ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. XXII/XXIII/XXIV, 14 SECTIO A

1968/1969/1970

Instytut Matematyki, Uniwersytet Marli Curie-Skłodowskiej, Lublin

JAN KRZYŻ

An Extremal Length Problem *

O długości ekstremalnej pewnej rodziny krzywych

О экстремальной длине некоторого семейства криных

1. Introduction

Conformal invariance of the extremal length and its well known behaviour under quasiconformal mapping give rise to many applications and form a very useful basis for tackling extremal problems in the geometric function theory.

Let us start with the well known problem of evaluating the extremal length $\Lambda\{\gamma\}$, or its reciprocal — the module mod $\{\gamma\}$ — of the family of all rectifiable Jordan curves γ contained in the unit disk Δ and separating two fixed points 0, r (0 < r < 1) from the boundary $\partial \Delta$ of Δ .

It is well known that the evaluation of $\operatorname{mod} \{\gamma\}$ is equivalent to the solution of Grötzsch's extremal problem: Consider the class $\{F\}$ of all continua $F \subset \Delta$ such that $0, r \in F$ and $\Delta \setminus F$ is a ring domain. Find the extremal continuum F_0 such that the module $\operatorname{mod}(A \setminus F_0)$ of the ring domain $\Delta \setminus F_0$ is a maximum.

The extremal continuum F_0 shows to be the closed segment [0, r] and

(1.1)
$$\operatorname{mod}(\Delta \setminus [0, r]) = \nu(r) = \operatorname{mod}\{\gamma\},$$

where

(1.2)
$$v(r) = \frac{1}{2} K(\sqrt{1-r^2})/K(r),$$

^{*} This article is an abridged version of a lecture delivered at the Conference on the Classical Theory of Analytic Functions, June 15-26, 1970, Washington D. C. and published in the Proceedings of the Conference.

Jan Krzyż

K(r) being the complete elliptic integral of Legendre. The extremal metric

$$p_0(z) = C |z(z-r)(1-rz)|^{-\frac{1}{2}}$$

where C is a positive constant, as well as the family of basic curves (for the definitions cf. e.g. [4]) are the same in both cases.

Suppose now that a, b, c are three different, fixed points in the finite plane C. We may assume that

(1.3)
$$a+b+c = 0.$$

There exists an enumerable system $\{\Gamma\}_k, k = 1, 2, ...$ of families of closed, rectifiable Jordan curves Γ containing b, c inside and leaving a outside such that for a fixed integer k all Γ belong to the same homotopy class with respect to **C** punctured at a, b, c. Each homotopy class is determined, for example by a simple Jordan arc joining a to ∞ and omitting b, c. Let us now consider the extremal problem (\mathbb{C}_0): Evaluate supmod $\{\Gamma\}_k$.

The solution of (C_0) is given, for example, in [2], or [9] and we quote this result here.

Let $\lambda(\tau)$ be the elliptic modular function (cf. [1], p. 270) and let B be its fundamental region. The equation

(1.4)
$$\lambda(\tau) = \frac{c-b}{a-b}$$

has a unique solution $\tau_1 \in B$ and we have

(1.5) $\sup \mod \{\Gamma\}_k = \frac{1}{2} \operatorname{Im} \tau_1$

k A related extremal problem (\mathbf{C}_1) was considered in [6], namely (\mathbf{C}_1) : Let $\{\Omega\}$ be the class of simply connected domains in the finite plane \mathbf{C} which contain b, c and leave a outside. Evaluate $\sup_{\boldsymbol{\Omega}} g(b, c; \Omega)$, where $g(b, c; \Omega)$ denotes the classical Green's function of Ω .

As shown in [6] the extremal domain Ω_1 is a slit domain $\mathbb{C}^{\mathsf{H}_1}$ where H_1 is the image arc of the segment [0, 1/2] under the Weierstrass \mathfrak{G} function with periods $1, \tau_1$ ($\tau_1 \in B$ is defined by (1.4)).

Still another related problem (\mathbb{C}_2) was investigated and solved in a rather qualitative way by Schiffer [10] with variational metods and also by Wittich [13]. For the case of collinear points a, b, c the solution was obtained earlier by Teichmuller [12].

 (\mathbb{C}_2) : Let F_0 , F_1 be disjoint continua in the extended plane $\overline{\mathbb{C}}$ such that b, $c \in F_0$, whereas $a, \infty \in F_1$ and $\overline{\mathbb{C}} \setminus (F_0 \cup F_1)$ is a ring domain. Find the ring domain whose module is a maximum.

96

Again the extremal problems (\mathbb{C}_1) , (\mathbb{C}_2) can be restated as module or extremal length problems and show to be equivalent to (\mathbb{C}_0) . The extremal metric ϱ_0 as well as basic curves are the same in all three cases, as a routine extremal length reasoning shows; ϱ_0 has the form

(1.6)
$$\varrho_0(w) = C |(w-a)(w-b)(w-c)|^{-\frac{1}{2}},$$

where C is a positive constant.

In the case (\mathbb{C}_2) the extremal ring domain has the form $\mathbb{C} \setminus (H_0 \cup H_1)$, where H_1 is the extremal continuum of \mathbb{C}_1 and H_0 is the image arc of $[\frac{1}{2}\tau_1, \frac{1}{2}\tau_1 + \frac{1}{2}]$ under $\wp(\cdot; 1, \tau_1)$. Moreover, again

$$\operatorname{mod}\left[\mathbb{C}\setminus (H_0\cup H_1)\right] = \frac{1}{2}\operatorname{Im}\tau_1$$

Let $\{\Gamma\}_0$ be the family of all rectifiable Jordan curves homotopic to the family of basic curves in (\mathbb{C}_0) through (\mathbb{C}_2) . Thus we have

(1.7)
$$\operatorname{mod} \{ \Gamma \}_0 = \frac{1}{2} \operatorname{Im} \tau_1 = \operatorname{mod} [\mathbb{C} \setminus (H_0 \cup H_1)].$$

The solution of extremal problems (C_0) through (C_2) leads to many interesting applications in the theory of conformal and quasiconformal mapping (cf. e.g. [2], [6]).

On the other hand the problems (\mathbf{C}_0) through (\mathbf{C}_2) have their counterparts in the analogous problems $(\boldsymbol{\Delta}_0)$ through $(\boldsymbol{\Delta}_2)$ which are formally obtained on replacing the finite plane \mathbf{C} by the unit disk $\boldsymbol{\Delta}$. Thus for example in the problem $(\boldsymbol{\Delta}_0)$ we are led to determine the maximal value

(1.8)
$$\sup_{k} \{\gamma\}_{k} = M(z_{1}, z_{2}, z_{3})$$

of the modules of families $\{\gamma\}_k, k = 1, 2, ...$ of homotopic rectifiable Jordan curves γ situated in the unit disk Δ , containing inside the points z_2, z_3 and leaving outside $z_1 \in \Delta$.

As soon as the points $z_k \in \Lambda$, k = 1, 2, 3, are situated on a circle orthogonal to |z| = 1, resp. $z_3 = 0$, whereas $z_1 = \overline{z}_2$, the problems (\varDelta_0) through (\varDelta_2) can be reduced to the analogous problems (C_j) in the following manner. There exists in either case a line of symmetry, a circle orthogonal to |z| = 1 which intersects |z| = 1 at two points η , ϑ . The sewing of \varDelta along two arcs on |z| = 1 with end points η , ϑ determined by identification of symmetric points on |z| = 1 gives a Riemann sphere and the problems (\varDelta_0) through (\varDelta_2) can by solved due to the conformal invariance.

The solution in the general case is obtained by means of a marked Riemann surface $\Pi(\tau, s)$ (Im $\tau > 0$, 0 < s < 1/2, or a Π -triangle which is conformally equivalent to the unit disk punctured at z_j . We present both the geometric and analytic solutions of problems (Δ_0) through (Δ_2).

Jan Krzyż

2. *A* and *H* triangles

We call an ordered triple $\{z_1, z_2, z_3\} = \{z_1, z_2, z_3; \Delta\}$ of different points of the open unit disk Λ a Δ triangle. A Λ triangle is said to be normalized if $z_3 = 0$ and $z_2 > 0$. Obviously a Λ triangle represents a marked Riemann surface of hyperbolic type with three distinguished interior points.

Suppose that τ is an arbitrary complex number belonging to the fundamental region B of the modular function λ and let s be an arbitrary real number which satisfies 0 < s < 1/2. Let H be the image are of the segment [0, s] under the \wp function of Weierstrass with periods 1, τ and let G denote the simply connected domain $\mathbb{C} \setminus H$. Finally, put

(2.1)
$$a = \wp(\frac{1}{2}), \quad b = \wp(\frac{1}{2}\tau), \quad c = \wp(\frac{1}{2} + \frac{1}{2}\tau).$$

The marked Riemann surface $\{a, b, c; G\}$ will be called a Π triangle and denoted $\Pi(\tau, s)$.

On the other hand 1

It follows from the identity

(2.2)
$$\lambda(\tau) = \frac{\wp(\frac{1}{2} + \frac{1}{2}\tau) - \wp(\frac{1}{2}\tau)}{\wp(\frac{1}{2}) - \wp(\frac{1}{2}\tau)}$$

and also from (1.3), (1.4), (2.1) that the solution of (\mathbb{C}_0) with all the curves confined to G is the same as in the general case and is determined by τ by means of (1.5). We may also consider another marked Riemann surface $P(\tau, s)$ ($\tau \in B$, 0 < s < 1/2) conformally equivalent with {a, b, c; G} which arises from the parallelogram $P = [0, \frac{1}{2}, \frac{1}{2} + \tau, \tau]$ as follows. We identify on each of the segments $(0, \tau), (\frac{1}{2}, \frac{1}{2} + \tau)$ the points symmetric with respect to the centre of either segment; we also identify the points on $(s, \frac{1}{2})$, $(s + \tau, \frac{1}{2} + \tau)$ whose difference is equal to τ . The points identified are supposed to be interior points. If the topology is lifted from the plane, we obtain a marked Riemann surface $P(\tau, s)$ with distinguished points $\frac{1}{2} = \tau + \frac{1}{2}, \frac{1}{2}\tau, \frac{1}{2} + \frac{1}{2}\tau$ which will be called the basic parallelogram associated with $\Pi(\tau, s)$. Obviously $\wp(\cdot; 1, \tau)$ realizes a one-to-one conformal mapping of $P(\tau, s)$ onto $\Pi(\tau, s)$, the slit H being the image arc of [0, s].

We can now prove

Lemma 1. Given a Δ triangle there exists a unique conformally equivalent Π triangle. Conversely, to each Π triangle there corresponds a unique conformally equivalent, normalized Δ triangle.

The proof is based on a routine continuity argument, whereas the converse is a trivial consequence of Riemann mapping theorem.

3. Geometric solution of (\varDelta_0) through (\varDelta_2)

Suppose that we are given a Δ triangle $\{z_1, z_2, z_3; \Delta\}$ and Ψ maps it one-to-one conformally onto the Π triangle $\Pi(\tau_1, s_1) = \{a, b, c; G\}$. Let φ be the inverse mapping. Consider now in Δ any family $\{\gamma\}$ of all Jordan curves homotopic to each other with respect to Δ punctured at z_k and separating z_2, z_3 from z_1 and $\partial \Delta$. Under Φ the curves $\{\gamma\}$ correspond to the curves of the family $\{\Gamma\}$ of Jordan curves in $F = \mathbb{C} \setminus H_1$ separating b, c from a and ∞ . In this way the problems (Δ_k) are reduced to the corresponding problems (\mathbb{C}_k) Using the equivalence of (\mathbb{C}_0) through (\mathbb{L}_2) we easily prove following theorems which yield the solution of (Δ_0) through (A_3) .

Theorem 1. Let $\{\gamma\}_k$, k = 1, 2, ..., be the enumerable system of families of closed, rectifiable Jordan curves γ situated in the unit disk Λ , containing two fixed, different points $z_2, z_3 \in \Lambda$ inside and leaving $z_1 \in \Lambda$ outside and such that all $\gamma \in \{\gamma\}_k$ belong for a fixed integer k to the same homotopy class with respect to Λ punctured at all z_i . Then

(3.1)
$$\sup_{k} \operatorname{mod} \{\gamma\}_{k} = \frac{1}{2} \operatorname{Im} \tau_{1},$$

where τ_1 is the parameter τ of the II triangle conformally equivalent to $\{z_1, z_2, z_3; \Delta\}$.

Theorem 2. Let $\{\Omega\}$ be the class of all simply connected domains $\Omega \subset \Lambda$ such that $z_2, z_3 \in \Lambda$ and $z_1 \in \Lambda \setminus \Omega$. If $g(z_2, z_3; \Omega)$ denotes the Green's function of Ω , then

(3.2)
$$\sup_{(\Omega)} g(z_2, z_3; \Omega) = g(z_2, z_3; \Omega_1),$$

where $\Omega_1 = \varphi(G)$. The extremal domain Ω_1 is a slit domain $\Delta \setminus \gamma_1$ with γ_1 being the image arc of $\wp([s_1, \frac{1}{2}]; 1, \tau_1)$ under $\varphi; \gamma_1$ is an analytic arc which emanates under the right angle from $\partial \Delta$.

Theorem 3. Let $\{R\}$ be the class of ring domains contained in Δ and such that the bounded component of $\mathbb{C} \setminus R$ contains z_2, z_3 , whereas the unbounded component contains $z_1 \in \Delta$. Then

$$(3.3) \qquad \operatorname{sup\,mod} R = \frac{1}{2} \operatorname{Im} \tau_1 = \operatorname{mod} R_1$$

The extremal ring domain R_1 has the form

$$R_1 = \Delta \setminus (\gamma_0 \cup \gamma_1)$$

where γ_1 is defined as in Theorem 2 and γ_0 is the image arc under φ of the arc $\wp([\frac{1}{2}\tau_1, \frac{1}{2}\tau_1 + \frac{1}{2}]; 1, \tau_1)$.

Thus the solution of the extremal problems (Δ_0) through (Δ_2) is determined by the parameter $\tau_1 \in B$ of a Π triangle $\Pi(\tau_1, s_1)$ conformally equivalent to a given Δ triangle $\{z_1, z_2, z_3; \Delta\}$. In the following section we evaluate the parameter τ_1 analytically in terms of hyperelliptic integrals.

4. Analytic evaluation of $M(z_1, z_2, z_3)$

Suppose that Φ maps one-to-one conformally a Δ triangle $\{z_1, z_2, z_3; \Delta\}$ onto a Π triangle $\Pi(\tau_1, s_1) = \{a, b, c; G\}$ and that φ is its inverse. Consider in $G = \mathbb{C} \setminus H_1$ the family $\{\Gamma\}_0$ of Jordan curves Γ separating b, c from a and homotopic to the curves separating b, c from the extremal continuum H_1 . Obviously mod $\{\Gamma\}_0 = \frac{1}{2} \operatorname{Im} \tau_1$. Moreover, $\{\varphi(\Gamma)\}, \Gamma \in \{\Gamma\}_0$, is the extremal family of the problem (Δ_0) for the given Δ triangle. The extremal metric in G has the form (1.6) and is associated with a positive quadratic differential in G with simple poles at a, b, c, ∞ . In view of the uniqueness of the extremal metric and by the conformal invariance of extremal metric and quadratic differentials we deduce that the extremal metric in the problems (Δ_0) through (Δ_2) due to their equivalence is the same and has the form $C|Q(z)|^{\frac{1}{2}}|dz|$, where C is a positive constant and $Q(z)dz^{2}$ is a positive quadratic differential in \varDelta with simple poles at z_{μ} . After a reflection with respect to |z| = 1 we obtain a positive quadratic differential on the sphere. Let us assume that $z_3 = 0$, $\operatorname{im} z_1 > 0$, $\operatorname{im} z_2 < 0$. Then $Q(z)dz^2$ has necessarily the form (cf. [5], p. 36):

(4.1)
$$Q(z, a) = e^{-ia}(z - e^{ia})^2 \left[z \prod_{k=1}^2 (z - z_k)(1 - \bar{z}_k z) \right]^{-1}$$

Consider the branch of the square root

(4.2)
$$\sigma(z) = \left[z \prod_{k=1}^{2} (z - z_k) (1 - \bar{z}_k z) \right]^{-\frac{1}{2}}$$

which takes the value $|1-z_1|^{-1}|1-z_2|^{-1}$ at z = 1. Let λ_k denote the loop joining 1 to z_k ; that is, λ_k is a cycle consisting of a small circle $C(z_k; \varepsilon)$ centre at z_k and radius ε described in the positive direction and of a rectilinear segment described twice and joining $C(z_k; \varepsilon)$ to 1 so that its prolongation contains z_k . The radius ε is chosen so that all the circles $C(z_k; \varepsilon)$ are situated outside each other and inside Δ and do not enclose 1. Put

(4.3)
$$A_{k} = \int_{\lambda_{k}} [Q(z, a)]^{\frac{1}{2}} dz = e^{-ia/2} G_{k} - e^{ia/2} H_{k},$$

where

(4.4)

$$G_{k} = \int_{\lambda_{k}} z\sigma(z) dz = 2 \int_{[1,z_{k}]} z\sigma(z) dz,$$

$$H_{k} = \int_{\lambda_{k}} \sigma(z) dz = 2 \int_{[1,z_{k}]} \sigma(z) dz,$$

$$k = 1, 2, 3; \quad z_{3} = 0.$$

It is well known (cf. e.g. [3], or [11]) that the Abelian integral $\int Q(z, a)^{\frac{1}{2}} dz$ taken over paths contained in Δ and starting at z = 1 with the initial value determined by $\sigma(z)$ takes the values

(4.5)
$$L(z) = I(z) + m_1 \omega_1 + m_2 \omega_2,$$

or

(4.6)
$$L(z) = A_3 - I(z) + m_1 \omega_1 + m_2 \omega_2$$

where m_1, m_2 are integers, I(z) is the value of the integral over the straight line segment, and ω_1, ω_2 are linearly independent; we may take

(4.7)
$$\omega_1 = A_2 - A_3, \quad \omega_2 = A_1 - A_3.$$

We also put

(4.8)
$$\omega_3 = \omega_1 + \omega_2.$$

With the notation given above we have

Lemma 2. There exists a unique value a_1 of the parameter a such that the period $\omega_1 = A_2 - A_3$ associated with a_1 is real. Moreover, there exists a point η on $\partial \Delta$ such that the function

(4.9)
$$F(z) = \wp \left(\int_{\eta}^{z} Q(\zeta, \alpha_1)^{\dagger} d\zeta; \omega_1, \omega_2 \right)$$

where the ω_k are associated with α_1 and the integral is taken over arbitrary paths in Δ joining η to z, is regular and univalent in Δ . We have also

(4.10)
$$F(z_k) = \wp(\frac{1}{2}\omega_k; \omega_1, \omega_2) = e_k, k = 1, 2, 3.$$

The value a_1 can be evaluated as follows. Since $\omega_1 = \overline{\omega}_1$ it follows from (4.3) and (4.7) that

$$e^{-ia/2}(G_2-G_3+\bar{H}_2-\bar{H}_3) = e^{ia/2}(\bar{G}_2-\bar{G}_3+H_2-H_3)$$

and this implies

$$(4.11) e^{ia_1} = (G_2 - G_3 + \overline{H}_2 - \overline{H}_3)/(\overline{G}_2 - \overline{G}_3 + \overline{H}_2 - \overline{H}_3).$$

The equality $\bar{G}_2 - \bar{G}_3 = H_3 - H_2$ shows to be impossible.

From (4.3), (4.7) and (4.11) we obtain

(4.12) $\omega_1 = \pm |G_2 - G_3 + \overline{H}_2 - \overline{H}_3| (|G_2 - G_3|^2 - (H_2 - H_3)^2),$

(4.13)
$$\omega_2 = \mp (G_2 - G_3 + \overline{H}_2 - \overline{H}_3) [(G_1 - G_3)(H_2 - H_3 + \overline{G}_2 - \overline{G}_3) - (H_1 - H_3)(\overline{H}_2 - \overline{H}_3) + G_2 - G_3)]$$

Since ω_1 is real, the trajectories of $Q(z, a_1)dz^2$ coincide with the loci $\{z: \text{ im } L(z) = \lambda\}$ where λ is a real constant. Hence by (4.7) and (4.10) there exists a trajectory joining z_2 to z_3 which will be denoted γ_0 , as well as a trajectory γ_1 joining z_1 to e^{ia_1} on which we can take $\lambda = 0$.

By using the homogeneity property of \wp and (4.10) we easily verify that the function $\varphi(z) = \omega_1^2 F(z)$ realizes a one-to-one conformal mapping of $\{z_1, z_2, z_3; \Delta\}$ onto a Π triangle whose parameter τ_1 is equivalent to ω_2/ω_1 with respect to the congruence subgroup mod 2 (cf. [1], p. 270). Thus we obtain

Theorem 4. Suppose that $M(z_1, z_2, 0) = \sup_k \mod \{\gamma\}_k$ where $\{\gamma\}_k$ are families of rectifiable Jordan curves contained in the unit disk Δ separating 0, z_2 from z_1 and $\partial \Delta$, homotopic for a fixed k to each other with respect to Δ punctured at $0, z_1, z_2$. Then

$$(4.14) M(z_1, z_2, 0) = \frac{1}{2} \text{Im} \tau_1,$$

where τ_1 is the unique point in the fundamental region B of the modular function λ equivalent to ω_2/ω_1 with respect to the congruence subgroup mod 2; the ratio ω_2/ω_1 can be evaluated from (4.2), (4.4), (4.12) and (4.13) with $z_3 = 0$.

4.73

REFERENCES

- [1] Ahlfors, L. V., Complex analysis, New York 1966.
- [2] -, Lectures on quasiconformal mappings, Princeton 1966.
 - [3] Goursat, E., Functions of a complex variable, New York 1959.
- [4] Jenkins, J. A., Some results related to extremal length, Ann. Math. Studies 30, Princeton 1953.
 - [5] -, Univalent functions and conformal mapping, Berlin-Göttingen-Heidelberg 1958.
- [6] Krzyż, J. and Złotkiewicz, E., Koebe sets for univalent functions with two pressigned values, Ann. Acad. Sci. Fenn. Ser. A, I. Mathematica No. 487 (1971), 1-12.
- [7] Künzi, H., Quasikonforme Abbildungen, Berlin-Göttingen-Heidelberg 1960.
- [8] Lehto, O. and Virtanen, K. I., Quasikonforme Abbildungen, Berlin-Heidelberg New York 1965.
- [9] Ohtsuka, M., Dirichlet problem, extremal length and prime ends, New York 1970.
- [10] Schiffer, M. M., On the modulus of doubly-connected domains, Quart. J. Math., Oxford Ser. 17 (1946), 197-213.

- [11] Stoilow, S., Theory of functions of a complex variable, vol. I (in Russian), Moscow 1962.
- [12] Teichmüller, O., Untersuchungen über konforme und quasikonforme Abbildungen, Deutsche Mathematik 3 (1938), 621-678.
- [13] Wittich, H., Über eine Extremalaufgabe der konformen Abbildung, Archiv der Mathematik 2 (1949/50), 325-333.

STRESZCZENIE

W pracy tej wyznaczam maksymalny moduł $M(z_1, z_2, z_3) =$ = $\sup_k \mod \{\gamma\}_k$ gdzie $\{\gamma\}_k$ jest to przeliczalny układ rodzin krzywych Jordana γ leżących w kole jednostkowym Λ zawierających dwa ustalone punkty z_2, z_3 tego kola i pozostawiających na zewnątrz punkt $z_1 \in \Lambda$ przy czym przy ustalonym k wszystkie krzywe $\gamma \in \{\gamma\}_k$ są homotopijne względem Λ z usuniętymi punktami z_k . Ponadto rozpatrzone są problemy ekstremalne równoważne ze znalezieniem $M(z_1, z_2, z_3)$.

PE3IOME

В этой работе определяется максимальный модуль $M(z_1, z_2, z_3) = \sup_k \mod \{\gamma\}_k$, где $\{\gamma_k\}$ – счетная система семейств Жордановых кривых γ в единичном круге Δ , заключающих внутри себя две фиксированные точки z_2 , z_3 п оставляющих вне себя точку $z_1 \in \Delta$; все кривые γ одного и того же семейства $\{\gamma_k\}$ должны быть гомотопические по $\Delta \setminus (\{z_1\} \cup \{z_3\})$. Решены также две другие эквивалентные экстремальные проблемы.