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Sharp Estimates of |P(w)|, Arg[P(w)/w], |P'(w)|, ArgP’(w)
in a Class of Univalent Polynomials

Ostre oszacowania |P(w)|, Arg[P(w)/w], |P’(w)|, ArgP’(w)
w klasie wiclomianéw jednolistnych

Tounue ouenku |P(w)|, Arg[P(w)/w], |[P' (w)|,
Arg P’(w) B Kiacce OAHOJMCTHHX NOJHHOMORB

1. Introduction and statement of results

The author is concerned with univalent polynomials of the form

(1) P(w) = wiCyw? (C, #0)
and
2) P(w) = w+Cyw? +Cyw®  (Cy # 0),

considered in the largest domain D such that 0« D and |[P(w)| < 1, for
we D. Given P let P denote its analytic extention to the whole finite
plane.

Let p, denote the class of all such polynomials of the form (1) and
p: — the class of all such polynomials of the form (1) or (2). The classes
in question were introduced by Charzynski [1] and applied, together with
analogous classes of higher orders, to various basic problems in the theory
of univalent functions (cf. e.g. [4]and [3]). The coefficient problem within
these classes has been investigated in [2] and [5].

The following results are obtained by the author.

Theorem 1. Given an arbitrary w let r = |w| and let sup stand for
sup. Then
Pap,y

(3) sup |P(w)| = sup|P(»)| = r+}r?,
4) supArg [P (w)/w] = sup Arg[P(r)/r] = arctan[r(16 —r2) ],
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(5)
(6)
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sup|P’(w)| = sup|P'(r)] = 1+}r,
supArg P’ (w) = supArgP’(r) = arctan[r(4 —r?) ]+ q,

where a = Argw.
All the extremal functions are given by the formulae:

(7)
(8)
9)

P*(w) = w+}e*®w? in the case of (3) and (5),
P*(w) = w+ 5 [r—1(16 —r?)]e ®*w? in the case of (4),

P'(w) = w—} [r—i(4—r)i]e **wt in the case of (6),

where 3 18 real.

Theorem 2. Given an arbitrary w let r = |w| and let sup stand for

sup. Then

P'mg

(10) sup|P(w)| = sup|P(r)| = & r[(27+73) + 1],

(11) sup Arg [P(w)/w] = supArg[P(r)/r] = arctan[2r(27 —4r3)~#],
12) sup|P'(w)| = sup|P’(r)| = ; [9+2r2+2r(12 +r2)H],

(13)  supArgP’(w) = supArgP’(r)

= arctan {4r[(9 — r?)/(9 —4r2) (27 —4r?) ]} + a.

Al the extremal functions are given by the formulae:

(14) P*(w) = w+2(27+r?) Ve Pw2+ 2 [(27 + 72) + r](27 + r2)"H e~ 20 4p3

(15)

(16)

a7)

in the case of (10),
P*(w) = w +2i(27 —4r2)} (27 —2r?)'e P w2 —
—2(27—2r%)" e w3 in the case of (11),
P*(w) = w+3 12+ r?) te w2+
+25 [(A2 + 72t +r](12 + 72)~1e % w3 in the case of (12),
P*(w) = w+g; {r(9—4r?) —i[(9—4r*) X
X (27 —4r%)(9 —r) P} (r? —3) 'e Pw? 2 x
X {8r¢ —72r2 +243 +27i [(9 —47?) (27 —472) (9 —r?)]H} X

X (r2—3)7'e %03 in the case of (13),

where ¥ is real.
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The proofs are based on a theorem of Charzynski [1], (cf. Section 2)
and, in the case of py, on the same basic lemma (cf. Section 3) which is hoped
to be of an independet interest (cf. Section 5).

The theorems proved in this paper were presented to the Conference
on Analytic Functions in Lublin on August 23, 1970 (cf. [6]).

Here I should like to express my thanks to Prof. Z. Charzynski for
suggesting the problem and to Doc. J. Lawrynowicz for helpful suggestions
concerning the proofs.

2. The case of p,

We proceed to prove Theorem 1. Our proof is based on the following
known results (cf. (1], p. 20, [7], p. 122, and [2], p. 28).

Theorem A. If E is a holomorphic function of the complex variables
23y cuny 2, (k< m) in a sufficiently large domain then in the class p,, there
exist extremal polynomials for which the functional re E(C,, ..., C,) attains
its maximum. Moreover, if

(18) P'(w) = w+Crw?+... +Chw”  (Cp # 0, k< n<m)

18 such a polynomial, w,, ..., w; denote all the distinct zeros of the derived
polynomial, and y,...,y; — the multiplicity of these zeros, respectively
then w,,...,w, lie on the boundary of the domain up., and there exist
numbers p, > 0(4 = 1,...,1) satisfying the relations

res, {P* (w) P (w) /w?P* (w)} = ¢z (A =1,...,1),
where

k k
D, (w) = Nt~ Z(v—x—’.»-l)C:_,HJE;,(C;a ey Oy 0, =1,
2 V=X

M=

Theorem B. Any polynomial, satisfying the necessary condition for-
mulated in Theorem A, belongs to the class p,,.

We confine ourselves to that part of Theorem 1 which concerns
|P(w)|, since the proof of the remaining parts is quite similar.

We adopt the notation of Theorem A. By Theorem A there exists
in p, an extremal polynomial

P'(w) = w+Cw? (C; #0)
for which the functional

re E(C,) = re log|P(w)| = re log(r+ C,r?)
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attains its maximal value and, consequently, the estimate |P(w)| <
|P*(r)| is best possible in p,. Moreover, w, and, consequently, C; can be
obtained by solving the system of algebraic equations

w, + 3wl =ay  (loy = 1),
1+2Ciw, =0,
res,, [P*(w) @ (w)/w?P* (w)] = o, (01> 0),
where @(w) = r/w(1+C;r). Direct calculation gives that w, = 2 or —2,
where the first solution can easily be excluded. Consequently C; = }
and, since g, = 7/(4+7)> 0 and o, = —1 i.e. o, lies on the unit circle,

then, by Theorem B, we conclude that (3) holds and all the extremal
functions are given by (7) with real J.

3. The basic lemma

In this section we formulate and prove the basic lemma announced
in Section 1.

Lemma 1. Let P be a polynomial of the form (2) such that the zeros
w, and w, of ils derivative satisfy relations

(19) |P(w,)| = [P(w,)] =1.
Then either

(20) [wy] = ||

or

(21) 1/jw,] +1/|wg| = 3.

Proof. Relations P(w,) = P(w,) = 0 yield C, = — (w0, +w,)/(2w,w,)
and Cy = 1/(3w,w,), whence (19) can be written in the form

(22) 35 (0, By [0, ) [w, Wy —3 (W Wy + W, Wao) + 9, W, ] = 1,
(23) s (W W, [w, ) [9w, W, — 3 (w, By + 0, W,) +w,W,] = 1.
Subtracting (23) from (22) we obtain

2(|wy]? — [wa|?) = 9(|wy|?/[10s]® — [10,]2/|w,]?)

whence either (20) or (21) follows.

4. The estimates for p,

We proceed to prove Theorem 2. As in the case of Theorem 1 our
proof is based on Theorems A and B. We confine ourselves to that part
of Theorem 2 which concerns |P(w)| since the proof of the remaining parts
is quite similar.
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We adopt the notation of Theorem A. By Theorem A there exists
in py an extremal polynomial

(24) P'(w) = w+Ciw+Ciw® (O # 0)
for which the functional
(25) re E(C,, C;) = re log|P(w)| = re log(r+C,r*+C,7?%)

attains its maximal value and, consequently, the estimate |P(w)| <
|P*(r)| is best possible in p;. Moreover, w,, w, and, consequently, C;, C;
can b. obtained by solving the system of algebraic equations

(26) we+ Cowi+ O wp =0, (| =1),
217 1+ 2C; w, + 3Cs wi = 0,
(28) res,, [P* () ®(w)/[w*P* (w)] = ¢p (ox > 0),

where ¥ = 1,2 and
?(w) = r(1+2C;r+rw ') /[w(d+Csr+C5rY)].

We eliminate first C; and C;: equations (27) yield C; = —(w,+
+w,)/(2w,w;) and C; = 1/(3w,w,).

Next we consider, separately, the cases P*(w) = (1 —w/w,)* and
P*(w) = (1 —w/w,)(1 —w/w,), where w, # w,. It can easily be checked
that the second possibility is the case. Then equations (28), after elimina-
ting o, become

(29) (Bwy —w,) (W, —7) /(w, —w,) [6w, w, — 37 (w0, +w,) +27]

= (3@, —,) (W, —1) [{(W, —W,) [6W, W, — 37 (W, +W,) +2r1]},
(30) (3w, —w,) (w, —7) [(wy —w,) [6w,w, — 37 (w0, +w,) +272]

= (3%, —B,) (B, —7) |{(B, —W,) [6®, W, —3r (W, +W,) +-2r%]}.

Now we apply Lemma 1. By this lemma we have again to consider
two possibilities: (23) and (22). The first possibility yields

03] = (3+§ lwy 2 —3Jwyl ' <}
and
031 = G il = =5 oo < 55

Hence |P*(w)| < |P(w)| for every w, where
P(w) = w+§l/§w2 +2 w3

is a polynomial belonging to py (cf. [2], p. 27). Then the maximum of
reE(C,, C,) is attained in the case (22).
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Let us introduce the notation
jlw,| = |w,| = t,expiArgw, = 8,;,exp 1 Argw, = s,.

Then the first of equations (26) and the equations (29), (30) give
(31) 72[10 —3 (8 + 82)/(3,8,)] = 36
(32) (8, —38,) (78, —7)[[67%8,8, —3rT (8,1 8,)+272]

= —8,(8,—38,) (v —78,)[[612—3rz (8, + 8,) +2728,84],
(33)  (8,—38,)(18,—7)/[6728,8, —3rT(8,+ 8;) +2r?]

= —8,(8,—38,)(r —178,)/[672 —377(8,+ 8,) -+2r?s,8,].

Now we add and subtract the both sides of (32) and (33), and introduce
the notation
8+8, =8, 8,8, =9.

Consequently, (32) and (33) give
(34) [t(8B6—3s%)+278]/[6728 —3r18 +2r2]

= —[r(86—383)+2rd8]/[672 —3rrs +2734],
(33) (318 —4r)/[6126 —3r18 +2r?] = (3t8 —4rd)/[612 —3rrs +2724].

Finally, we rearrange equation (35) and divide the both sides of (35)
by the corresponding sides of (34). Thus we obtain

(36) 3728(1 —8) —4r13(1 —82%) +r2rs(1—4) = 0,
(37) 318(9 —27%) — r(8 +1)(27 —872) —2r218 = 0.

Here we recall that we have also the third equation for s,,s, and =,
namely (31).

In order to solve the system (31),(36), (37) we observe that (36)
implies the following possibilities:

(@) 6 =1, (b) 3t?s—4rr?(140)+rirs =0.
We begin with (a). In this case (37) and (31) become

(38) 318(9 —272) —2r (27 —872) —2r213 = 0
and
(39) 37282 —167%2+36 = 0

respectively. Hence, after eliminating 8, we get
(40)  144¢2—12(135 +8r2)t? +8(729 +81r2 +2r%)t —
—9(729 +1356r2+4r%) =0
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where ¢t = 72, Equation (40) have three solutions:
(41) ty = g5 (472 4-27), 8, = $[27T 4+ 12 —r(27 4+ r3)}],
ty =3 [2T + 72 +7(27 +r2)).

In order to make the proper choice we notice that, by (39) and 8 =1,
wo have s = 3¢[(41—9)/(3t)]t, where ¢ =1 or -—1. Consequently

C: = —(w, 4 w,)[(2w,w,) = —} st~} = —et7'[(41—9)/3]¢,
C; = 1/(3w,w;) = 1/(3t),

whence
|P*(w)] = |r+Cer2+Cyr?| = 7|1 — et [(42—9)/3]r +1/(3t)r3).
The above expression attains its maximum for ¢ =, and ¢ = —1 or

t=1t;and e =1. If t =1¢; and ¢ = 1, then
8 =4 [274+2r2 +2(27+r2) ] > 2
which contradicts the definition of s:
8 = 8,18, = expi Argw, + exp 1 Argw,.
Thus t =t, and ¢ = 1, and this yields
w, = H—[2T+r) —r]+i(—1)2 271 —r2 727+ (k =1,2),
0 =2/2T+r), €5 = & (27 +r) +7)/27 + 1),
01 =10y =(271+7) >0
o = — {7+ —ri(—1)2t[2T—r2+r@T+r)' ]} (k =1,2),

i.e. o, and o, lie on the unit circle. Then, by Theorem 3, we conclude
that (10) holds and all the extremal functions are given by (14) with real 9,
provided that (b) gives either the same result or does not correspond to
the extremum of |P(w)|.

Thus there remains to consider (b). Under the same notation as in
the preceding case we get t = r% s = 6+1, |8 =1, whence |P*(w)
= ; r|36—1| < 4 r. Consequently (b) does not correspond to the
extremum of |P(w)|, and this completes the proof.

5. Conclusion

The considerations of Section 4 show that in the case of the four
functionals discussed there Lemma 1 enables us to simplify the system
of equations arising from Theorem A because (20) is the case, while (21)
can easily be excluded. Thus it is natural to consider the two following
problems:
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(i) Find an analogue of Lemma 1 in the case of polynomials of higher
degrees,

(ii) Determine the class of all functionals E appearing in Theorem
A such that the zeros w,, ..., w, of the derivative of an extremal poly-
nomial satisfy the relations:

[0 = |Waly +euy [Wy| = [0 (L even),
|wa] = [0y o0y |05 = [07_y[, imw; =0 (I odd).

The author has tackled the first problem and got the following
partial result.

Lemma 2. Let
P(w) = w+Cyw?+Cyw?+C,wt (C, +# 0)

and let the zeros w,, w, and w, of the derivative P’ satisfy relations

(42) |P(w;)] = |P(w,)| = |P(wy)| =1,
and
(43) [wy| # [wy], |ws] F# |w0,.

Then we have either (20) or

(44) 33 —144(1/[w;] +1/jwy| +1/jw3]) + [12 o3| (15 w5] — 4 |w}]) —
— 671 (113 205 =75 [13]) 1/ [ e03] (03] — |a0]]) (203 — e}]) ]+
+ (12 w3 (03] — [007]) — 625 ([205] — [03]) ] [120]] + [207] —32ow5] +
+144 (1 /| +1/|w3]) 03] +6n, s/ |w)] —2 (11 +n2 +na)1/[(12 3] —
—673) (|3] — |w0}]) (Joo3| — [e03])] = O

where 7, = W, Wy +w, W,y 1, = W, Wy +WsWy,y Py = Wy Wy +W, W, .
Moreover, (20) holds if and only if

(45) Argw, = } (Argw, + Argw,).
Proof. Relations P(w,) = P(w,;) = P(wg) = 0 yield
Cy = — (w,w, +w,w, +wgw,) (2w, 2,Ws), C3 = (W, +w, +w,) /(3w waws),
C, = —1/(4w,w,w,),

whence (42) can be written in the form

(46)  13; [w, B,/ (w0, B,,,,,) | (1, )% +36 10,8, w,, B,, + 410, B, (10, B, +10,, B,,)
—12[(20,1;)* (0, W, + 0y Wy,) + (0, W) (0, Wy +0, ;) ] —
—2w,, Wy, (W, Wy + 10, W, +w,;, W,, +W,, Wy + W, W,, +0,, ;) +
+ 6 (w, W, +w,w,) (w, W, +w, W) =1

where | = —}(3k*—11k+4), m = }(3k2—13k+16), (k = 1, 2, 3).
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Denote the left-hand side of (42) by A, and consider relations
‘43_‘41 Az_Aa

(47) A —A, =0 5 -
VTR el — w0 — |wi]

’

what is justified in view of (43). Denote again the left-hand side of relations
(47) by B, and By, respectively. The left-hand side of the relation

[2 2] (03] — 0%]) — 74 (03] — [u03))]
[le3] (J3] — [wf]) (fe3] — jw3)]
(B 03] — 6(2 [ee2] — )y [203] — 03]
[2 |w2| — ms + 6 (1, [w}] — 72 |w3])]
is exactly the product of the expressions (20), (44) and |w}| + |w?|.

Finally, by (47), we easily verify that (20) holds if and only if (45)
holds.

+B2=0
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STRESZCZENIE

Praca dotyczy wielomianow jednolistnych postaci (1)-i (2) rozwa-
zanych w najwiekszym obszarze D takim, ze 0e D oraz |P(w)] <1 dla
we D. ~

Dla danego wielomianu P niech P oznacza jego przedluzenie anali-
tyczne na caly plaszezyzne otwarta. Niech dalej p, oznacza klase wszyst-
kich wielomianéw postaci (1) zaé p, klase wszystkich wielomianéw po-
staci (1) lub (2). Klasy te zostaly wprowadzone przez Z. Charzynskiego
w 1958 r. W pracy uzyskano nastgpujace wyniki:

Twierdzenie 1. Dla dowolnego w mniech r = |w|. W przypadku p,
zachodzi oszacowanie (3). Wszystkie funkcje ekstremalne dane sq wzorem (7).

Annales 10
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Twierdzenie 2. Dla dowolnego w niech r = |w|. W przypadku p®
zachodzi oszacowanie (10). Wszystkie funkcje ekstremalne dane sq wzorem (14)-

Analogiczne wyniki uzyskano dla Arg[P(w)/w], |P’(w)| oraz Arg P’ (w).

Dowody 83 oparte na nastepujacym lemacie: Jedli P jest wielo-
mianem postaci (2), takim ze pierwiastki w,, w, jego pochodnej spelniaja
warunek (19), to zachodzi zwiazek (20) lub (21).

PE3IOME

B pabote paccmoTpelnibl OJHOMHMCTHBIE I[OJMHOMEI BHpa (1) u (2)
B Haubo:rbiueit odmacrit [J, takoit, yto Oe /[ 11 [P(w)| < 1 pua we [J.

s 3axaHHoro noauioma P nycte P 0603Hayaer ero aHa JIHTHYECKOe
OpPOXOMKeHIe HA ey OTKPHITYIO mtocKocTh. IIycTh xanbime p, o6o3Ha-
4aeT KJacC BceX MOIIHOMOB Biaa (1), a py — KJacc BCex IMOJIHOMOB
Buma (1) wm (2). Itu Kmaceo! ObIM BBeNcHBI 3. XamuHCKHM B 1958 r.

[ToxrydeHsl ciaenyiowue pesysbTaThbl.

Teopema 1. [Jaa npouseoasHozo w nycms v = |w|. IIpu cayyae p,
umeem mecmo oyeHka (3). Bce 3xcmpemaabHble gynkyuu onpedeaeHol no
gopmyae (7).

Teopema 2. /[Jaa npousso.bnozo w nycmb r = |w|. IIpu cayuae p,
usmeem mecmo oyexnka (10). Bce akcmpemaavivle ynkyuu onpedeaeHsl no
gopmy.e (14).

AHaslornyHble pe3yabTaThl IHouaydYeuol paa  Arg[P(w)/w], |P'(w)|,
a Takke ArgP’'(w).

Jlora3aTenbcTBA OCHOBaHbl HA ciegyloleii Jemme: ccau P ecrb
MO;IMHOMOM BUJIA (2), TAKUM, YTO HYJIHU 0, , W, €ro POI3BOIHO X UCIIOIHAIOT
yc.iosue (19), To nmeer mMecto (20) nau (21).



