# UNIVERSITATIS MARIAE CURIE-SKIODOWNKA 

 $I_{1} \mathrm{UBLIN}-\mathrm{POIONIA}$VOL. XXII/XXIII/XXIV, 14 SECTIO A<br>1968/1969/1970

Instytut Matematykj, Uniworaytet Marli Curic-Sklodowsklej, Lublin

## JAN KRZYZ

## An Extremal Length Problem*

O długości ekstremalnej pewnej rodziny krzywych
О әкстремальной длине некоторого сөмећства крииых

## 1. Introduction

Couformal invariauce of the extremal length and its well known behaviour under quasiconformal mapping give rise to many applications and form a very useful basis for tackling extremal problems in the geometric function theory.

Let us start with the well known problem of evaluating the extremal length $\Lambda\{\gamma\}$, or its reciprocal - the module $\bmod \{\gamma\}$ - of the family of all rectifiable Jordan curves $\gamma$ contained in the unit disk $\Delta$ and separating two fixed points $0, r(0<r<1)$ from the boundary $\partial \Delta$ of $\Lambda$.

It is well known that the evaluation of $\bmod \{\gamma\}$ is equivalent to the solution of Grötzsch's extremal problem: Consider the class $\{\boldsymbol{F}\}$ of all continua $F^{\prime} \subset \Delta$ such that $0, r \in F$ and $\Delta \backslash F$ is a ring domain. Find the extremal continuum $F_{0}$ such that the module $\bmod \left(\Lambda \backslash F_{0}\right)$ of the ring domain $\Delta \backslash \boldsymbol{F}_{0}$ is a maximum.

The extremal continuum $F_{0}$ shows to be the closed seginent $\left[0, r^{\circ}\right]$ and

$$
\begin{equation*}
\bmod (\Delta \backslash[0, r])=\nu(r)=\bmod \{\gamma\} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
v(r)=\frac{1}{4} K\left(\sqrt{1-r^{2}}\right) / K(r), \tag{1.2}
\end{equation*}
$$

[^0]$K(r)$ being the complete elliptic integral of Legendre. The extremal metric
$$
\varrho_{0}(z)=C|z(z-r)(1-r z)|^{-1}
$$
where $C$ is a positive constant, as well as the family of basic curves (for the definitions cf. e.g. [4]) are the same in both cases.

Suppose now that $a, b, c$ are three different, fixed points in the finite plane C. We may assume that

$$
\begin{equation*}
a+b+c=0 \tag{1.3}
\end{equation*}
$$

There exists an enumerable system $\{\Gamma\}_{k}, k=1,2, \ldots$ of families of closed, rectifiable Jordan curves $\Gamma$ containing $b, c$ inside and leaving $a$ outside such that for a fixed integer $k$ all $\Gamma$ belong to the same homotopy class with respect to $\mathbf{C}$ punctured at $a, b, c$. Each homotopy class is determined, for example by a simple Jordan arc joining $a$ to $\infty$ and omitting $b, c$. Let us now consider the extremal problem $\left(\mathbf{C}_{0}\right)$ : Evaluate $\sup _{k} \bmod \{\Gamma\}_{k}$.

The solution of $\left(C_{0}\right)$ is given, for example, in [2], or [9] and we quote this result here.

Let $\lambda(\tau)$ be the elliptic modular function (cf. [1], p. 270) and let $B$ be its fundamental region. The equation

$$
\begin{equation*}
\lambda(\tau)=\frac{c-b}{a-b} \tag{1.4}
\end{equation*}
$$

has a unique solution $\tau_{1} \in B$ and we have

$$
\begin{equation*}
\sup _{k} \bmod \{\Gamma\}_{k}=\frac{1}{2} \operatorname{Im} \tau_{1} \tag{1.5}
\end{equation*}
$$

A related extremal problem $\left(\mathbf{C}_{1}\right)$ was considered in [6], namely $\left(\mathbf{C}_{1}\right)$ : Let $\{\Omega\}$ be the class of simply connected domains in the finite plane $\mathbf{C}$ which contain $b, c$ and leave $a$ outside. Evaluate $\sup g(b, c ; \Omega)$, where $g(b, c ; \Omega)$ denotes the classical Green's function of $\Omega .{ }^{\{\Omega\}}$

As shown in [6] the extremal domain $\Omega_{1}$ is a slit domain $\mathrm{C} \backslash H_{1}$ where $H_{1}$ is the image arc of the segment $[0,1 / 2]$ under the Weierstrass 8 function with periods $1, \tau_{1}\left(\tau_{1} \in B\right.$ is defined by (1.4)).

Still another related problem $\left(\mathbf{C}_{2}\right)$ was investigated and solved in a rather qualitative way by Schiffer [10] with variational metods and also by Wittich [13]. For the case of collinear points $a, b, c$ the solution was obtained earlier by Teichmuller [12].
$\left(\mathbf{C}_{2}\right)$ : Let $F_{0}, F_{1}$ be disjoint continua in the extended plane $\overline{\mathbf{C}}$ such that $b, c \in F_{0}$, whereas $a, \infty \in F_{1}$ and $\overline{\mathbf{C}} \backslash\left(F_{0} \cup F_{1}\right)$ is a ring domain. Find the ring domain whose module is a maximum.

Again the extremal problems $\left(\mathbf{C}_{1}\right),\left(\mathbf{C}_{2}\right)$ can be restated as module or extremal length problems and show to be equivalent to $\left(\mathbf{C}_{0}\right)$. The extremal metric $\varrho_{0}$ as well as basic curves are the same in all three cases, as a routine extremal length reasoning shows; $\varrho_{0}$ has the form

$$
\begin{equation*}
\varrho_{0}(w)=C|(w-a)(w-b)(w-c)|^{-t}, \tag{1.6}
\end{equation*}
$$

where $C$ is a positive constant.
In the case $\left(\mathbf{C}_{2}\right)$ the extremal ring domain has the form $\mathbf{C} \backslash\left(H_{0} \cup H_{1}\right)$, where $H_{1}$ is the extremal continuum of $\mathrm{C}_{1}$ and $H_{0}$ is the image are of $\left[\frac{1}{2} \tau_{1}, \frac{1}{2} \tau_{1}+\frac{1}{2}\right]$ under $\wp\left(\cdot ; 1, \tau_{1}\right)$. Moreover, again

$$
\operatorname{nod}\left[\mathbf{C} \backslash\left(H_{0} \cup H_{1}\right)\right]=\frac{1}{2} \operatorname{Im} \tau_{1} .
$$

Let $\{\Gamma\}_{0}$ be the family of all rectifiable Jordan curves homotopic to the family of basic curves in $\left(\mathbf{C}_{0}\right)$ through $\left(\mathbf{C}_{2}\right)$. Thus we have

$$
\begin{equation*}
\bmod \{\Gamma\}_{0}=\frac{1}{2} \operatorname{Im} \tau_{1}=\bmod \left[\mathbf{C} \backslash\left(H_{0} \cup H_{1}\right)\right] . \tag{1.7}
\end{equation*}
$$

The solution of extremal problems $\left(\mathbf{C}_{0}\right)$ through $\left(\mathbf{C}_{2}\right)$ leads to many interesting applications in the theory of conformal and quasiconformal mapping (cf. e.g. [2], [6]).

On the other hand the problems $\left(\mathbf{C}_{0}\right)$ through $\left(\mathbf{C}_{2}\right)$ have their counterparts in the analogous problems ( $\Delta_{0}$ ) through ( $\Delta_{2}$ ) which are formally obtained on replacing the finite plane $\mathbf{C}$ by the unit disk $\Delta$. Thus for example in the problem $\left(\Lambda_{0}\right)$ we are led to determine the maximal value

$$
\begin{equation*}
\sup _{k}\left\{\gamma_{\} k}^{\prime}=M\left(z_{2}, z_{2}, z_{3}\right)\right. \tag{1.8}
\end{equation*}
$$

of the modules of fanilies $\{\gamma\}_{k}, k=1,2, \ldots$ of homotopic rectifiable Jordan curves $\gamma$ situated in the unit disk $\Delta$, containing inside the points $z_{2}, z_{3}$ and leaving outside $z_{2} \in \Delta$.

As soon as the points $z_{k} \in \Lambda, k=1,2,3$, are situated on a circle orthogonal to $|z|=1$, resp. $z_{3}=0$, whereas $z_{1}=\bar{z}_{2}$, the problems ( $\Delta_{0}$ ) through $\left(\Delta_{2}\right)$ can be reduced to the analogous problems $\left(\mathbf{C}_{j}\right)$ in the following manner. There exists in either case a line of symmetry, a circle orthogonal to $|z|=1$ which intersects $|z|=1$ at two points $\eta, \vartheta$. The sewing of $\Delta$ along two ares on $|z|=1$ with end points $\eta, \vartheta$ determined by identification of symmetric points on $|z|=1$ gives a Riemann sphere and the problems $\left(\Delta_{0}\right)$ through $\left(\Delta_{2}\right)$ can by solved due to the conformal invariance.

The solution in the general case is obtained by means of a marked Riemann surface $\Pi(\tau, 8)(\operatorname{Im} \tau>0,0<s<1 / 2$, or a II-triangle which is conformally equivalent to the unit disk punctured at $z_{j}$. We present both the geometric and analytic solutions of problems $\left(\Lambda_{0}\right)$ through $\left(\Lambda_{2}\right)$.

## 2. $\triangle$ and $I I$ triangles

We call an ordered triple $\left\{z_{1}, z_{2}, z_{3}\right\}=\left\{z_{1}, z_{2}, z_{3} ; \Delta\right\}$ of different points of the open unit disk $\Lambda$ a $\Delta$ triangle. A $\Lambda$ triangle is said to be normalized if $z_{3}=0$ and $z_{2}>0$. Obviously a $\Delta$ triangle represents a marked Riemann surface of hyperbolic type with three distinguished interior points.

Suppose that $\tau$ is an arbitrary complex number belonging to the fundamental region 13 of the modular function $\%$ and let $s$ be an arbitrary real number which satisfies $0<s<1 / 2$. I et $H$ be the inage are of the segment $[0,8]$ under the $\wp$ function of Weierstrass with periods $1, \tau$ and let $G$ denote the simply connected domain $C \backslash H$. Finally, put

$$
\begin{equation*}
a=\wp\left(\frac{1}{2}\right), \quad b=\wp\left(\frac{1}{2} \tau\right), \quad c=\wp\left(\frac{1}{2}+\frac{1}{2} \tau\right) . \tag{2.1}
\end{equation*}
$$

The marked Riemann suface $\{a, b, c ; G\}$ will be called a $I I$ triangle and denoted $\Pi(\tau, s)$.

It follows from the identity

$$
\begin{equation*}
\lambda(\tau)=\frac{\wp\left(\frac{1}{2}+\frac{1}{2} \tau\right)-\wp\left(\frac{1}{2} \tau\right)}{\wp 0\left(\frac{1}{2}\right)-\wp\left(\frac{1}{2} \tau\right)}, \tag{2.2}
\end{equation*}
$$

and also from (1.3), (1.4), (2.1) that the solution of $\left(\mathbf{C}_{0}\right)$ with all the curves confined to $G$ is the same as in the general case and is determined by $\tau$ by means of (1.5). We may also consider another marked Rieınann surface $P(\tau, s)(\tau \in B, 0<s<1 / 2)$ conformally equivalent with $\{a, b, c ; G\}$ which arises from the parallelogram $P=\left[0, \frac{1}{2}, \frac{1}{2}+\tau, \tau\right]$ as follows. We identify on each of the segments $(0, \tau),\left(\frac{1}{2}, \frac{1}{2}+\tau\right)$ the points symmetric with respect to the centre of either seginent; we also identify the points on $\left(s, \frac{1}{2}\right)$, $\left(\Omega+\tau, \frac{1}{2}+\tau\right)$ whose difference is equal to $\tau$. The points identified are supposed to be interior points. If the topology is lifted from the plane, we obtain a marked Riemann surface $P(\tau, 8)$ with distinguished points $\frac{1}{2}=\tau+\frac{1}{2}, \frac{1}{2} \tau, \frac{1}{2}+\frac{1}{2} \tau$ which will be called the basic parallelogram associated with $\Pi(\tau, s)$. Obviously $\wp(\cdot ; 1, \tau)$ realizes a one-to-one conformal mapping of $P(\tau, s)$ onto $I I(\tau, s)$, the slit $H$ being the image are of $[0, s]$.

We can now prove
Lemma 1. Given a $\Delta$ triangle there exists a unique conformally equivalent $\Pi$ triangle. Conversely, to each $I I$ triangle there corresponds a unique conformally equivalent, normalized $\Delta$ triangle.

The proof is based on a routine continuity argument, whereas the converse is a trivial consequence of Riemann mapping theorem.

## 3. Geometric solution of $\left(\Delta_{0}\right)$ through $\left(\Lambda_{2}\right)$

Suppose that we are given a $\Delta$ triangle $\left\{z_{1}, z_{2}, z_{3} ; \Delta\right\}$ and $\Phi$ maps it one-to-one conformally onto the $I I$ triangle $\Pi\left(\tau_{1}, s_{1}\right)=\{a, b, c ; G\}$. Let $\varphi$ be the inverse mapping. Consider now in $A$ any family $\{\gamma\}$ of all Jordan curves homotopic to each other with respect to 4 punctured at $z_{k}$ and separating $z_{2}, z_{3}$ from $z_{1}$ and $\partial \Delta$. Under $\Phi$ the curves $\{\gamma\}$ correspond to the curves of the family $\left\{I^{\prime}\right\}$ of Jordan curves in $F=\mathbf{C} \backslash H_{1}$ separating $b, c$ from $a$ and $\infty$. In this way the problems $\left(\Delta_{k}\right)$ are reduced to the corresponding problems $\left(\mathbf{C}_{k}\right)$ Using the equivalence of $\left(\mathbf{C}_{0}\right)$ through $\left(\mathbf{C}_{2}\right)$ we easily prove following theorems which yield the solution of $\left(\Delta_{0}\right)$ through $\left(1_{3}\right)$.

Theorem 1. Let $\{\gamma\}_{k}, k=1,2, \ldots$, be the enumerable system of families of closed, rectifiable Jordan curves $\gamma$ situated in the unit disk $\Lambda$, containing two fixed, different points $z_{2}, z_{3} \in \Delta$ inside and leaving $z_{1} \in \Delta$ outside and such that all $\gamma \in\{\gamma\}_{k}$ belong for a fixed integer $k$ to the same homotopy class with respect to $\Delta$ punctured at all $z_{j}$. Then

$$
\begin{equation*}
\sup _{k} \bmod \{\gamma\}_{k}=\frac{1}{2} \operatorname{Im} \tau_{1} \tag{3.1}
\end{equation*}
$$

where $\tau_{1}$ is the parameter $\tau$ of the II triangle conformally equivalent to $\left\{z_{1}, z_{2}, z_{3} ; \Delta\right\}$.

Theorem 2. Let $\{\Omega\}$ be the class of all simply connected domains $\Omega \subset \Delta$ such that $z_{2}, z_{3} \in \Delta$ and $z_{1} \in \Delta \backslash \Omega$. If $g\left(z_{2}, z_{3} ; \Omega\right)$ denotes the Green's function of $\Omega$, then

$$
\begin{equation*}
\sup _{(\Omega\}} g\left(z_{2}, z_{3} ; \Omega\right)=g\left(z_{2}, z_{3} ; \Omega_{1}\right), \tag{3.2}
\end{equation*}
$$

where $\Omega_{1}=\varphi(G)$. The extremal domain $\Omega_{1}$ is a slit domain $\Delta \backslash \gamma_{1}$ with $\gamma_{1}$ being the image arc of $\wp\left(\left[s_{1}, \frac{1}{2}\right] ; 1, \tau_{1}\right)$ under $\varphi ; \gamma_{1}$ is an analytic arc which emanates under the right angle from $\partial \Delta$.

Theorem 3. Let $\{R\}$ be the class of ring domains contained in $\Delta$ and such that the bounded component of $\mathbf{C} \backslash R$ contains $z_{2}, z_{3}$, whereas the unbounded component contains $z_{1} \in \Delta$. Then

$$
\begin{equation*}
\sup _{R} \bmod R=\frac{1}{2} \operatorname{Im} \tau_{1}=\bmod R_{1} \tag{3.3}
\end{equation*}
$$

The extremal ring domain $R_{1}$ has the form

$$
R_{1}=\Delta \backslash\left(\gamma_{0} \cup \gamma_{1}\right)
$$

where $\gamma_{1}$ is defined as in Theorem 2 and $\gamma_{0}$ is the image arc under $\varphi$ of the arc $\wp \supset\left(\left[\frac{1}{2} \tau_{1}, \frac{1}{2} \tau_{1}+\frac{1}{2}\right] ; 1, \tau_{1}\right)$.

Thus the solution of the extremal problems $\left(\Delta_{0}\right)$ through $\left(\Delta_{2}\right)$ is determined by the parameter $\tau_{1} \in B$ of a $\Pi$ triangle $\Pi\left(\tau_{1}, s_{1}\right)$ conformally equivalent to a given $\Delta$ triangle $\left\{z_{1}, z_{2}, z_{3} ; \Delta\right\}$. In the following section we evaluate the parameter $\tau_{1}$ analytically in terms of hyperelliptic integrals.

## 4. Analytic evaluation of $M\left(z_{1}, z_{2}, z_{3}\right)$

Suppose that $\Phi$ maps one-to-one conformally a $\Delta$ triangle $\left\{z_{1}, z_{2}, z_{3} ; \Delta\right\}$ onto a $\Pi$ triangle $\left.\Pi\left(\tau_{1}, s_{1}\right)=\{a, b, c ; G)\right\}$ and that $\varphi$ is its inverse. Consider in $G=\mathbf{C} \backslash \boldsymbol{H}_{2}$ the family $\{\Gamma\}_{0}$ of Jordan curves $\Gamma$ separating $b, c$ from $a$ and homotopic to the curves separating $b, c$ from the extremal continuum $H_{1}$. Obviously $\bmod \{\Gamma\}_{0}=\frac{1}{2} \operatorname{Im} \tau_{1}$. Moreover, $\{\varphi(\Gamma)\}, \Gamma \epsilon\{\Gamma\}_{0}$, is the extremal family of the problem $\left(\Delta_{0}\right)$ for the given $\Delta$ triangle. The extremal metric in $G$ has the form (1.6) and is associated with a positive quadratic differential in $G$ with simple poles at $a, b, c, \infty$. In view of the uniqueness of the extremal metric and by the conformal invariance of extremal metric and quadratic differentials we deduce that the extremal metric in the problems $\left(\Delta_{0}\right)$ through $\left(\Delta_{2}\right)$ due to their equivalence is the same and has the form $C|Q(z)|^{\dagger}|d z|$, where $C$ is a positive constant and $Q(z) d z^{2}$ is a positive quadratic differential in $\Delta$ with simple poles at $z_{k}$. After a reflection with respect to $|z|=1$ we obtain a positive quadratic differential on the sphere. Let us assume that $z_{3}=0, \operatorname{im} z_{1}>0, \operatorname{im} z_{2}<0$. Then $Q(z) d z^{2}$ has necessarily the form (cf. [5], p. 36):

$$
\begin{equation*}
Q(z, \alpha)=e^{-i a}\left(z-e^{i a}\right)^{2}\left[z \prod_{k=1}^{2}\left(z-z_{k}\right)\left(1-\bar{z}_{k} z\right)\right]^{-1} \tag{4.1}
\end{equation*}
$$

Consider the branch of the square root

$$
\begin{equation*}
\sigma(z)=\left[z \prod_{k=1}^{2}\left(z-z_{k}\right)\left(1-\bar{z}_{k} z\right)\right]^{-\frac{1}{2}} \tag{4.2}
\end{equation*}
$$

which takes the value $\left|1-z_{1}\right|^{-1}\left|1-z_{2}\right|^{-1}$ at $z=1$. Let $\lambda_{k}$ denote the loop joining 1 to $z_{k}$; that is, $\lambda_{k}$ is a cycle consisting of a small circle $C\left(z_{k} ; \varepsilon\right)$ centre at $z_{k}$ and radius $\varepsilon$ described in the positive direction and of a rectilinear segment described twice and joining $C\left(z_{k} ; \varepsilon\right)$ to 1 so that its prolongation contains $z_{k}$. The radius $\varepsilon$ is chosen so that all the circles $C\left(z_{k} ; \varepsilon\right)$ are situated outside each other and inside $\Delta$ and do not enclose 1. Put

$$
\begin{equation*}
A_{k}=\int_{\lambda_{k}}[Q(z, a)]^{\frac{\ddagger}{2}} d z=e^{-i a / 2} G_{k}-e^{i a / 2} H_{k} \tag{4.3}
\end{equation*}
$$

where

$$
\begin{align*}
G_{k} & =\int_{\lambda_{k}} z \sigma(z) d z=2 \int_{\left[1, z_{k}\right]} z \sigma(z) d z, \\
H_{k} & =\int_{\lambda_{k}} \sigma(z) d z=2 \int_{\left[1, z_{k}\right]} \sigma(z) d z,  \tag{4.4}\\
k & =1,2,3 ; \quad z_{3}=0 .
\end{align*}
$$

It is well known (cf. e.g. [3], or [11]) that the Abelian integral $\int Q(z, \alpha)^{\ddagger} d z$ taken over paths contained in $\Delta$ and starting at $z=1$ with the initial value determined by $\sigma(z)$ takes the values

$$
\begin{equation*}
L(z)=I(z)+m_{1} \omega_{1}+m_{2} \omega_{2} \tag{4.5}
\end{equation*}
$$

or

$$
\begin{equation*}
L(z)=A_{3}-I(z)+m_{1} \omega_{1}+m_{2} \omega_{2} \tag{4.6}
\end{equation*}
$$

where $m_{1}, m_{2}$ are integers, $I(z)$ is the value of the integral over the straight line segment, and $\omega_{1}, \omega_{2}$ are linearly independent; we may take

$$
\begin{equation*}
\omega_{1}=A_{2}-A_{3}, \quad \omega_{2}=A_{1}-A_{3} \tag{4.7}
\end{equation*}
$$

We also put

$$
\begin{equation*}
\omega_{3}=\omega_{1}+\omega_{2} \tag{4.8}
\end{equation*}
$$

With the notation given above we have
Lemma 2. There exists a unique value $a_{1}$ of the parameter a such that the period $\omega_{1}=A_{2}-A_{3}$ associated with $\alpha_{1}$ is real. Moreover, there exists a point $\eta$ on $\partial \Delta$ such that the function

$$
\begin{equation*}
F(z)=\wp\left(\int_{\eta}^{z} Q\left(\zeta, \alpha_{1}\right)^{\downarrow} d \zeta ; \omega_{1}, \omega_{2}\right) \tag{4.9}
\end{equation*}
$$

where the $\omega_{k}$ are associated with $\alpha_{1}$ and the integral is taken over arbitrary paths in $\Delta$ joining $\eta$ to $z$, is regular and univalent in $\Delta$. We have also

$$
\begin{equation*}
\boldsymbol{F}\left(z_{k}\right)=\wp\left(\frac{1}{2} \omega_{k} ; \omega_{1}, \omega_{2}\right)=e_{k}, k=1,2,3 \tag{4.10}
\end{equation*}
$$

The value $\alpha_{1}$ can be evaluated as follows. Since $\omega_{1}=\bar{\omega}_{1}$ it follows from (4.3) and (4.7) that

$$
e^{-i a / 2}\left(G_{2}-G_{3}+\bar{H}_{2}-\bar{H}_{3}\right)=e^{i \alpha / 2}\left(\bar{G}_{2}-\bar{G}_{3}+H_{2}-H_{3}\right)
$$

and this implies

$$
\begin{equation*}
e^{i a_{1}}=\left(G_{2}-G_{3}+\bar{H}_{2}-\bar{H}_{3}\right) /\left(\bar{G}_{2}-\bar{G}_{3}+H_{2}-H_{3}\right) \tag{4.11}
\end{equation*}
$$

The equality $\bar{G}_{2}-\bar{G}_{3}=H_{3}-H_{2}$ shows to be impossible.

From (4.3), (4.7) and (4.11) we obtain

$$
\begin{align*}
& \omega_{1}= \pm\left|G_{2}-G_{3}+\bar{H}_{2}-\bar{H}_{3}\right|\left(\left|G_{2}-G_{3}\right|^{2}-\left(H_{2}-H_{3}\right)^{2}\right),  \tag{4.12}\\
& \omega_{2}=\mp\left(G_{2}-G_{3}+\bar{H}_{2}-\bar{H}_{3}\right)\left[\left(G_{1}-G_{3}\right)\left(H_{2}-H_{3}+\bar{G}_{2}-\bar{G}_{3}\right)-\right. \\
& \left.\left.\quad \quad-\left(H_{1}-H_{3}\right)\left(\bar{H}_{2}-\bar{H}_{3}\right)+G_{2}-G_{3}\right)\right]
\end{align*}
$$

Since $\omega_{1}$ is real, the trajectories of $Q\left(z, a_{1}\right) d z^{2}$ coincide with the loci $\{z: \operatorname{im} L(z)=\lambda\}$ where $\lambda$ is a real constant. Hence by (4.7) and (4.10) there exists a trajectory joining $z_{2}$ to $z_{3}$ which will be denoted $\gamma_{0}$, as well as a trajectory $\gamma_{1}$ joining $z_{1}$ to $e^{i_{a_{1}}}$ on which we can take $\lambda=0$.

By using the homogeneity property of $\wp$ and (4.10) we easily verify that the function $\varphi(z)=\omega_{1}^{2} F(z)$ realizes a one-to-one conformal mapping of $\left\{z_{1}, z_{2}, z_{3} ; \Delta\right\}$ onto a $\Pi$ triangle whose parameter $\tau_{1}$ is equivalent to $\omega_{2} / \omega_{1}$ with respect to the congruence subgroup $\bmod 2($ cf. [1], p. 270). Thus we obtain

Theorem 4. Suppose that $M\left(z_{1}, z_{2}, 0\right)=\sup _{k} \bmod \{\gamma\}_{k}$ where $\{\gamma\}_{k}$ are faimilies of rectifiable Jordan curves contained in the unit disk $\Delta$ separating 0 , $z_{2}$ from $z_{1}$ and $\partial \Delta$, homotopic for a fixed $k$ to each other with respect to $\Delta$ punctured at $0, z_{1}, z_{2}$. Then

$$
\begin{equation*}
M\left(z_{1}, z_{2}, 0\right)=\frac{1}{2} \operatorname{Im} \tau_{1} \tag{4.14}
\end{equation*}
$$

where $\tau_{1}$ is the unique point in the fundamental region $B$ of the modular function $\lambda$ equivalent to $\omega_{2} / \omega_{1}$ with respect to the congruence subgroup mod 2; the ratio $\omega_{2} / \omega_{1}$ can be evaluated from (4.2), (4.4), (4.12) and (4.13) with $z_{3}=\mathbf{0}$.

## REFERENCES

[1] Ahlfors, L. V., Complex analysis, New York 1968.
[2] -, Lectures on quasioonformal mappings, Princeton 1966.
[3] Goursat, E., Functions of a complex variable, New York 1959.
[4] Jenkins, J. A., Some results related to extremal length, Ann. Math. Studies 30, Princeton 1953.
[5] -, Univalent functions and conformal mapping, Berlin-Göttingen-Heidelberg 1968.
[6] Krzyż, J. and Zlotkiewicz, E., Koebe sets for univalent functions with two pressigned values, Ann. Acad. Sci. Fenn. Ser. A, I. Mathematica No. 487 (1971), 1-12.
[7] Künzi, H., Quasikonforme Abbildungen, Berlin-Göttingen-Heidelberg 1960.
[8] Lehto, O. and Virtanen, K. I., Quasikonforme Abbildungen, Borlin-Heidelberg New York 1965.
[9] Ohtsuka, M., Dirichlet problem, extremal length and prime ends, New York 1970.
[10] Schiffer, M. M., On the modulus of doubly-connected domains, Quart. J. Math., Oxford Ser. 17 (1946), 197-213.
[11] Stoilow, S., Theory of functions of a complex variable, vol. I (in Russian), Moscow 1962.
[12] Teichmiiller, O., Untersuchungen über Konforme und quasikonforme Lbbildungen, Deutsche Mathematik 3 (1938), 621-678.
[13] Wittich, H., Uber eine Extremalaufgabe der konformen Abbildung, Archiv der Mathematik 2 (1949/50), 325-333.

## STRESZCZENIE

W pracy tej wyznaczam maksymalny modul $M\left(z_{1}, z_{2}, z_{3}\right)=$ $=\sup \bmod \{\gamma\}_{k}$ gdzio $\{\gamma\}_{k}$ jest to przeliczalny układ rodzin krzywych Jordana $\gamma$ leżacych w kole jednostkowym 1 zawierających dwa ustalone punkty $z_{2}, z_{3}$ tego kola i pozostawiajacych na zewnattrz punkt $z_{1} \in \Delta$ przy czym przy ustalonym $k$ wszystkie krzywe $\gamma \in\{\gamma\}_{k}$ sa homotopijne wzglęlem $\Delta z$ usuniętymi punktami $z_{k}$. Ponadto rozpatrzone sa problemy ekstremalne równoważne ze znalozieniem $M\left(z_{1}, z_{2}, z_{3}\right)$.

## PE3IOME

В этої работе определяется максимальный модуль $M\left(z_{1}, z_{2}, z_{3}\right)=$ $=\sup _{k} \bmod \{\gamma\}_{k}$, где $\left\{\gamma_{k}\right\}$ - счетная система семейств Жордановых кривых $\gamma$ в единичном юруге $\Lambda$, заюлючающих внутри себя две фиксированиые точки $z_{2}, z_{3}$ п оставляюиих вне себя точку $z_{1} є \Delta$; все кривые $\gamma$ одного и того же семейства $\left\{\gamma_{k}\right\}$ должны быть гомотопические по $\Delta \backslash\left(\left\{z_{1}\right\} \cup\left\{z_{2}\right\} \cup\left\{z_{3}\right\}\right)$. Решены также две другие эквивалентные экстремальные проблемы.


[^0]:    * This article is an abridged version of a lecture dolivered at the Conference on the Classical Theory of Analytic Functions, June 15-26, 1970, Washington D. C. and published in the Proceedings of the Conferenco.

