ldots, z_{m}\right\}$.

The centroid of the zeros of a polynomial is invariant under differentiation. This trivial fact will be often used without being mentioned explicitly. We shall assume the origin to be the centroid of the zeros of $p(z)$. This will not involve any loss of generality since for any given a the product $p(z+a) p^{(1)}(z+a) \ldots p^{(n-1)}(z+a)$ has the same number of distinct zeros as $p(z) p^{(1)}(z) \ldots p^{(n-1)}(z)$.

Definition. A polynomial $p(z)=\sum_{k=0}^{n} a_{k} z^{k}, a_{n} \neq 0$, will be said to belong to the class \mathscr{P}_{n} if $a_{n-1}=0$, i. e. the origin is the centroid of the zeros of $p(z)$. The subclass $\mathscr{P}_{n}^{(C)}$ will consist of those polynomials whose zeros are collinear whoreas the polynomials with noncollinear zeros will form the subclass $\mathscr{F}_{n}^{(N C)}$.

In the sequel we shall make extensive use of the following corollary of Theorem 1.

Corollary 1. If $p(z) \not \mathscr{P}_{n}^{(C)}$ then $P(z)=p(z) p^{(1)}(z) \ldots p^{(n-1)}(z)$ has
i) 1 distinct zero if $p(z) \approx z^{n}$,
ii) $n+1$ distinct zeros if $p(z) \approx(z-a)\{z+a /(n-1)\}^{n-1}$ or $p(z) \approx(z-a)^{2}(z+a)^{2}$ or $p(z) \approx(z-a)^{3}(z+a)^{3}$,
iii) $n+2$ distinct zeros if $p(z) \approx z\left(z^{2}-a^{2}\right)$ or $p(z) \approx z\left(z^{2}-a^{2}\right)^{2}$, iv) at least $n+3$ distinct zeros in any other case.

Lemma 1. If $f(z)$ is a polynomial of degree $m+1$ such that $f^{(1)}(z) \approx z^{m}-$ $-a^{m}$ for some $a \neq 0$ thers the product $f(z) f^{(1)}(z) f^{(2)}(z)$ has at least $2 m$ distinct zeros.

Proof. The polynomial $f(z)$ is a constant multiple of $z^{m+1}-(m+1) a^{m} z+$ $+b$ for some b. Hence if $f(z), f^{(1)}(z)$ have a common zero it is necessary but not sufficient that it be equal to $b /\left(m a^{m}\right)$. In fact, there is no common zero if $b=0$ for the simple reason that $f^{(1)}(0) \neq 0$, i. c. $f(z), f^{(1)}(z)$ have no common zero if the only zero of $f^{(2)}(z)$ is a zero of $f(z)$. Except possibly for one double zero all the zeros of $f(z)$ are therefore simple and we readily see that the product $f(z) f^{(1)}(z) f^{(2)}(z)$ has at least $2 m$ distinct zeros.

Remark 1. Given a polynomial $p(z)$ of degree n the zeros of $p^{(k)}(z)$ are coincident if and only if the zeros of $p^{(k-1)}(z)$ are coincident or form a regular $(n-k+1)$-gon. Hence if $p(z) \not \approx z^{n}-a^{n}$ and $p^{(k)}(z) \approx z^{n-k}$ then $p(z) p^{(1)}(z) \ldots p^{(k)}(z)$ has at least $2(n-k+1)$ distinct zeros.

Lemma 2. Let $p(z)$ be a polynomial of degree n. If for some $k(1 \leqslant k$ $\leqslant n-2$)

$$
p^{(k)}(z) \approx(z-a)^{n_{1}}(z-b)^{n_{2}}, a \neq b, n_{1} \geqslant 1, n_{2} \geqslant 1, n_{1}+n_{2}=n-k,
$$

then $p^{(k-1)}(z)$ can vanish at most once on the straight line segment joining the points a, b. The product $p^{(k-1)}(z) p^{(k)}(z) \ldots p^{(n-1)}(z)$ has at least $n_{1}+2 n_{2}+$ +1 distinct zeros if $p^{(k-1)}(a)=0$, at least $2 n_{1}+n_{2}+1$ distinct zeros if $p^{(k-1)}(b)=0$ and at least $2 n_{1}+2 n_{2}+1$ distinct zeros in any other case. If the zeros of $p(z)$ are not collinear and $p^{(k)}(z) \approx(z-a)(z-b)^{n_{2}}$ then $P(z)$ $=p(z) p^{(1)}(z) \ldots p^{(n-1)}(z)$ has at least $2\left(n_{2}+1\right)$ distinct zeros.

Proof. We may clearly assume a, b to be real and $a<b$. If $p^{(k-1)}(c)=0$ for some $c \epsilon[a, b]$ then $p^{(k-1)}(x)$ is real for real x. Now if $d \neq c$ is another point of the interval $[a, b]$ such that $p^{(k-1)}(d)=0$ then by Rolle's theorem $p^{(k)}(x)$ must vanish at least once in the open interval I with c, d as end points. But by hypothesis $p^{(k)}(x) \neq 0$ in (a, b). Hence $p^{(k-1)}(x)$ cannot vanish more than once on $[a, b]$.

According to Corollary 1 the product $p^{(k)}(z) p^{(k+1)}(z) \ldots p^{(n-1)}(z)$ has at least $n_{1}+n_{2}+1$ distinct zeros which of course lie on $[a, b]$. Since any point other than a, b cannot be a multiple zero of $p^{(k-1)}(z)$ the product $p^{(k-1)}(z) p^{(k)}(z) \ldots p^{(n-1)}(z)$ has at least $n_{1}+2 n_{2}+1$ distinct zeros if
$p^{(k-1)}(a)=0$, at least $2 n_{1}+n_{2}+1$ distinct zeros if $p^{(k-1)}(b)=0$, and at least $2 n_{1}+2 n_{2}+1$ distinct zeros in any other case.

Now let us suppose that the zeros of $p(z)$ are not collinear and $p^{(k)}(z)$ $\approx(z-a)(z-b)^{n_{2}}$. If $p^{(k-1)}(b)=0$ then $p^{(k-1)}(z)$ has only one other zero which must lie at $\left\{\left(n_{2}+2\right) a-b\right\} /\left(n_{2}+1\right)$. Thus $p^{(k-1)}(z)$ is of the same form as $p^{(k)}(z)$. If again $p^{(k-2)}(b)=0$ then $p^{(k-2)}(z)$ is also of the same form as $p^{(k)}(z)$ and $p^{(k-1)}(z)$. Since the zeros of $p(z)$ are not collinear $p^{(j)}(b)$ cannot be zero for every j such that $0 \leqslant j \leqslant k-1\left(p^{(0)}(z) \equiv p(z)\right)$. Now if $p^{(i)}(b) \neq 0$ whereas $p^{(j)}(b)=0$ for $i<j \leqslant k$ then except possibly for one double zero all the zeros of $p^{(i)}(z)$ are simple and we readily conclude that $p^{(i)}(z) p^{(i+1)}(z) \ldots p^{(n-1)}(z)$ has at least $2\left(n_{2}+1\right)$ distinct zeros.

Lemma 2'. If $p(z)$ is a polynomial of degree 8 such that $p^{(2)}(z)$ $\approx(z-a)^{3}(z+a)^{3}$ then the product $P(z)=p(z) p^{(1)}(z) \ldots p^{(z)}(z)$ has at least 12 distinct zeros.

Proof. Without loss of generality we may assume a to be real and positive. If $p^{(1)}(z) \neq 0$ at $z= \pm a$ then according to Lemma 2 the product $P(z)$ has at least 13 distinct zeros. However, if $p^{(1)}(z)$ vanishes at a (the case $p^{(1)}(-a)=0$ is analogous) then

$$
\begin{gathered}
p^{(1)}(z) \approx\left(20 z^{3}+80 a z^{2}+116 a^{2} z+64 a^{3}\right)(z-a)^{4} \equiv 20(z-a)\{z-(\beta+ \\
+i \gamma)\}\{z-(\beta-i \gamma)\}(z-a)^{4}, \gamma \neq 0
\end{gathered}
$$

where $a<-a$ since according to Rolle's theorem $p^{(2)}(z)$ has at least one zero in the open interval joining a, a. It is clear that if $p(z)$ has no real zeros then at least four of its zeros are simple and are not zeros of the product $p^{(1)}(z) p^{(2)}(z) \ldots p^{(7)}(z)$. According to Corollary 1 the product $p^{(2)}(z) p^{(3)}(z) \ldots p(z)^{(7)}$ has 7 distinct zeros which all lie on the interval $[-a, a]$. Hence $P(z)$ has at least 14 distinct zeros. If $p(z)$ has a real zero then it $(p(z))$ must be a polynomial with real coefficients. Since a is a zero of $p^{(1)}(z)$ of multiplicity 4 and $H_{p} \subseteq H_{p^{(1)}}$ the polynomial $p(z)$ being of degree 8 can vanish at a only if

$$
p(z) \approx\left(z-\alpha_{1}\right)\left(z-\left(\beta_{1}+i \gamma_{1}\right)\right)\left(\left(z-\left(\beta_{1}-i \gamma_{1}\right)\right)(z-a)^{5}, \gamma_{1} \neq 0\right.
$$

where $\alpha_{1}<\alpha$. Hence $P(z)$ has at least 13 distinct zeros. If $p(\alpha)=0$ then $\boldsymbol{p}(z) \neq \mathbf{0}$ on the interval $(a, a]$. Even if $p(\beta+i \gamma)=0, p(\beta-i \gamma)=0$ there are two simple zeros of $p(z)$ which are not zeros of $p^{(1)}(z) p^{(2)}(z) \ldots p^{(7)}(z)$. Hence $P(z)$ has at least 12 distinct zeros. If $p(z)$ has a real zero which does not lie at a or α then $P(z)$ has at least 13 distinct zeros.

Lemma $2^{\prime \prime}$. If $p(z)$ is a polynomial of degree 8 such that $p^{(3)}(z) \approx z\left(z_{2}-a^{2}\right)^{2}$ then $P(z)$ has at least 12 distinct zeros.

Proof. There is no loss of generality in assuming a to be real and positive. We may use Rolle's theorem to conclude that $p^{(2)}(z)$ can vanish at most once on each of the intervals $[-a, 0],[0, a]$. Note that $p^{(2)}(z)$ vanishes at $-a$ or a if and only if $p^{(2)}(z) \approx(z-a)^{3}(z+a)^{3}$ and then by Lemma 2^{\prime} the product $P(z)$ has at least 12 distinct zeros. If $p^{(2)}(\pm a) \neq 0$ but $p^{(2)}(0)=0$ then $p^{(2)}(z)$ has four non-real zeros which form a rectangle. Since $p^{(2)}(z)$ is of degree 7 all the vertices of $H_{p^{(2)}}$ cannot be zeros of $p^{(1)}(z)$, i.e. $H_{p^{(2)}}$ is a proper subset of $H_{p^{(1)}}$. Hence $p^{(1)}(z) p^{(2)}(z) \ldots p^{(7)}(z)$ has at least 12 distinct zeros. If $p^{(2)}(\pm a) \neq 0$ and also $p^{(2)}(0) \neq 0$ then at least five simple zeros of $p^{(2)}(z)$ do not lie on $[-a, a]$ and the product $p^{(2)}(z) p^{(3)}(z) \ldots p^{(7)}(z)$ has at least 12 distinct zeros.

Lemma 3. If $f(z) \approx(z-A)^{2}(z-B)^{2}(z-C)^{3}$ and C is a root of the equation $3 z^{2}+15 z+10=0$, then $f^{(2)}(z)$ cannot be a constant multiple of $z^{3}\left(3 z^{2}+15 z+29\right)$.

Proof. According to hypothesis $f(C)=0, f^{(1)}(C)=0$. Hence if $f^{(2)}(z) \approx z^{3}\left(3 z^{2}+15 z+20\right)$ then $f(z)$ must be a constant multiple of

$$
z^{7}+7 z^{6}+14 z^{5}-\left(7 C^{6}+42 C^{5}+70 C^{4}\right) z+6 C^{7}+35 C^{6}+56 C^{5}
$$

which is easily seen to be different from $(z-A)^{2}(z-B)^{2}(z-C)^{3}$ whatever A, B may be.

Lemma 4. If $p(z) \approx\left(z-v_{1}\right)^{2}\left(z-v_{2}\right)^{3}\left(z-v_{3}\right)^{3} \in \mathscr{P}_{8}^{(N C)}$ then $p^{(3)}(z)$ cannot be a constant multiple of $(z-a)^{3}\left(3 z^{2}+9 a z+8 a^{2}\right)$.

Proof. Let $f(z) \equiv p(a z+a)$. If $p^{(3)}(z) \approx(z-a)^{3}\left(3 z^{2}+9 a z+8 a^{2}\right)$ then $f^{(3)}(z)$ is a constant multiple of $z^{3}\left(3 z^{2}+15 z+20\right)$ and

$$
f(z) \approx z^{8}+8 z^{7}+(56 / 3) z^{6}+\lambda z^{2}+\mu z+\nu
$$

for some λ, μ, ν. It can be directly verified that $z^{8}+8 z^{7}+(56 / 3) z^{6}+\lambda z^{2}+$ $+\mu z+\nu$ is never of the form $(z-\alpha)^{2}(z-\beta)^{3}(z-\gamma)^{3}$ whatever λ, μ, ν may be. This contradicts the fact that $p(z)$ is a constant multiple of $\left(z-v_{1}\right)^{2}$ $\left(z-v_{2}\right)^{3}\left(z-v_{3}\right)^{3}$.

The next lemma is trivial.
Lemma 5. If a vertex v of H_{p} is a zero of $p(z)$ of multiplicity k then $H_{p^{(k)}}$ is a proper subset of H_{p}. The point v does not belong to $H_{p^{(j)}}$ for $k \leqslant j$ $\leqslant n-1$.

If $p(z) \approx z^{n}-a^{n}$ for some $a \neq 0$ then $P(z)=\prod_{j=0}^{n-1} p^{(j)}(z)$ has $n+1$ distinct zeros. In future we shall exclude these polynomials from our consideration.
2.1 Let $p(z) \in \mathscr{F}_{3}^{(N C)}, p(z) \not \approx z^{3}-a^{3}$. Since the zeros of $p(z)$ are not collinear they must be simple and different from 0 . Now let us note that $p^{(1)}(z)$ has two distinct zeros $d,-d$ whereas $p^{(2)}(z)$ vanishes at the origin. Hence $P(z)$ has 6 distinct zeros.
2.2 Now let $p(z) \in \mathscr{P}_{4}^{(N C)}, p(z) \not \approx \not \approx z^{4}-a^{4}$. Since $p^{(1)}(z) \not \approx \not \approx z^{3}$ the product $p^{(1)}(z) p^{(2)}(z) p^{(2)}(z)$ has at least 4 distinct zeros. Hence if three or more of the vertices of H_{p} are simple zeros of $p(z)$ the product $P(z)=p(z) \times$ $p^{(1)}(z) p^{(2)}(z) p^{(3)}(z)$ has at least 7 distinct zeros. Only those polynomials which have one double and two simple zeros are not covered. So let $p(z)$ $\approx\left(z-v_{1}\right)^{2}\left(z-v_{2}\right)\left(z-v_{3}\right)$. We observe that $p^{(1)}(z)$ cannot be a constant multiple of $z\left(z^{2}-a^{2}\right)$. For otherwise v_{1} must be equal to a or $-a$, i. e. $p^{(1)}(z) \approx z\left(z^{2}-v_{1}^{2}\right)$ and $p(z) \approx\left(z^{2}-v_{1}^{2}\right)^{2}$ which is a contradiction. Hence $P(z)$ has at least 8 distinct zeros unless $p^{(1)}(z)$ is a constant multiple of $z^{3}-a^{3}$ or of $(z-a)(z+a / 2)^{2}$. In the latter two cases $p(z) \approx z^{4}-4 b^{3} z+3 b^{4}$ (b is one of the cube roots of a^{3}), $p(z) \approx 2 z^{4}-3 a^{2} z^{2}-2 a^{3} z+3 a^{4}$ respectively, and $P(z)$ has 6 distinct zeros.

We therefore have the following theorem.
Theorem 2. If $p(z) \in \mathscr{P}_{4}$ then $P(z)$ has
i) 1 distinct zero if $p(z) \approx z^{4}$,
ii) 5 distinct zeros if $p(z) \approx(z-a)(z+a / 3)^{3}$ or $p(z) \approx(z-a)^{2}$ $\times(z+a)^{2}$ or $p(z) \approx z^{4}-a^{4}$,
iii) 6 distinct zeros if $p(z) \approx z^{4}-4 a^{3} z+3 a^{4}$ or $p(z) \approx 2 z^{4}-3 a^{2} z^{2}-$ $-2 a^{3} z+3 a^{4}$,
iv) at least 7 distinct zeros in any other case.
2.3 Let $p(z) \in \mathscr{P}_{5}^{(N C)}, p(z) \not \approx \not z^{5}-a^{5}$. Since $p^{(1)}(z) \not \approx z^{4}$ the product $p^{(1)}(z) p^{(2)}(z) p^{(3)}(z) p^{(4)}(z)$ has at least 5 distinct zeros. Hence if three or more of the vertices of H_{p} are simple zeros of $p(z)$ the product $P(z)=$ $=p(z) p^{(1)}(z) \ldots p^{(4)}(z)$ has at least 8 distinct zeros. This is surely the case if H_{p} is a pentagon or a quadrilateral.

If H_{p} is a triangle and two of its vertices are double zeros of $p(z)$ then $H_{p(\mathrm{I})}$ can neither be a square nor a straight line segment. Hence $\boldsymbol{P}(z)$ has at least 8 distinct zeros unless $p^{(1)}(z)$ happens to be a constant multiple of $z^{4}-4 a^{3} z+3 a^{4} \equiv\left(z-a^{2}\right)\left(z^{2}+2 a z+3 a^{2}\right)$ or of

$$
2 z^{4}-3 a^{2} z^{2}-2 a^{3} z+3 a^{4} \equiv(z-a)^{2}\left(2 z^{2}+4 a z+3 a^{2}\right)
$$

for some $a \neq 0$. It is clear that the two simple zeros of $p^{(1)}(z)$ must come from the two double zeros of $p(z)$. Thus we respectively have
i) $p(z) \approx(z-b)\left(z^{2}+2 a z+3 a^{2}\right)^{2}, p^{(1)}(z) \approx(z-a)^{2}\left(z^{2}+2 a z+3 a^{2}\right)$
ii) $p(z) \approx(z-b)\left(2 z^{2}+4 a z+3 a^{2}\right)^{2}, p^{(1)}(z) \approx(z-a)^{2}\left(2 z^{2}+4 a z+3 a^{2}\right)$ for some b. But, neither (i) nor (ii) can hold whatever b nay be.

Let only one vertex of H_{p} be a multiple zero of $p(z)$. If $p^{(1)}(z)$ is a constant multiple of $z^{4}-a^{4}$ or of $(z-a)(z+a / 3)^{3}$ for some $a \neq 0$ then by Lemma 1 , Lemma 2 respectively $P(z)$ has at least 8 distinct zeros. It is readily seen that $p^{(1)}(z) \approx(z-a)^{2}(z+a)^{2}$ if and only if $p(z) \approx$ $(z \mp a)^{3}\left(3 z^{2} \pm 9 a z+8 a^{2}\right)$ and then $P(z)$ has only 7 distinct zeros.

We therefore have the following theorem.
THEOREM 3. If $p(z) \in \mathscr{P}_{5}$ then $P(z)$ has
i) 1 distinct zero if $p(z) \approx z^{5}$,
ii) 6 distinct zeros if $p(z) \approx(z-a)(z+a / 4)^{4}$ or $p(z) \approx z^{5}-a^{5}$,
iii) 7 distinct zeros if $p(z) \approx z\left(z^{2}-a^{2}\right)^{2}$ or $p(z) \approx(z-a)^{3}\left(3 z^{2}+9 a z+\right.$ $+8 a^{2}$),
iv) at least 8 distinct zeros in any other case
2.4 Let $p(z) \in \mathscr{P}_{6}^{(N C)}, p(z) \not \approx z^{6}-a^{6}$. If $p^{(1)}(z)$ is a constant multiple of $z^{5}-a^{5}$ or of $(z-a)(z+a / 4)^{4}$ then by Lemmas 1,2 respectively $P(z)$ $=p(z) p^{(1)}(z) \ldots p^{(5)}(z)$ has at least 10 distinct zeros. Theorem 3 says that in any other case $p^{(1)}(z) p^{(2)}(z) \ldots p^{(5)}(z)$ has at least 7 distinct zeros. Hence if two or more of the vertices of H_{p} are simple zeros of $p(z)$ then $P(z)=p(z) p^{(1)}(z) \ldots p^{(5)}(z)$ has at least 9 distinct zeros. This is certainly the case if H_{p} is a hexagon, a pentagon, or a quadrilateral.

Let H_{p} be a triangle $v_{1} v_{2} v_{3}$ and suppose two of the vertices (say $v_{2}, \quad v_{3}$) are multiple zeros of $p(z)$. It is clear that $H_{p^{(1)}}$ cannot be a straight line segment. Now suppose, if possible, that $p^{(1)}(z) \approx(z-a)^{3}\left(3 z^{2}+9 a z+\right.$ $\left.+8 a^{2}\right)$. According to hypothesis $p^{(1)}(z)$ vanishes at v_{2}, v_{3}. Hence $\left(3 z_{2}+\right.$ $\left.+9 a z+8 a^{2}\right) \equiv 3\left(z-v_{2}\right)\left(z-v_{3}\right)$ and $p(z) \approx\left(3 z^{2}+9 a z+8 a^{2}\right)^{2} A_{2}(z)$ where $\boldsymbol{A}_{2}(z)$ vanishes at v_{1} but not at v_{2} or v_{3}. However, it is readily seen the derivative of $\left(3 z^{2}+9 a z+8 a^{2}\right)^{2} A_{2}(z)$ can never be a constant multiple of $(z-a)^{3}\left(3 z^{2}+9 a z+8 a^{2}\right)$. Hence in the case under consideration $p^{(1)}(z)$ $\not \approx(z-a)^{3}\left(3 z^{2}+9 a z+8 a^{2}\right)$. By Theorem 3 the product $p^{(1)}(z) p^{(2)}(z) \ldots$ $\ldots p^{(5)}(z)$ has at least 8 distinct zeros. Since v_{1} is not a zero of this product $P(z)$ has at least 9 distinct zeros.

If none of the vertices of H_{p} is a simple zero of $p(z)$ then each vertex must be a double zero of $p(z)$. It can be directly verified that if $p(z) \approx\left(z^{3}+\right.$ $\left.-a^{3}\right)^{2}$ then $P(z)$ has 10 distinct zeros. So let $p(z) \approx\left(z-v_{1}\right)^{2}\left(z-v_{2}\right)^{2}(z-$ $\left.-v_{3}\right)^{2}, p(z) \not \approx\left(z^{3}-a^{3}\right)^{2}$. It is clear that the zeros of $p^{(1)}(z)$ are all simple and $p^{(2)}(z) \not z^{4} z^{4}$. Hence the product $p^{(1)}(z) p^{(2)}(z)$ has 9 distinct zeros if $p^{(2)}(z) \approx z^{4}-a^{4}$. Since $p^{(1)}(z), p^{(2)}(z)$ cannot have any common zeros we may use Lemma 2 to conclude that if $p^{(2)}(z) \approx(z-a)(z+a / 3)^{3}$ or $\approx(z-a)^{2}(z+a)^{2}$ the product $P(z)=p(z) p^{(1)}(z) \ldots p^{(5)}(z)$ has at least 9 distinct zeros. In any other case the same conclusion can be drawn from Theorem 2.

We therefore have the following theorem.

Theorem 4. If $p(z) \& \mathscr{P}_{6}$ then $P(z)$ has
i) 1 distinct zero if $p(z) \approx z^{6}$,
ii) 7 distinct zeros if $p(z) \approx(z-a)(z+a / 5)^{5}$ or $p(z) \approx(z-a)^{3}(z+$ $+a)^{3}$ or $p(z) \approx z^{6}-a^{6}$,
iii) at least 9 distinct zeros in any other case.
2.5 Let $p(z) \in \mathscr{P}_{7}^{(N C)}, p(z) \not z^{z} z^{7}-a^{7}$. If $p^{(1)}(z)$ is a constant multiple of $(z-a)(z+a / 5)^{5}$ or of $(z-a)^{3}(z+a)^{3}$ then by Lemma 2 the product $P(z)=p(z) p^{(1)}(z) \ldots p^{(6)}(z)$ has at least 10 distinct zeros. In view of Lemma 1 the same can be said about the number of distinct zeros of $P(z))$ if $p^{(1)}(z) \approx z^{6}-a^{6}$. Theorem 4 says that in any other case $p^{(2)}(z)$ $\times p^{(2)}(z) \ldots p^{(6)}(z)$ has at least 9 distinct zeros. Hence if at least one of the vertices of H_{p} is a simple zero of $p(z)$ the product $P(z)$ has at least 10 distinct zeros. This is certainly the case if H_{p} has four or more vertices. So let H_{p} be a triangle and suppose that all its vertices are multiple zeros of $p(z)$. If $p^{(2)}(z)$ is a constant multiple of $z^{5}-a^{5}$ or of $(z-a)(z+a / 4)$ then by Lemmas 1,2 respectively $P(z)$ has at least 10 distinct zeros. According to Theorem 3 the product $p^{(2)}(z) p^{(3)}(z) \ldots p^{(6)}(z)$ has at least 7 distinct zeros in any other case. Thus if all the vertices of H_{p} are double zeros of $p(z)$ the product $P(z)=p(z) p^{(1)}(z) \ldots p^{(6)}(z)$ has at least 10 distinct zeros. If on the other hand, $p(z) \approx(z-\alpha)^{2}(z-\beta)^{2}(z-\gamma)^{3}$ the $p^{(2)}(z)$ has a simple zero at γ and cannot therefore be a constant multiple of $z\left(z^{2}-a^{2}\right)^{2}$. Lemma 3 applied to $p(z+a)$ says that $p^{(2)}(z)$ cannot be a constant multiple of $(z-a)^{3}\left(3 z^{2}+9 a z+8 a^{2}\right)$ either. Hence by Theorem 3 the product $p^{(2)}(z) p^{(3)}(z) \ldots p^{(6)}(z)$ has at least 8 distinct zeros in this case. Since α and β are not zeros of this product, $P(z)=p(z) p^{(1)}(z) \ldots p^{(6)}(z)$ has at least 10 distinct zeros.

We therefore have the following theorem.
Theorem 5. If $p(z) \in \mathscr{P}_{7}$ then $P(z)$ has
i) 1 distinct zero if $p(z) \approx z^{7}$,
ii) 8 distinct zeros if $p(z) \approx(z-a)(z+a / 6)^{6}$, or $p(z) \approx z^{7}-a^{7}$,
iii) at least 10 distinct zeros in any other case.
2.6 Let $p(z) \in \mathscr{P}_{8}^{(N C)}, p(z) \not \approx z^{8}-a^{8}$. If $p^{(1)}(z)$ is a constant multiple of $z^{7}-a^{7}$ or of $(z-a)(z+a / 6)^{6}$ then by Lemmas 1,2 respectively $P(z)$ $=p(z) p^{(1)}(z) \ldots p^{(7)}(z)$ has at least 14 distinct zeros. By Theorem 5 the product $p^{(1)}(z) p^{(2)}(z) \ldots p^{(7)}(z)$ has at least 10 distinct zeros in any other case. Hence if there exists a vertex of H_{p} which is a simple zero of $p(z)$ then $P(z)=p(z) p^{(1)}(z) \ldots p^{(7)}(z)$ has at least 11 distinct zeros. If all the vertices of H_{p} are multiple zeros of $p(z)$ out of which at least two are double zeros of $p(z)$ we may apply Theorem 4 to $p^{(2)}(z)$ and conclude that $P(z)=p(z) p^{(1)}(z) p^{(2)}(z) \ldots p^{(7)}(z)$ has at least 11 distinct zeros
except possibly when $p^{(2)}(z)$ is a constant multiple of $z^{6}-a^{6}$, of $(z-a)(z+$ $+a / 5)^{5}$ or of $(z-a)^{3}(z+a)^{3}$. However, according to Lemmas 1, 2, 2^{\prime} respectively $P(z)$ has at least 12 distinct zeros in these exceptional cases. Finally, let $p(z) \approx\left(z-v_{1}\right)^{2}\left(z-v_{2}\right)^{3}\left(z-v_{3}\right)^{3}$. If $p^{(3)}(z) \approx z^{5}$ or $p^{(3)}(z)$ $\approx z\left(z^{2}-a^{2}\right)^{2}$ then according to Lemmas 1, $2^{\prime \prime}$ respectively the product $P(z)$ has at least 12 distinct zeros. Besides, if $p^{(3)}(z)$ is a constant multiple of $z^{5}-a^{5}$ or of $(z-a)(z+a / 4)^{4}$ then by Lemmas 1,2 respectively the product $p^{(2)}(z) p^{(3)}(z) \ldots p^{(7)}(z)$ has at least 10 distinct zeros and since v_{1} is not a zero of this product $P(z)$ has at least 11 distinct zeros. Since Lemma 4 says that $p^{(3)}(z)$ cannot be a constant multiple of $(z-a)^{3}\left(3 z^{2}+9 a z+8 a^{2}\right)$ the product $p^{(3)}(z) p^{(4)}(z) \ldots p^{(7)}(z)$ has at least 8 distinct zeros. It is clear that v_{1}, v_{2}, v_{3} are not zeros of this product. Hence $P(z)$ has at least 11 distinct zeros.

We therefore have the following theorem.
Theorem 6. If $p(z) \in \mathscr{P}_{8}$ then $P(z)$ has
i) 1 distinct zero if $p(z) \approx z^{8}$,
ii) 9 distinct zeros if $p(z) \approx(z-a)(z+a / 7)^{7}$ or $p(z) \approx z^{8}-a^{8}$,
iii) at least 11 distinct zeros in any other case.
2.7 Let $p(z) \epsilon \mathscr{P}_{9}^{(N C)}, p(z) \not \approx z^{9}-a^{9}$. There are four possibilities:

1. At least one of the vertices of H_{p} is a simple zero of $p(z)$.
2. At least two of the vertices of H_{μ} are double zeros of $p(z)$.
3. All the vertices of H_{p} are zeros of $p(z)$ of multiplicity $\leqslant 3$.
4. $p(z) \approx\left(z-v_{1}\right)^{2}\left(z-v_{2}\right)^{3}\left(z-v_{3}\right)^{4}$.

If $p^{(1)}(z)$ is a constant multiple of $z^{8}-a^{8}$ or of $(z-a)(z+a / 7)^{7}$ then by Lemmas 1,2 respectively $P(z)$ has at least 16 distinct zeros. By Theorem 6 the product $p^{(1)}(z) p^{(2)}(z) \ldots p^{(8)}(z)$ has at least 11 distinct zeros in any other case. Hence if there exists a vertex of H_{ν} which is a simple zero of $p(z)$ then $P(z)$ lias at least 12 distinct zeros.

If two or more of the vertices of H_{p} are double zeros of $p(z)$ we may use Theorem 5 in conjunction with Lemmas 1,2 to conclude that $P(z)$ has at least 12 distinct zeros.

If $p^{(3)}(z)$ is a constant multiple of $z^{6}-a^{6}$, of $(z-a)(z+a / 5)^{5}$, or of $(z-a)^{3}(z+a)^{3}$ then by Lemmas 1, 2, 2' respectively the product $P(z)=p(z) p^{(1)}(z) \ldots p^{(9)}(z)$ has at least 12 distinct zeros. Theorem 4 implies that in any other case $p^{(3)}(z) p^{(4)}(z) \ldots p^{(8)}(z)$ has at least 9 distinct zeros. Hence if all the vertices of H_{p} are zeros of $p(z)$ of multiplicity $\leqslant 3$ the product $P(z)=p(z) p^{(1)}(z) \ldots p^{(8)}(z)$ has at least 12 distinct zeros. Besides, if $p(z) \approx\left(z-v_{1}\right)^{2}\left(z-v_{2}\right)^{3}\left(z-v_{3}\right)^{4}$ then $P(z)$ has at least 11 distinct zeros.

We therefore have the following theorem.

Theorem 7. If $p(z) \in \mathscr{P}_{9}$ then $P(z)$ has
i) 1 distinct zero if $p(z) \approx z^{9}$,
ii) 10 distinct zeros if $p(z) \approx(z-a)(z+a / 8)^{8}$ or $p(z) \approx z^{9}-a^{9}$,
iii) at least 11 distinct zeros if $p(z) \approx\left(z-v_{1}\right)^{2}\left(z-v_{2}\right)^{3}\left(z-v_{3}\right)^{4}$,
iv) at least 12 distinct zeros in any other case.
2.8. Let $p(z) \in \mathscr{P}_{10}^{N O}, p(z) \not z^{10}-a^{10}$. If $p^{(2)}(z)$ is a constant multiple of $z^{8}-a^{8}$ or of $(z-a)(z+a / 7)^{7}$ then by Lemmas 1,2 respectively $P(z)$ has at least 16 distinct zeros. Theorem 6 says that in any other case $p^{(2)}(z) p^{(3)}(z) \ldots p^{(9)}(z)$ has at least 11 distinct zeros. Hence if one or more of the vertices of H_{p} is a zero of $p(z)$ of multiplicity $\leqslant 2$ then $P(z)$ has at least 12 distinct zeros. If none of the vertices of I_{p} is a zero of $p(z)$ of multiplicity $\leqslant 2$ then at least two of the vertices of H_{p} must be triple zeros of $p(z)$. We may use Theorem 5 along with Lemmas 1,2 to conclude that $P(z)$ has at least 12 distinct zeros.

We therefore have the following theorem.
Theorem 8. If $p(z) \in \mathscr{F}_{10}$ then $P(z)$ has
i) 1 distinct zero if $p(z) \approx z^{10}$,
ii) 11 distinct zeros if $p(z) \approx(z-a)(z+a / 9)^{9}$ or $p(z) \approx z^{10}-a^{10}$,
iii) at least 12 distinct zeros in any other case.
2.9 Let $p(z) \in \mathscr{P}_{11}^{N C}, p(z) \not \approx z^{11}-a^{11}$. If $p(z)^{(3)}$ is a constant multiple of $z^{8}-a^{8}$ or of $(z-a)(z+a / 7)^{7}$ then by Lemmas 1,2 respectively $P(z)$ $=p(z) p^{(1)}(z) \ldots p^{(10)}(z)$ has at least 14 distinct zeros. Theorem 6 says that in any other case $p^{(3)}(z) p^{(4)}(z) \ldots p^{(10)}(z)$ has at least 11 distinct zeros. Since there always exists a vertex of H_{p} which is a zero of $p(z)$ of multiplicity $\leqslant 3$ the product $P(z)=p(z) p^{(1)}(z) \ldots p(z)^{(10)}$ has at least 12 distinct zeros.

We therefore have the following theoren.
Theorem 9. If $p(z) \in \mathscr{P}_{11}$ then $P(z)$ has
i) 1 distinct zero if $p(z) \approx z^{11}$,
ii) at least 12 distinct zeros in any other case.
2.10. Let $p(z) \in \mathscr{\mathscr { S } _ { 1 2 } ^ { N O }}, p(z) \not \approx z^{12}-a^{12}$. There are two possibilities:

1. At least one of the vertices of H_{p} is a zero of $p(z)$ of multiplicity $\leqslant 2$.
2. At least two of the vertices of H_{p} are zeros of $p(z)$ of multiplicity $\leqslant 4$.

In the first case we may apply Theorem 8 along with Lemmas 1,2 to $p^{(2)}(z)$ and in the second case Theorem 6 together with Lemmas 1,2 to $p^{(4)}(z)$ to conclude that $P(z)$ has at least 13 distinct zeros.

We therefore have the following theorem.

Theorem 10. If $p(z) \in \mathscr{P}_{12}$ then $P(z)$ has
i) 1 distinct zero if $p(z) \approx z^{12}$,
ii) at least 13 distinct zeros in any other case.

Conclusion. We have shown in particular that if $p(z)$ is a polynomial of degree $u \leqslant 12$ then the product $P(z)=p(z) p^{(1)}(z) \ldots p^{(n-1)}(z)$ has at least $n+1$ distinct zeros unless $p(z)=c(z-a)^{n}$. It has been conjectured by Popoviciu that the same holds for polynomials of all degree.

STRESZCZENIE

T. Popoviciu postawił hipotezę, że jeżeli $p(z)$ jest wielomianem różnym od $c(z-a)^{n}$, to wielomian $P(z)=p(z) p^{\prime}(z) \ldots p^{(n-1)}(z)$ ma conajmniej $n+1$ różnych zer.

Autor uzyskuje kilka rezultatów, dotyczacych ilości różnych zer wielomianu $P(z)$, z których wynika prawdziwosé hipotezy Popoviciu dla wielomianów $p(z)$ stopnia $n \leqslant 12$. W przypadku wielomianów $p(z)$ o zerach kolinearnych autor uzyskał dokładniejsze oszacowanie ilosci różnych zer wielomianu $P(z)$.

РЕ ЗЮМЕ

Т. Поповичю поставил гипотезу: если $p(z)$ - многочлен, отличающийся от $c(z-a)^{n}$, то многочлен $\quad P(z)=p(z) p^{\prime}(z) \ldots p^{(n-1)}(z)$ имеет по меньшей мере $n+1$ различных нулей.

Нолучено несколько результатов, касающихся числа различных нулей многочлена $P(z)$, из которых вытекает справедливость гипотезы Поповичю для многочленов $p(z)$ степени $n \leqslant 12$. В случае многочленов $p(z)$ с колинеарными нулями получена лучшая оценка числа различных нулей мночочлена $P(z)$

