ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. XXII/XXIII/XXI	IV, 27	SECTIO A	1968/1969/1970
---------------------	--------	----------	----------------

Instytut Matematyki, Uniwersytet Marii Curie-Sklodowskiej, Lublin

JAN STANKIEWICZ

On a Family of Starlike Functions

O pewnej rodzinie funkcji gwiaździstych

О некотором классе ввездообразных функций

1. Introduction

Let S denote the class of functions f(z) of the form

$$(1.1) f(z) = z + a_2 z^2 + \dots$$

analytic and univalent in the disc K_1 ; here K_r denotes the disc $\{z: |z| < r\}$. Let S^* be the subclass of S consisting of functions mapping the disc K_1 onto domains starlike with respect to the origin. It is well known that $f \in S^*$, iff f has the form (1.1) and satisfies the condition

Ball, for 0 = a = 1, and to

or the equivalent condition

(1.3)
$$\left| \arg \frac{zf'(z)}{f(z)} \right| < \frac{\pi}{2}, \quad \text{for} \quad z \in K_1.$$

Various authors investigated the families of α -starlike functions that is functions $f \in S$, which are subject to the condition

(1.4)
$$\operatorname{re}\frac{zf'(z)}{f(z)} > a,$$

for $z \in K_1$ and fixed $\alpha, 0 \leq \alpha < 1$, which is more restrictive than the condition (1.2). Taking $\alpha = 0$ in (1.4) we obtain the class S^* .

It is possible to restrict the condition (1.3) in an analogous way:

Definition 1.1. A function $f \in S_a$, if it has the form (1.1) and is subject to the condition

(1.5)
$$\left|\arg\frac{zf'(z)}{f(z)}\right| < a\frac{\pi}{2},$$

for $z \in K_1$ and a fixed $a, 0 < a \leq 1$.

A function f of the class S_a is said to be strongly starlike of order a (cf. [1]).

The aim of the present paper is to investigate the class S_a . We shall give the geometrical interpretation of functions of this family and prove a theorem connected with the circular symmetrization of strongly starlike domains. We shall use latter theorem to solve some extremal problems within the family S_a .

Let us observe that, if $0 < a_1 \leq a_2 \leq 1$, then

$$S_{a_1} \subset S_{a_2} \subset S_1 = S^*.$$

2. Strongly starlike domains and their connection with the class S_{a} .

Let a be a fixed number from the interval $\langle 0, 1 \rangle$.

Definition 2.1. A domain D containing the origin is said to be strongly starlike of order a, if any point w_0 of the complementary set $E \setminus D$ of D is the vertex of an angle of measure $(1-a)\pi/2$ also contained in $E \setminus D$ and bisected by the radius vector through w_0 .

We shall denote by G_a the family of all domains strongly starlike of order *a*. Let us observe that, if $0 < a_1 \leq a_2 \leq 1$, then

$$G_{a_1} \subset G_{a_2} \subset G_1,$$

where G_1 is the family of all domains starlike with respect to the origin.

We shall give now some properties of the domains of the family $G_a, a < 1.$

Theorem 2.1. If
$$D \in G_a$$
 for $0 \leq a < 1$, and $w_0 \in E \setminus D$, then

$$(2.1) D \subset H(w_0, a),$$

where $H(w_0, a)$ is the Jordan domain bounded by arcs of logarithmic spirals joining the points $w_0, -w_0 \exp{\{\pi \tan(a\pi/2)\}}$ and intersecting the radius vectors at an angle $(1-a)\pi/2$.

Corollary 1.1. If $D \in G_a$ for some fixed $a, 0 \leq a < 1$, then

$$(2.2) D \subset K_{o}$$

where

 $\varrho = w_0 \exp\left\{\pi \tan\left(\frac{\alpha \pi}{2}\right)\right\},\,$

and w_0 is an arbitrary point belonging to $E \smallsetminus D$.

Theorem 2.2. If $\{D_n\}$ is an increasing sequence of domains of the family G_a which tends in Carathéodory's sense to a domain D, then also D belongs to the family G_a .

The connection between the class S_a and the family G_a is illustrated by the following theorems:

Theorem 2.3. If $f \in S_a$, then for each $r, 0 < r \leq 1$, the domains $F(K_r)$ belong to the family G_a .

Theorem 2.4. If a function $g(z) = a_1 z + a_2 z^2 + ...$ is analytic and univalent in K_1 and maps K_1 onto a domain D of the family G_a , then the function $f(z) = g(z)/a_1$ belongs to the class S_a .

These theorems were proved by using the connection between strongly starlike domains of the order α and the so-called β -spirallike domains.

Theorem 2.5. If $f \in S_a$, then the domains $f(K_r)$, $0 < r \leq 1$, have the following property: each logarithmic spiral with the focus at the origin intersecting the radius vectors at an angle not less than $(1-a)\pi/2$, consists of two arcs one of which lies entirely inside $f(K_r)$, whereas the other one lies entirely outside $f(K_r)$.

In other words: domains of the family G_a are β -spirallike domains for each β , $|\beta| \leq (1-a)\pi/2$. From this we obtain

Corollary 2.2. The class S_{μ} is an intersection of two classes:

(2.3)
$$S_a = S_{(1-a)\pi/2} \cap S_{-(1-a)\pi/2},$$

where \tilde{S}_{β} is a subclass of β -spirallike functions in \tilde{S} paček's sense [5], i.e. $f \in S$ and f satisfies the condition:

$$\operatorname{re}\left\{e^{-ieta}rac{zf'(z)}{f(z)}
ight\}>0$$
 .

3. Circular symmetrization of domains of the family G_a

Let D be a domain containing the origin and let D^* be a domain obtained from D by circular symmetrization (for the definition of circular symmetrization cf. e.g. [2]).

Z. Lewandowski showed [4] that $D \in G_1$ implies $D^* \in G_1$. As shown by the present author in his thesis, an analogous result also holds for strongly starlike domains of order a.

Theorem 3.1. If $D \in G_a$ then also D^* belongs to G_a .

Theorem 3.1. leads to the solution of an extremal problem similar to that solved by J. A. Jenkins [3] for the whole class S.

Let $L(r, f), f \in S$, denote the linear measure of the circle |w| = romitted by the values of the function $w = f(z), z \in K_1$. J. A. Jenkins [3] determined the exact value

$$l(r) = \sup_{f \in S} L(r, f)$$

her coudition statuted and

Z. Lewandowski [4] solved an analogous result for the class $S^* = S_1$. We shall give here an analogous result for the class S_a . To this end we first state:

Theorem 3.2. If $f \in S_a$, 0 < a < 1, then the domain $F(K_1)$ contains the disc K_r , where

$$r_{a} = \exp \int_{0}^{1} \left\{ \left[\frac{1-t}{1+t} \right]^{a} - 1 \right\} \frac{dt}{t} = \exp \left\{ \frac{\Gamma'\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)} - \frac{\Gamma'\left(\frac{1+a}{2}\right)}{\Gamma\left(\frac{1+a}{2}\right)} \right\}$$

and is contained in the disc K_{ρ} , where $\rho = \exp{\{\pi \tan{(a\pi/2)}\}}$.

Theorem 3.3. For each function $f \in S_a$ and $r \in \langle r_a, 1 \rangle$ the inequality

$$L(r,f) \leqslant 2r\varphi(r)$$

holds, where $\varphi(r)$ is determined by the system of equations

$$\ln r = \int_{0}^{1} \left\{ \left[\frac{\sqrt{1 - 2t\cos\gamma + t^2}}{1 - t} \right]^a - 1 \right\} \frac{dt}{t},$$
$$\varphi(r) = \int_{0}^{\gamma} \left[\frac{\cos\theta - \cos\gamma}{\cos(\theta/2)} \right]^a d\theta.$$

The equality in (3.2) is obtained for the function

$$F(z) = z \exp \int_{0}^{z} \left\{ \left[\frac{\sqrt{1-2u\cos+u^2}}{1+u} \right]^a - 1 \right\} \frac{du}{u},$$

which maps K_1 onto the domain $F(K_1)$ bounded by a suitable arc of the circle |w| = r of length $2r\varphi(r)$ and by two arcs of logarithmic spirals emanating from the end points of this circular arc respectively and ending at their point of intersection.

4. A connection between the class S_a and the class P of functions of positive real part

Let P denote the class of functions p(z) of the form

(4.1)
$$p(z) = 1 + p_1 z + p_2 z^2 + ...$$

that are analytic in the unit disc K_1 and satisfy the condition

It follows from the definition of the class S_a that if $f \in S_a$ then $p(z) = [zf'(z)/f(z)]^{1/a}$ belongs to P and conversely, if $f(z) = z + a_2 z^2 + \ldots$ satisfies the condition $zf'(z)/f(z) = p^a(z)$, where $p \in P$ then f belongs to S_a .

178

Copsequently we obtain

Theorem 4.1. A function f belongs to the class S_a if and only if there exists a function $p \in P$ such that

(4.3)
$$f(z) = z \exp \int_{0}^{z} \frac{p^{a}(u) - 1}{u} du,$$

holds.

Using (4.3) one can easily prove the following **Theorem 4.2.** If a function f belongs to S_a then for |z| = r < 1 we have

(4.4)
$$\left(\frac{1-r}{1+r}\right)^a \leqslant \operatorname{re} \frac{zf'(z)}{f(z)} \leqslant \left(\frac{1+r}{1-r}\right)^a$$

(4.5)
$$\left(\frac{1-r}{1+r}\right)^{a} \leq \left|\frac{zf'(z)}{f(z)}\right| \leq \left(\frac{1+r}{1-r}\right)^{a},$$

(4.6)
$$\left|\arg\frac{zf'(z)}{f(z)}\right| \leq 2\alpha \arctan r,$$

(4.7)
$$r \exp \sum_{n=1}^{\infty} \left[\sum_{k=0}^{n} (-1)^{k} {a \choose k} {-a \choose n-k} \right] \frac{r^{n}}{n} \leq |f(z)|$$

$$\leq r \exp \sum_{n=1}^{\infty} \left[\sum_{k=0}^{n} (-1)^{k} \binom{-a}{k} \binom{a}{n-k} \right] \frac{r^{n}}{n}$$

(4.8)
$$\begin{pmatrix} \frac{1-r}{1+r} \end{pmatrix}^a \exp \sum_{n=1}^{\infty} \left[\sum_{k=0}^n (-1)^k \binom{a}{k} \binom{-a}{n-k} \right] \frac{r^n}{n} \leq |f'(z)| \\ \leq \left(\frac{1-r}{1+r} \right)^a \exp \sum_{n=1}^{\infty} \left[\sum_{k=0}^n (-1)^k \binom{-a}{k} \binom{a}{n-k} \right] \frac{r^n}{n}.$$

The estimates (4.4) - (4.8) are sharp. The extremal functions have the form

(4.9)
$$F(z) = z \exp \int_{0}^{z} \left[\left(\frac{1 + \varepsilon u}{1 - \varepsilon u} \right)^{\alpha} - 1 \right] \frac{du}{u}$$

where $|\varepsilon| = 1$.

5. Some relations between S, S^*, S^*, S_a, S^c

Let S^c denote the class of functions of the form (1.1) subject to the condition

(5.1)
$$\operatorname{re}\left\{1+\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\right\} > 0 \quad \text{for} \quad z \in K_1.$$

A function f is is said to be starlike of order a, strongly starlike of order a and convex in the disc K_R if it satisfies there the conditions (1.4), (1.5) and (5.1), respectively.

The radii of starlikeness of order *a*, strong starlikeness of order *a* and the radii of convexity within the classes S, S^*_{β}, S^*, S_a , and S^c are given by the following theorems.

Theorem 5.1. If $f \in S$ then f is strongly starlike of order a at least in the disc $K_{R(a)}$ where

(5.2)
$$R(a) = th \frac{a\pi}{4}$$

Theorem 5.2. If $f \in S^*_{\beta}$ then f is strongly starlike of order a at least in the disc $K_{R^*(\beta,\alpha)}$, where

(5.3)
$$R^{*}(\beta, \alpha) = \begin{cases} 1 - \beta - \sqrt{(1 - \beta)^{2} - (1 - 2\beta)\sin^{2}\alpha\pi}, \text{ for } \beta \neq \frac{1}{2} \\ \sin\frac{\alpha\pi}{2} & \text{for } \beta = \frac{1}{2} \end{cases}$$

The number $R^*(\beta, a)$ is the best possible one. The extremal functions have the form

(5.4)
$$F_{\beta}(z) = z(1-\varepsilon z)^{-2(1-\beta)}$$
 where $|\varepsilon| = 1$

Theorem 5.3. If $f \in S_a$ then f is starlike of order β at least in the disc $K_{R_{\bullet}(\alpha,\beta)}$ where $R_{*}(\alpha,\beta) = (1-\beta^{1/\alpha})/(1+\beta^{1/\alpha})$. The number $R_{*}(\alpha,\beta)$ is the best possible one and the extremal functions have the form (4.9).

Theorem 5.4. Each function f of the class S_{γ} is strongly starlike of order a at least in the disc $K_{R(\gamma,a)}$, where

$$R(\gamma, a) = egin{bmatrix} an a\pi & for & a < \gamma, \ 1 & for & a \geqslant \gamma. \end{cases}$$

The radius $R(\gamma, \alpha)$ is the best possible one and the extremal functions have the form (4.9).

Theorem 5.5. Each function f of the class S_a is convex at least in the disc $K_{R^c(a)}$ where $R^c(a)$ is the smallest positive root of the equation

$$(1-r)^{1+a}(1+r)^{1-a}-2ar = 0.$$

The radius $R^{c}(a)$ is the best possible one and the extremal functions have the form (4.9).

Taking $\beta = 1/2$ in Theorem 5.9. in view of the relation $S^c \subset S_{1/2}$ we obtain:

180

Theorem 5.6. If $f \in S^c$ then f is strongly starlike of order a at least in the disc $K_{R,d(a)}$, where

$$R_c(a) = \sin \frac{a\pi}{2}$$

and the value $R_c(\alpha)$ is the best possible.

REFERENCES

- [1] Brannan, D. A. and Kirwan W. E., On some classes of bounded univalent functions, J. London Math. Soc., 1 (1969), 413-443.
- [2] Hayman, W. K., Multivalent functions, Cambridge Univ. Press. 1958.
- [3] Jenkins, J. A., On values omitted by univalent functions, Amer. J. Math., 2 (1953), 406-408.
- [4] Lewandowski, Z., On circular symmetrization of starshaped domains, Ann. Univ. Mario Curie-Skłodowska, Sec. A, 17 (1963), 35-38.
- [5] Špaček, L, Přispěvek k teorii funkcji prostych, Časopis Pest. Mat., 62 (1933), 12-19.
- [6] Stankiewicz, J., Quelques problèmes extrémaux dans les classes des fonctions a-angulairement étoilées, Ann. Univ. Marie Curie-Skłodowska (to appear).

STRESZCZENIE

W pracy tej rozpatrywana jest pewna podklasa funkcji gwiaździstych określona warunkiem (1.5). Podana jest interpretacja geometryczna tej klasy oraz twierdzenia dotyczące symetryzacji kołowej i promieni wypukłości, gwiaździstości, a-gwiaździstości itp.

РЕЗЮМЕ

В работе рассмотрен некоторый подкласс звездообразных функций, определенных условием (1.5). Дана геометрическая интерпретация этого класса и теоремы о симметризации Пойа и радиусах выпуклостей, зведообразности, *а*-зведообразности и т.п.