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1. Imtroduction

Conformal invariance of the extremal length and its well known beha-
viour under quasiconformal mapping give rise to many applications and
form a very useful basis for tackling extremal problems in the geometric
function theory.

Let us start with the well known problem of evaluating the extremal
length A{y}, or its reciprocal — the module mod {y} — of the family of all
rectifiable Jordan curves y contained in the unit disk 4 and separating
two fixed points 0,7 (0 <7 < 1) from the boundary 04 of A.

1t is well known that the evaluation of mod {y} is equivalent to the
solution of Grotzsch’s extremal problem: Consider the class {F} of all
continua F = A such that 0,7¢ F and ANF i3 a ring domain. Find the
edtremal continuum F, such that the module mod(ANF,) of the ring
domain ANF, i3 a mazimum.

The extremal continuum F, shows to be the closed seginent [0, »] and

(1.1) mod (4\ [0, 7]) = »(r) = mod {y},
where
(1.2) »(r) = } K(V1—r?)/K(r),

* This article is an abridged version of a lecture dolivered at the Conference
on the Classical Theory of Analytic Functions, June 15-26, 1970, Washington D. C.
and published in the Proceedings of the Confercnco.
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K(r) being the complete elliptic integral of Legendre. The extremal
metric

2o(2) = Cla(z—r)(1—72)| 7

where C is a positive constant, as well as the family of basic curves (for
the definitions cf. e.g. [4]) are the same in both cases.

Suppose now that a, b, ¢ are three different, fixed points in the finite
plane C. We may assume that

(1.3) a-t+b+c =0.

There exists an enumerable system {I'"},, k¥ = 1, 2, ... of families of closed,

rectifiable Jordan curves I' containing b, ¢ inside and leaving a outside

such that for a fixed integer k all I" belong to the same homotopy class

with respect to C punctured at a, b, c. Each homotopy class is determined,

for example by a simple Jordan arc joining a to oo and omitting b, c.

Let us now consider the extremal problem (C,): Evaluate supmod{I'},.
k

The solution of (C,) is given, for example, in [2], or [9] and we quote
this result here.

Let A(r) be the elliptic modular function (cf. [1], p. 270) and let B
be its fundamental region. The equation

c—b

(1.4) Ar) = —

has a unique solution 7,¢ B and we have

(1.5) supmod {I'}, = $Imr,
k

A related extremal problem (C,) was considered in [6], namely (C,):
Let {22} be the class of simply connected domains in the finite plane C which
contain b, c and leave a outside. Evaluate supg(b, c; 2), where g(b, c; Q)
denotes the classical Green’s function of Q.

As shown in [6] the extremal domain £, is a slit domain €C>H, where
H, is the image arc of the segment [0,1/2] under the Weierstrass g
function with periods 1, 7, (7;¢ B is defined by (1.4)).

Still another related problem (C,) was investigated and solved in
a rather qualitative way by Schiffer [10] with variational metods and
also by Wittich [13]. For the case of collinear points a, b, ¢ the solution
was obtained earlier by Teichmuller [12].

(Cy): Let Fy, I, be disjoint continua in the extended plane C such that
b, ce F,, whereas a, ccc F, and C\(F,UF,) i3 a ring domain. Find the ring
domain whose module is a maximum.
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Again the extremal problems (C,), (C,) can be restated as module
or extremal length problems and show to he equivalent to (C;). The
extremal metric g, as well as basic curves are the same in all three cases,
a8 a routine extremal length reasoning shows; p, has the form

(1.6) go(®) = C(w—a)(w—b)(w—c)|H,

where C is a positive constant.

In the case (C,) the extremal ring domain has the form C\(H,UH,),
where H, is the extremal continuum of C, and H, is the image arc of
[y, 7,4+ 3] under @(';1,r,). Moreover, again

mod [C\(H,UH,)] = $Imr,.

Let {I'}, be the family of all rectifiable Jordan curves homotopic to the
family of basic curves in (Cy) through (C,). Thus we have

(1.7) mod{I'}, = }Imz, = mod [C\(H,VI,)].

The solution of extremal problems (C,) through (C,) leads to many in-
teresting applications in the theory of conformal and quasiconformal
mapping (cf. e.g. [2], [6]).

On the other hand the problems (C,) through (C,) have their coun-
terparts in the analogous problems (4,) through (4,) which are formally
obtained on replacing the finite plane C by the unit disk 4. Thus for
example in the problem (4,) we are led to determine the maximal value

(1.8) st}‘p{y}k = M (2, 23, 25)

of the modules of families {y},, ¥ =1,2,... of homotopic rectifiable
Jordan curves y situated in the unit disk 4, containing inside the points
25, 23 and leaving outside z,e 4.

As soon as the points z,¢ 4, k¥ = 1, 2, 3, are situated on a circle ortho-
gonal to |z| = 1, resp. 2, = 0, whereas 2, = Z,, the problems (4,) through
(4,) can be reduced to the analogous problems (C;) in the following manner.
There exists in either case a line of symmetry, a circle orthogonal to
|2| = 1 which intersects |z| = 1 at two points 7, #. The sewing of 4 along
two arcs on |2|] =1 with end points 7, # determined by identification
of symmetric points on |z| = 1 gives a Riemann sphere and the problems
(4,) through (4,) can by solved due to the conformal invariance.

The solution in the general case is obtained by means of a marked
Riemann surface /7(z,8) (Imz > 0,0 < s < 1/2, or a [/-triangle which
is conformally equivalent to the unit disk punctured at z;. We present
both the geometric and analytic solutions of problems (4,) through (4,).

Annales 7
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2. 4 and 77 triangles

We call an ordered triple {z,,z,,2;} = {z,,2,,25; 4} of different
points of the open unit disk 4 a A triangle. A 4 triangle is said to be
normalized if z; = 0 and z, > 0. Obviously a 4 triangle represents a marked
iemann surface of hyperbolic type with three distinguished interior
points.

Suppose that 7 is an arbitrary complex number belonging to the fun-
damental region B3 of the modular function Z and let s he an arbitrary
real number which satisfies 0 << s << 1/2. L.et H be the imnage arc of the
segment [0, 8] under the @ function of Weierstrasy with periods 1,
and let G denote the simply connected domain C\H. Finally, put

2.1) a=pW#), b=pd., c=pQ+i.

The marked Riemann smiface {a, b, ¢; G} will be called a I triangle and
denoted 7I(z, 8).

It follows from the identity

o TPt I i
2.‘ T = —— —.—,’
e ) R

and also from (1.3), (1.4), (2.1) that the solution of (C,) with all the curves
confined to @ is the same as in the general case and is determined by r
by means of (1.5). We may also consider another marked Riemann surface
P(z,8)(te B,0 < 3 < 1/2) conformally equivalent with {a, b, ¢; G} which
arises from the parallelogram P = [0, }, } + 7, ] as follows. We identify
on each of the segments (0, 7), (3, 4 +7) the points symmetric with res-
pect to the centre of either seginent; we also identify the points on (s, }),
(s+7, 3+ 7) whose difference iz equal to 7. The points identified are
supposed to be interior points. If the topology is lifted from the plane,
we obtain a marked Riemann surface P(r,s) with distinguished points
3 = 1+4, 47,1+ ir which will be called the basic parallelogram asso-
ciated with I7(z, s). Obviously g(-; 1, 7) realizes a one-to-one conformal
mapping of P(r,s) onto Il(r,8), the slit H being the image arc
of [0, s].

We can now prove

Lemma 1. Given a A triangle there exists a uwique conformally equi-
valent II triangle. Conversely, to each II iriangle there corresponds a unique
conformally equivalent, normalized A {iriangle.

The proof is based on a routine continuity argument, whereas the
converse is a trivial consequence of Riemann mapping theorem.
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3. Geometric solution of (4,) through (4,)

Suppose that we are given a / triangle {z,, z,,23; 4} and ¢ maps
it one-to-one conformally onto the /I triangle I/(z,,s,) = {a, b, c; G}.
Let @ be the inverse mapping. Consider now in A any family {y} of all
Jordan curves homotopic to each other with respect to A punctured
at 2, and separating z,, 2; fromn 2z, and 04. Under @ the curves {y} ecorrespond
to the curves of the family {I'} of Jordan curves in F = C\ I, separating
b, ¢ from a and oo. In this way the problems (4,) are reduced to the
corresponding problenis (C,) Using the equivalence of (C,) through (C,)
we easily prove following theorems which yield the solution of (4,)
through (4,).

Theorem 1. Let {y},, k = 1,2, ..., be the enumerable systen of families
of closed, rectifiable Jordan curves y situated in the unit disk A, containing
two fixed, different poinis z,, zye A inside and leaving z,¢ A outside and such
that all ye {y}, belong for a fixed integer k to the same homotopy class with
respect 1o A punctured at all z;. Then

(3.1) supmod {y}, = $Imr,,
k

where T, ir the parameter v of the II triangle conformally equivalent to
{215 22y 235 4}

Theorem 2. Let {2} be the class of all simply connected domains
02 < A such that 2y, 23¢ A and 2,e ANQ. If g(z,, 23; 2) denotes the Green's
Sfunction of £, then

(3.2) 3{‘;})9(22a 235 2) = (22, 245 2,),
where Q, = ¢(G). The extremal domain 2, is a 8lit domain ANy, with y,

being the image arc of p([8y, 31; 1, 7)) under @; y, 18 an analytic arc which
emanales under the right angle from 0A4.

Theorem 3. Let {R} be the class of ring domains contained in A and such
that the bounded component of C\R contains z,, z,, whereas the unbounded
component contains z,e A. Then

(3.3) supmod R = }Imz, = modR,.
R
The ertremal ring domain R, has the form
R, = AN(ysUr1),

where v, is defined as in Theorem 2 and y, 18 the image arc under ¢ of the arc

O[3ty + 4151, 7).
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Thus the solution of the extremal problems (4,) through (4,) is
determined by the parameter t,¢ B of a /I triangle //(7,, 8;) conformally
equivalent to a given A triangle {z,, z,, z;; 4}. In the following section
we evaluate the parameter 7, analytically in terms of hyperelliptic
integrals.

4. Analytic evaluation of M(z,, z,, 2;)

Suppose that @ maps one-to-one conformally a 4 triangle {z,, 2,, z;; A4}
onto a [T triangle 71(z,, 8,) = {a, b, ¢; @)} and that ¢ is its inverse. Consider
in @ = C\H, the family {I'}, of Jordan curves I" separating b, ¢ from a and
homotopic to the curves separating b, ¢ from the extremal continuum H,.
Obviously mod {I'}, = 3Im<z,. Moreover, {p(I')}, I'e {I'}o is the extremal
family of the problem (4,) for the given 4 triangle. The extremal metric
in @ has the form (1.6) and is associated with a positive quadratic differ-
ential in G with simple poles at a, b, ¢, co. In view of the uniqueness
of the extremal metric and by the conformal invariance of extremal
metric and quadratic differentials we deduce that the extremal metric
in the problems (4,) through (4,) due to their equivalence is the same
and has the form C|Q(z)|*|dz|, where C is a positive constant and Q(z)dz?
is a positive quadratic differential in A with simple poles at z,. After
a reflection with respect to |z| = 1 we obtain a positive quadratic differ-
ential on the sphere. Let us assume that z; = 0, imz, > 0, imz, < 0.
Then @ (z)dz? has necessarily the form (cf. [5], p. 36):

(4.1) Qz, 0) =6 (g~ [2 [ [ (¢—2) 2 —zkz)]“.

k=1

Consider the branch of the square root

(4.2) o(z) = [z []z—=0a —:zkz)]“
k=1

which takes the value |1 —z,|7'|1 —2,|~! at z = 1. Let 4, denote the loop
joining 1 to z,; that is, 4, is a cycle consisting of a small circle C'(z,; ¢)
centre at 2z, and radius ¢ described in the positive direction and of a recti-
linear segment described twice and joining C(2;; €) to 1 so that its prolon-
gation contains z,. The radius ¢ is chosen so that all the circles C(z,; ¢)
are situated outside each other and inside 4 and do not enclose 1. Put

(4.3) Ay = f[Q(z, a)tdz = e G, —¢“*H,,

A



An extremal length problem 101

where
G, = fza(z)dz =32 _,‘ za(2)dz,
A [1,24]
(4.4) Hy = [o(z)dz =2 [ o(2)dz,
A [1,25]

k=1,2,3; 23 =0.

It is well known (cf. e.g. [3], or [11]) that the Abelian integral f Q(z, a)tdz
taken over paths contained in A and starting at z = 1 with the initial
value determined by o(z) takes the values

(4.5) L(z) = I(2) +myo,+m,w,,
or
(4.6) L(z) = A3 —1(2)+my0,+my0,

where m,, m, are integers, I(z) is the value of the integral over the straight
line segment, and w,, w, are linearly independent; we may take

(4.7) wy = Az‘—Aa, Wy = Ax'—Aa-
We also put
(4.8) W3 = W, +w,.

With the notation given above we have

Lemma 2. There exists a unique value a, of the parameter a such that
the period w, = A,—A; associated with a, is real. Moreover, there exists
a point  on dA such that the function

(4.9) F@) = 9( [0 a'ds; oy, )

n
where the w, are associated with a, and the integral is taken over arbitrary
paths in A joining 7 to z, is regular and univalent in A. We have also
(4.10) F(z) = p(doy; 01, 1) =€,k =1,2,3.

The value a, can be evaluated as follows. Since w, = w, it follows from (4.3)
and (4.7) that

e~ (G, —Gy+H,— Hy) = 6°*(G,—Gy+ H,—H,)
and this implies
(4.11) ¢ = (G,—G,+H,—H,)/(G,—G;+H,—H,).
The equality G,—G, = H,—H, shows to be impossible.
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From (4.3), (4.7) and (4.11) we obtain
(412) o, = +|G,—Gy+H,—Hy|(|G,—)* — (H,—H,)),
(£13)  wy = F (G, —G+H,—H,)[(G,—Gy)(H,—Hy +G, —G,) —
—(H,—Hy)(H,—H,;) +G, —G,)]

Since , is real, the trajectories of @(z, a,)dz? coincide with the loci
{z: imL(2) = A} where A is a real constant. Hence by (4.7) and (4.10)
there exists a trajectory joining z, to z; which will be denoted y,, as well
as a trajectory y, joining z, to €*! on which we can take 1 = 0.

By using the homogeneity property of g and (4.10) we easily verify
that the function ¢(z) = w} F(2) realizes a one-to-one conformal mapping
of {z,,2,,%3; 4} onto a IT triangle whose parameter 7, is equivalent to
w,/w, with respect to the congruence subgroup mod 2 (cf. [1], p. 270).
Thus we obtain

Theorem 4. Suppose that M (z,,2,,0) = supmod {y}; where {y}, are
k

families of rectifiable Jordan curves contained in the unit disk A separating 0,
2, from z, and 04, homotopic for a fized k to each other with respect to A
punctured at 0, z,, 2,. Then

(4.14) M (2, 255 0) = }Im7y,

where T, is the unique point in the fundamental region B of the modular
function A equivalent to w,/w, with respect to the congruence subgroup
mod 2; the ratio wgy/m, can be evaluated from (4.2), (+.4), (4.12) and (4.13)
with 23 = 0.
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STRESZCZENIE

W pracy tej wyznaczam maksymalny modul M(z, z,,2;) =
= supmod {y}, gdzie {y}, jest to przeliczalny uklid rodzin krzywych
k

Jordana y lezgeyeh w kole jednostkowym 1 zawierajagcyeh dwa ustalone
punkty z,,2,; tego kolv i pozostawiajacych na zewnatrz punkt z,e¢ 4
przy czym przy ustalonym k wszystkie krzywe ye {y}; sa homotopijne
wzgledem 4 z usunietymi punktami z,. Ponadto rozpatrzone sg problemy
ekstremalne rownowazne ze znalezieniem M(z,, z,, 2,).

PESIOME

B aroii paGore onpenensaerca MakcuMadbHblil Moayab M (z,, 2,, 2;) =
= supmod {y},, TAe {y,} — cdernaa cucrema cemeiictB sKopaanoBbIxX
k

KPHMBBIX y B €THHMYHOM Kpyre /, 3aiiiodaioiiux BHYTPH ceGa aBe PHKCH-
POBaHIIble TOUKII 23, 23 11 OCTAB.IAIOINMX BHe ceGA TOURY 2z, € 4; Bce KplBLIE
y OXHOrO M TOro :Ke CeMeiiCTBa {y,} AO.I*KHH OHTb rOMOTONUYECKHE 110

AN({2,} U {2,} U {25}). PemcHn Takixe nBe ;pyrue 3KBHBaleHTHHE SKCTpe-
MaJjibHble HPOOIeMEL.






