AN NALES

UNIVEIRITATIS MARIAE CURIE-SK£ODOWSKA LUBLIN - POLONIA

VOL. XXII/XXIII/XXIV, 27 SECTIO A 1968/1969/1970

Instytut Matematyk!, Uniweraytet Maril Curie-Sklodowskiej, Lublin

JAN STANKIEWICZ

On a Family of Starlike Functions

O pewnej rodzinie funkcji gwiazdzistych
0 некотором классе авевдообразных функций

1. Introduction

Let S denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+\ldots \tag{1.1}
\end{equation*}
$$

analytic and univalent in the disc K_{1}; here K_{r} denotes the disc $\{z:|z|<r\}$. Let S^{*} be the subclass of S consisting of functions mapping the disc K_{1} onto domains starlike with respect to the origin. It is well known that $f \in \mathcal{S}^{*}$, iff f has the form (1.1) and satisfies the condition

$$
\begin{equation*}
\text { re } \frac{z f^{\prime}(z)}{f(z)^{\prime}}>0, \quad \text { for } \quad z \in K_{1} \tag{1.2}
\end{equation*}
$$

or the equivalent condition

$$
\begin{equation*}
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\pi}{2}, \quad \text { for } \quad z \in K_{1} \tag{1.3}
\end{equation*}
$$

Various authors investigated the families of α-starlike functions that is functions $f \in \mathbb{S}$, which are subject to the condition

$$
\begin{equation*}
\operatorname{re} \frac{z f^{\prime}(z)}{f(z)}>\alpha \tag{1.4}
\end{equation*}
$$

for $z \in K_{1}$ and fixed $\alpha, 0 \leqslant \alpha<1$, which is more restrictive than the condition (1.2). Taking $\alpha=0$ in (1.4) we obtain the class S^{*}.

It is possible to restrict the condition (1.3) in an analogous way:
Definition 1.1. A function $f \in S_{a}$, if it has the form (1.1) and is subject to the condition

$$
\begin{equation*}
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\alpha \frac{\pi}{2}, \tag{1.5}
\end{equation*}
$$

for $z \in K_{1}$ and a fixed $u, 0<\alpha \leqslant 1$.
A function f of the class S_{a} is said to be strongly starlike of order α (cf. [1]).

The aim of the present paper is to investigate the class S_{a}. We shall give the geometrical interpretation of functions of this family and prove a theorem connected with the circular symmetrization of strongly starlike domains. We shall use latter theorem to solve some extremal problems within the family \boldsymbol{S}_{a}.

Let us observe that, if $0<\alpha_{1} \leqslant \alpha_{2} \leqslant 1$, then

$$
S_{a_{1}} \subset S_{a_{2}} \subset S_{1}=S^{*}
$$

2. Strongly starlike domains and their connection with the class \mathbb{S}_{a}.

Let α be a fixed number from the interval $\langle 0,1\rangle$.
Definition 2.1. A domain D containing the origin is said to be strongly starlike of order α, if any point w_{0} of the complementary set $E \backslash D$ of D is the vertex of an angle of measure $(1-\alpha) \pi / 2$ also contained in $E \backslash D$ and bisected by the radius vector through w_{0}.

We shall denote by G_{α} the family of all domains strongly starlike of order α. Let us observe that, if $0<a_{1} \leqslant \alpha_{2} \leqslant 1$, then

$$
G_{a_{1}} \subset G_{a_{2}} \subset G_{1}
$$

where G_{1} is the family of all domains starlike with respect to the origin.
We shall give now some properties of the domains of the family $G_{a}, a<1$.

Theorem 2.1. If $D \in G_{a}$ for $0 \leqslant \alpha<1$, and $w_{0} \in E \backslash D$, then

$$
\begin{equation*}
D \subset H\left(w_{0}, a\right), \tag{2.1}
\end{equation*}
$$

where $H\left(w_{0}, \alpha\right)$ is the Jordan domain bounded by arcs of logarithmic spirals joining the points $w_{0},-w_{0} \exp \{\pi \tan (a \pi / 2)\}$ and intersecting the radius vectors at an angle $(1-\alpha) \pi / \mathbf{1}$.

Corollary 1.1. If $\boldsymbol{D} \in G_{a}$ for some fixed $\alpha, 0 \leqslant a<\mathbf{1}$, then

$$
\begin{equation*}
D \subset K_{e}, \tag{2.2}
\end{equation*}
$$

where

$$
\varrho=w_{0} \exp \{\pi \tan (\alpha \pi / 2)\},
$$

and w_{0} is an arbitrary point belonging to $E \backslash D$.

Theorem 2.2. If $\left\{D_{n}\right\}$ is an increasing sequence of domains of the family G_{a} which tends in Carathéodory's sense to a domain D, then also D belongs to the family \boldsymbol{G}_{a}.

The connection between the class S_{a} and the family G_{a} is illustrated by the following theorems:

Theorem 2.3. If $f \in \mathbb{S}_{a}$, then for each $r, 0<r \leqslant 1$, the domains $F\left(K_{r}\right)$ belong to the family \mathcal{G}_{a}.

Theorem 2.4. If a function $g(z)=a_{1} z+a_{2} z^{2}+\ldots$ is analytic and univalent in K_{1} and maps K_{1} omto a domain D of the family \boldsymbol{G}_{a}, then the function $f(z)=g(z) / a_{1}$ belongs to the class S_{a}.

These theorems were proved by using the connection between strongly starlike domains of the order a aud the so-called β-spirallike domains.

Theorem 2.5. If $f \in \mathbb{S}_{a}$, then the domains $f\left(K_{r}\right), 0<r \leqslant 1$, have the following property: each logarithmic spiral with the focus at the origin intersecting the radius vectors at an angle not less than $(1-\alpha) \pi / 2$, consists of two arcs one of which lies entirely inside $f\left(K_{r}\right)$, whereas the other one lies entirel!y outside $f\left(\boldsymbol{K}_{r}\right)$.

In other words: domains of the family G_{a} are β-spirallike domains for each $\beta,|\beta| \leqslant(1-u) \pi / 2$. From this we obtain

Corollary 2.2. The class \mathbb{X}_{u} is an intersection of two classes:

$$
\begin{equation*}
S_{a}=S_{(1-a) \pi / 2} \cap S_{-(1-a) \pi / 2} \tag{2.3}
\end{equation*}
$$

where \breve{S}_{β} is a subclass of β-spirallike functions in spaček's sense [J̃], i.e. $f \in S$ and f satisfies the condition:

$$
\mathrm{re}\left\{e^{-i \beta} \frac{z f^{\prime}(z)}{f(z)}\right\}>0
$$

3. Circular symmetrization of domains of the family G_{α}

Let D be a domain containing the origin and let D^{*} be a domain obtained from I) by circular symmetrization (for the definition of circular symmetrization ef. e.g. [2]).
Z. Lewandownki showed [4] that $D \in G_{1}$ implies $I^{*} \in G_{1}$. As shown by the present author in his thesis, an analogous result also holds for strongly starlike domains of order α.

Theorem 3.1. If $)_{\in}\left(\gamma_{a}\right.$ then also D^{*} belongs to G_{a}.
Theorem 3.1. leads to the solution of an extremal problem similar to that solved by J. A. Jenkins [3] for the whole class \mathcal{S}.

Let $L(r, f), f \in S$, denote the linear measure of the circle $|w|=r$ omitted by the values of the function $w=f(z), z \in K_{1}$. J. A. Jenkins [3] determined the exact value

$$
l(r)=\sup _{f<S} L(r, f)
$$

7. Lewandowski [4] solved an analogous result for the class $\mathbb{S}^{*}=S_{1}$. We shall give here an analogous result for the class \mathbb{N}_{a}. To this end we first state:

Theorem 3.2. If $f \in S_{a}, 0<\alpha<1$, then the domain $H^{\prime}\left(K_{1}\right)$ contains the disc K_{r}, where

$$
r_{a}=\exp \int_{0}^{1}\left\{\left[\frac{1-t}{1+t}\right]^{a}-1\right\} \frac{d t}{t}=\exp \left\{\frac{\Gamma^{\prime}\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)}-\frac{\Gamma^{\prime}\left(\frac{1+a}{2}\right)}{\Gamma\left(\frac{1+\alpha}{2}\right)}\right\}
$$

and is contained in the disc K_{ρ}, where $\varrho=\exp \{\pi \tan (\alpha \pi / 2)\}$.
Theorem 3.3. For each function $f \in \mathbb{S}_{a}$ and $r \in\left\langle r_{a}, 1\right\rangle$ the inequality

$$
\begin{equation*}
L(r, f) \leqslant 2 r \varphi(r) \tag{3.2}
\end{equation*}
$$

holds, where $\varphi(r)$ is determined by the system of equations

$$
\begin{gathered}
\ln r=\int_{0}^{1}\left\{\left[\frac{\sqrt{1-2 t \cos \gamma+t^{2}}}{1-t}\right]^{a}-1\right\} \frac{d t}{t} \\
\varphi(r)=\int_{0}^{\gamma}\left[\frac{\cos \theta-\cos \gamma}{\cos (\theta / 2)}\right]^{a} d 0
\end{gathered}
$$

The equality in (3.2) is obtained for the function.

$$
F^{\prime}(z)=z \exp \int_{0}^{\varepsilon}\left\{\left[\frac{\sqrt{1-2 u \cos +u^{2}}}{1+u}\right]^{\alpha}-1\right\} \frac{d u}{u}
$$

which maps K_{1} onto the domain $F\left(K_{1}\right)$ bounded by a suitable arc of the circle $|w|=r$ of length $2 r \varphi(r)$ and by two arcs of logarithmic spirals emanating from the end points of this circular arc respectively and ending at their point of intersection.
4. A connection between the class \mathbb{S}_{α} and the class P of functions of positive real part
Let P denote the class of functions $p(z)$ of the form

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2} \ldots \tag{4.1}
\end{equation*}
$$

that are analytic in the unit dise K_{1} and satisfy the condition

$$
\begin{equation*}
\operatorname{re} p(z)>0, \quad \text { for } \quad z \in K_{1} \tag{4.2}
\end{equation*}
$$

It follows from the definition of the class S_{a} that if $f \in \mathbb{S}_{a}$ then $p(z)$ $=\left[z f^{\prime}(z) / f(z)\right]^{1 / a}$ belongs to I^{\prime} and conversly, if $f(z)=z+a_{2} z^{2}+\ldots$ satisfies the condition $z f^{\prime}(z) / f(z)=p^{a}(z)$, where $p \in P^{\prime}$ then f belongs to S_{a}.

Copsequently we obtain
Theorem 4.1. A function f belongs to the class \mathbb{S}_{a} if and only if there exists a function $p \in P$ such that

$$
\begin{equation*}
f(z)=z \exp \int_{0}^{\bar{z}} \frac{p^{a}(u)-1}{u} d u \tag{4.3}
\end{equation*}
$$

holds.

Using (4.3) one can easily prove the following
Theorem 4.2. If a function f belongs to \mathbb{S}_{a} then for $|z|=r<1$ we have

$$
\begin{align*}
& \operatorname{rexp} \sum_{n=1}^{\infty}\left[\sum_{k=0}^{n_{0}}(-1)^{k}\binom{\alpha}{k}\binom{-\alpha}{n-k}\right] \frac{r^{n}}{n} \leqslant|f(z)| \\
& \leqslant r \exp \sum_{n=1}^{\infty}\left[\sum_{k=0}^{n}(-1)^{k}\binom{-\alpha}{k}\binom{a}{n-k}\right] \frac{r^{n}}{n} \tag{4.7}
\end{align*}
$$

$$
\begin{equation*}
\left(\frac{1-r}{1+r}\right)^{a} \exp \sum_{n=1}^{\infty}\left[\sum_{k=0}^{n}(-1)^{k}\binom{a}{k}\binom{-\alpha}{n-k}\right] \frac{r^{n}}{n} \leqslant\left|f^{\prime}(z)\right| \tag{4.8}
\end{equation*}
$$

$$
\leqslant\left(\frac{1-r}{1+r}\right)^{a} \exp \sum_{n=1}^{\infty}\left[\sum_{k=0}^{n}(-1)^{k}\binom{-a}{k}\binom{a}{n-k}\right] \frac{r^{n}}{n}
$$

The estimates (4.4) - (4.8) are sharp. The extremal functions have the form

$$
\begin{equation*}
\vec{F}(z)=z \exp \int_{0}^{z}\left[\left(\frac{1+\varepsilon u}{1-\varepsilon u}\right)^{\alpha}-i\right] \frac{d u}{u} \tag{4.9}
\end{equation*}
$$

where $|\varepsilon|=1$.
5. Some relations between $\mathbb{S}, \mathbb{S}_{\beta}^{*}, \mathbb{S}^{*}, \mathbb{S}_{a}, \mathscr{S}^{c}$

Let S^{c} denote the class of functions of the form (1.1) subject to the condition

$$
\begin{equation*}
\text { re }\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0 \quad \text { for } \quad z \in K_{1} \tag{5.1}
\end{equation*}
$$

A function f is is said to be starlike of order a, strongly starlike of order α and convex in the disc K_{R} if it satisfies there the conditions (1.4), (1.5) and (5.1), respectively.

The radii of starlikeness of order α, strong starlikeness of order a and the radii of convexity within the classes $S, S_{\beta}^{*}, S^{*}, S_{a}$, and S^{c} are given by the follwing theorems.

Theorem 5.1. If $f \in \mathbb{S}$ then f is strongly starlike of order a at least in the disc $K_{R(a)}$ where

$$
\begin{equation*}
R(\alpha)=\operatorname{th} \frac{\alpha \pi}{4} \tag{5.2}
\end{equation*}
$$

Theorem 5.2. If $f \in \mathbb{S}_{\beta}^{*}$ then f is strongly starlike of order at least in the disc $K_{R^{*}(\beta, a)}$, where

$$
R^{*}(\beta, \alpha)=\left\{\begin{array}{l}
1-\beta-\sqrt{(1-\beta)^{2}-(1-2 \beta) \sin ^{2} \alpha \pi}, \text { for } \beta \neq \frac{1}{2} \tag{5.3}\\
\sin \frac{\alpha \pi}{2} \quad \text { for } \quad \beta=\frac{1}{2}
\end{array}\right.
$$

The number $R^{*}(\beta, \alpha)$ is the best possible one. The extremal functions have the form

$$
\begin{equation*}
F_{\beta}(z)=z(1-\varepsilon z)^{-2(1-\beta)} \quad \text { where } \quad|\varepsilon|=1 \tag{5.4}
\end{equation*}
$$

Theorem 5.3. If $f \in S_{a}$ then f is starlike of order β at least in the disc $K_{R_{\star}(a, \beta)}$ where $R_{*}(\alpha, \beta)=\left(1-\beta^{1 / \alpha}\right) /\left(1+\beta^{1 / \alpha}\right)$. The number $R_{*}(\alpha, \beta)$ is the best possible one and the extremal functions have the form (4.9).

Theorem 5.4. Each function f of the class \mathcal{S}_{γ} is strongly starlike of arder α at least in the disc $K_{R(\gamma, a)}$, where

$$
R(\gamma, a)=\left\{\begin{array}{lll}
\tan \frac{a \pi}{4 \gamma} & \text { for } & a<\gamma \\
1 & \text { for } & \alpha \geqslant \gamma
\end{array}\right.
$$

The radius $R(\gamma, \alpha)$ is the best possible one and the extremal functions have the form (4.9).

Theorem 5.5. Each function f of the class \mathbb{S}_{a} is convex at least in the disc $K_{R^{c}(a)}$ where $R^{c}(\alpha)$ is the smallest positive root of the equation

$$
(1-r)^{1+a}(1+r)^{1-a}-2 a r=0
$$

The radius $R^{c}(\alpha)$ is the best possible one and the extremal functions have the form (4.9).

Taking $\beta=1 / 2$ in Theorem 5.9. in view of the prelation $\mathbb{S}^{c} \subset \mathbb{S}_{1 / 2}$ we obtain:

Theorem 5.6. If $f \in \mathbb{S}^{c}$ then f is strongly starlike of order a at least in the disc $K_{R_{c}(\alpha)}$, where

$$
R_{c}(\alpha)=\sin \frac{\alpha \pi}{2}
$$

and the value $R_{c}(\alpha)$ is the best possible.

REFERENCES

[1] Brannan, D. A. and Kirwan W. E., On some classes of bounded univalent functions, J. London Math. Soc., 1 (1969), 413-443.
[2] Hayman, W. K., Multivalent functions, Cambridge Univ. Press. 1958.
[3] Jenkins, J. A., On values omitted by univalent functions, Amer. J. Math., 2 (1953), 406-408.
[4] Lewandowski, Z., On circular symmetrization of starshaped domains, Ann. Univ. Mario Curie-Skłodowska, Sec. A, 17 (1963), 35-38.
[5] Spaček, L, Přispěvek k teorii funkcji prostych, Časopis Pẽst. Mat., 62 (1933), 12-19.
[6] Stankiewicz, J., Quelques problèmes extrémaux dans les classes des fonctions a-angulairement étoilées, Ann. Univ. Marie Curio-Skłodowska (to appear).

STRESZCZENIE

W pracy tej rozpatrywana jest pewna podklasa funkcji gwiaździstych określona warunkiem (1.5). Podana jest interpretacja geometryczna tej klasy oraz twierdzenia dotyczace symetryzacji kołowej i promieni wypukłości, gwiaździstości, a-gwiaździstości itp.

PEЗЮME

В работе рассмотрен некоторый подкласс звездообразных функций, определенных условием (1.5). Дана геометрическая интерпретация этого класса и теоремы о симметризации Гойа и радиусах выпуклостей, зведообразности, α-зведообразности и т. п.

