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Power Series in z and 2
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In studying non-holomorphic complex-valued functions usually
a complex differential-equation is considered. Its solutions show pro-
perties which are very similar to the properties of holomorphic functions.
Let us mention here the pseudo-analytic functions, introduced by L. Bers
and the generalized analytic functions, introduced by I. N. Vekua.

But if we start from power series in order to study nonholomorphic
functions without considering any regard to differential-equations we are
led to series of the form

P(z) = E 2 A 2" 2™
n=Q0m=0
We meet here phenomena which are peculiar for one-dimensional holomor-
phic theory but also some differences arise.

The problems considered here may be treated in two different ways.
First of all some well known methods of one-dimensional holomorphic
theory can be transferred to these series, and on the other hand these
geries may be regarded as a holomorphic function of two complex
variables z,, 2, in the plane z; = Z,.

We have |z;| = VM?, and this is the distance between the point
z; and the origin. But |z| is the euclidean distance between the point
(21, %,) and the origin. So we have |z| = Vai+yi+ai+yd =V2z.
Hence we put 2 = x+1iy with o = 1/2:1:1,1/ - l/2yl. So we have the
correspondence

P(2) '_)P(zl.’ 2y) = 2 Zamla(lrﬁ)n{-mz’l‘z:l'

n=0m=0

Using this correspondence a lot of properties can be proved.
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1. Convergence. If P(z) is convergent at 2, it is absolutely convergent
at all the points in the disc [2] < |2,|. This follows from an analogous
property of holomorphic series in z, and z, which is called Abel’s theorem.

There exists a positive real number r such that P(z) converges abso-
lutely in the disc |z| < r and diverges for |z| > ». This number 7 is called
the radius of convergence; r can be found as in one-dimensional holomor-

n+m
phic theory. Consider the sequence  V|a,,,| and let I be its limit superior.

Then r» = 1/I. And this can be extended, of course, on series in the neigh-
bourhood of a point @ # 0 which can be done by putting { = z —a and also
in the neighbourhood of the point 2 = co by putting [ = 1/2. A series

400 00
of the form Q(2) = Y 3 a,,2"#" is called Laurent series. This
expression means S et

(-] -] 00 oo
Z ") 1 5 X1 z
Q(z) = a_"mzn?n_*_ Z a n—-m n-m + ‘ ‘,B_la-n.'m . +
n,m=0 n,m=0) + n=1 m=0 y
(n, m)#(0,0)
5 pr
0D e
n=0 m=1

All these four parts of @(z) must be convergent, if @ should have any
sense. The first part converges in a disc, the second part converges outside
another disc. It is easy to prove that part three and part four converge
in ryy < |2| < Bypqy v < |2| < Ryy, resp. Only if these four sets of
convergence have a non-empty intersection, we can write the above
expression for @Q(z).

The operations on series such as sum, difference, product, quotient,
and the derivative of a power series, can be defined as in the two-di-
mensional case by restriction to the plane z, = Z,.

2. Coefficient comparison. Next we come to a problem which can be
also tackled by two-dimensional theory, that is the theorem of identity
or, in other words, the coefficient comparison. At first we can state the
following trivial theorem: Let P,(2) and P,(z) be two given convergent
power series. If P, and P, coincide at every point of an open subset of the
common set of convergence, then P, and P, are identical, and we can equate
coefficients of corresponding powers of z and Z.

In one-dimensional holomorphic theory we have the following iden-
tity theorenm: Two series are identical if they coincide at every point of
a convergent sequence of points. We know that such a kind of identity
theorem does not take place in two dimensional theory, we can find
counter examples e.g. in Osgood’s “Funktionentheorie’.
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H. Hornich (Monatshefte fur Mathematik, vol. 71 (1967), 214-217)
gave necessary and sufficient conditions for convergent point sequences,
s0 that two holomorphic functions f(z,, 2,) and ¢(z,, z,) are identical if
they coincide at every point of such a sequence. We can transfer this
theorem, of course, to our series in z and Z.

The present anthor succeeded in proving a sufficient condition,
from which it follows that the zeros of a series P(z) eannot accumulate,
and this gives us an identity theorem for series in z and Z, which is gimilar
to the form well known from one-dimensional holomorphie theory.

3. Analytic continuation. In holomorphic theory the identity theorem
leads to analytic continuation and the same is true here. Let us consider

o <] 00
the series P,(z) = Y Y a,,(2—a)"(2—&)™. Let b be a point in the disc
n-0 m—-0

|¢—a| < r, where r is the convergence radius. If the function P, has

(=] oo
another representation, say Py(z) = 3 3 a,,.(2—b)"(2—b)™, where the
Nn=0 m=0
coefficients a,,, can be determined from the original series, it is possible
to prove that P, converges at least in |z —b| < r —|b—al|.

Like in holomorphic theory we use the following definitions. If the
discs of convergence of two power series P,(z) and P,(2) have a non-empty
intersection w and P, and P, coincide in o P, i8 said to be a direet analytice
continnation of P, and conversely, P, is a continunation of P,.

& 0o

The quantity consisting of all pairs (2o, Po(2)), where Po(z) = 3 Y al), x
=0 n=m

X (2 —24)"(Z—2%,)™ which can be obtained directly or indirectly by an
analytic continuation from a given series P,(z), is called a monogenic
system of power series or a monogenic function and is denoted by f(z).

The serier P, is called a primitive element. Ilach particular series
of such a system f(2) is called an elementary branch and in its of convergence
disc K, it represents a single-valued branch of a monogenic function.

Every interior point of K, is called a regular point. A point se dK,
is called regular if there exists a direct continuation P,(2) whose radius
of convergence does not vanish. Otherwise it is called singular.

All these definitions are well known from holomorphic theory and
they all can be transferred to the series considered here. Let us mention
the following difference. In the holomorphic theory we have the theoren
of natural boundary which means that at least one point of the boundary
of the disc of convergence K, of an elementury branch P, is singular.
This theorem does not take place here.

4. Isolated singularities. We restrict ourselves to isolated singular
points. Let us consider a single-valued branch f(z) of a monogenic function
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defined in an open connected set G'. Let ¢ be an isolated boundary point
of G’ so that the union G = {G'uUc} is also an open connected set, then ¢
is said to be an isolated singularity of f(z).

Like in the holomorphic theory an isolated singular point can be
of any one of three types:

i) f(z) is bounded — c is called removable singularity;
ii) f(2) is unbounded but 1/f is bounded — c¢ is said to be a pole;
iii) f(z) is unbounded and 1/f is unbounded, too — ¢ is an essential sin-
gularity.
In studying non-holomorphic series in z and zZ we have to distinguish
two types of removable points and poles.

Let f(2) be bounded and let {z,} — ¢ be any convergent sequence of
points. Then it is possible to choose a subsequence so that f tends to a finite
value, a finite asymptotic value. Such a kind of removable singularity
is called weak-removable. An isolated singular point ¢ such that f(z)
can be defined or redefined in such a way as to be at least continuously
at ¢ is said to be strong-removable. And so a pole is said to be a weak
one if 1/f is weak-removable and it is said to be a strong pole if 1/f is
strong-removable.

The well-known Riemann’s theorem on removable singularities can
be generalized for strong-removable singularities, if the derivative d;f
is of L?(G), p > 2.

A generalization of Casorati Weierstrass’ theorem on essential sin-
gularities takes also place if d;fe L?, p > 2.

5. Examples. At last we give some examples of series-expansion of
functions in the neighbourhood of a singular point. We only mention the
properties but we do not prove them.

Let Q(z) = Y Y a,,z 2 be convergent in 0 < |2| < r;z =0,

—
n=—o00 Mm=-00

the origin is an isolated singularity. In order to get a better image we
arrange the coefficients in a matrix

( (—nm, —m) I (m, _m))

—n, m) (n m)

So we have the following types of series:

i) Q=23 2 a_nn?""™z" that is @, has a weak-removable

fi=0 Mm=—o00

singularity;

i) Q.2 =23 X a, ,n.2""™Z", ie. @, has a strong-removable sin-

n=k m=—oo

gularity and Q,e C*°';



Power series in z and z 89

iii) Qs(2) = 3 ) a,p"7" witha_, _, #0,ie Q; has a strong
pole; f=—n) m=—n,y

oo "
iv) Q@) =Y 3 a, ,n.2""™Z" here all types of singularities are

fi=—ngm=—co
possible. To decide which type of singularity is in question we have to
investigate some of so called characteristic functions which are Fourier-
-series of the form

1a(p) = Gl O
n ,,,_Zm m

More detailed considerations will be given in Mathematische Nach-
richten. My works on these subjects will be published in 1971, Vol. 47,
49, and 51.

STRESZCZENIE

Tematem odezytu jest przedstawienie niektérych podstawowych
wlasnosei szeregéw potegowych postaci Ya,,z"z™. W szczegblnosci,
Autor zwraca uwage¢ na pewne analogie, ale tez i na pewne réznice w za-
chowaniu si¢ tych szeregdbw w poréwnaniu z szeregami potegowymi
postaci Y a,z", badi } a,,2727.

PE3SIOME

Tema paGoThi — mnpeaCTaBlIeHMe HEKOTOPHIX TIJIABHLIX CBOMCTB CTe-
NeHHBIX PAJOB BUAA ) @,,2"2". OcoGeHHoe BHMMaHMe o6pallieHO HA He-
KOTOpble aHAJOruM M HEKOTOpble PA3HMULI B COXPAaHEHWH 3THX PHAIOB
M0 CPaBHEHMIO CO CTEelleHHBIMH PANAMU BMAA Y'a,2", Y'a,.2]'z%.






