ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA

VOL. XXII/XXIII/XXIV, 9

SECTIO A

1968/1969/1970

Mathematisches Institut der Justus Liebig Universität, Giesson, Deutsche Bundesrepublik

DIETER GAIER

Entire Functions with Gap Power Series

Funkcje całkowite z lukowym szeregiem potęgowym Целые функции с лакунарным степенным рядом

In this talk I shall present some results on entire functions whose power series expansion at 0 has gaps, which have been obtained some time ago [1], but which I thought would be best suitable to report at this conference.

1. Motivation. Assume that a series $\sum a_n$ with partial sums s_n is given. We say that $\sum a_n$ is Borel-summable to s, i.e. $B - \sum a_n = s$, if

$$e^{-z} \sum rac{s_n z^n}{n\,!} o s \quad (z = x o + \infty)$$
 .

Several authors, Pitt, Erdös, Meyer-König, Zeller, and recently Melnik have considered the problem:

$$B-\sum a_n=s, \quad a_n=0 \text{ for "many" } n\Rightarrow:\sum a_n=s,$$

which is the so called high indices theorem for Borel summability.

The most difficult part in results of this type is to obtain first some order condition on the a_n , for example $a_n = O(K^n)$ $(n \to \infty)$ for some $K < \infty$, and this is where complex variable methods can be applied successfully.

Namely, the hypothesis $B - \sum a_n = s$ implies that $e^{-x} \sum \frac{a_n x^n}{n!} \to 0$ $(x \to +\infty)$, and the order condition $a_n = O(K^n)$ is equivalent to saying that $\sum \frac{a_n z^n}{n!}$ is entire and of exponential type. So our problem is transformed into the following

Problem: If $f(z) = \sum a_n z^n$ is entire, and $a_n = 0$ for "many" n, and if further $f(x) = O(e^x)$ ($x \to +\infty$), show that f is of exponential type.

The gap condition permits us to conclude from the radial growth of f to the growth of f in the plane.

2. Theorem. More precisely, we shall prove the following

Theorem. Let $f(z) = \sum a_n z^n$ be entire, and $a_n = 0$ for $n \neq \lambda_k$ with $\sum \lambda_k^{-1} < \infty$. If then $f(x) = O(\exp(x^a))(x \to +\infty)$ for some a > 0, then f is at most of order a, type 1.

We remark that the condition on the $\{\lambda_k\}$ is best possible. According to Macintyre there is, to any given $\{\lambda_k\}$ with $\sum \lambda_k^{-1} = \infty$, an entire function f of infinite order which is bounded for z = x > 0.

3. Proof of theorem. With V. Bernstein we consider for arbitrary fixed $T<\infty$ the transform

$$H(z)=\int\limits_0^T f(t)t^{-s-1}dt.$$

We assume, as we may, $a_0 = 0$, so that the integral converges for $\text{Re}\,z < 1$, and H is a regular function in the halfplane $\text{Re}\,z < 1$.

To obtain its analytic continuation beyond $\mathrm{Re}z=1,$ we write in $\mathrm{Re}z\leqslant0$

$$egin{align} H(z) &= \int\limits_0^T \sum a_n t^{n-z-1} dt = \sum a_n \int\limits_0^T t^{n-z-1} dt \ &= \sum a_n rac{T^{n-z}}{n-z} = -T^{-z} \sum a_n rac{T^n}{z-n} \,. \end{align}$$

The right hand side is a meromorphic function in the plane, and thus it represents the analytic continuation of H beyond Re z=1. Possible singularities are simple poles at z=n with residues $-a_n\,(n=1,2,\ldots)$. Thus we transformed the gap condition: Many a_n are zero, to a complex analytic condition: H has few poles.

We also notice that on the imaginary axis, z = iy,

$$|H(z)| \leqslant \int\limits_0^T |f(t)| \, t^{-1} dt \leqslant C_1 \exp(T^a)/T^a \hspace{0.5cm} (T \geqslant 1)$$
 .

Finally, if we stay away from the poles of H, $|z-n| \ge \eta > 0$, we have

$$|H(z)|\leqslant T^{-x}rac{C_2(T)}{\eta}$$
 .

In order to remove the poles, we consider the Blaschke product

$$B(z) = \prod_{k=1}^{\infty} rac{\lambda_k - z}{\lambda_k + z} = \prod_{k=1}^{\infty} \left(1 - rac{2z}{\lambda_k + z}
ight)$$

and the new function

$$\varphi(z) = H(z)B(z)$$
 in Re $z \geqslant 0$.

It is regular in $\mathrm{Re}\,z\geqslant0$, and on the imaginary axis

$$|arphi(z)| = |H(z)| \leqslant C_1 \exp{(T^a)}/T^a$$
 .

Furthermore, the estimate of H outside the poles gives

$$|arphi(z)|\leqslant C_3(T)T^{-x} \quad ext{ for } \quad ext{Re}z=x\geqslant 0\,;$$

in particular, φ is bounded in the positive half plane.

Now we apply a theorem of Phragmén-Lindelöf type:

If f is regular and of exponential type in $\operatorname{Re} z \geqslant 0$, $|f(iy)| \leqslant M$, and $\limsup_{x \to +\infty} \frac{\log |f(x)|}{x} \leqslant C$, then $|f(z)| \leqslant Me^{Cx}$ $(z = x + iy, x \geqslant 0)$.

Applied to φ_i we obtain

$$|arphi(z)|\leqslant C_1rac{\exp{(T^a)}}{T^a}T^{-x} \hspace{0.5cm}(z=x+iy\,,\,x\geqslant 0),$$

and if we put z = n for $n = \lambda_k$, this gives

$$|a_n| |B'(\lambda_k)| \leqslant C_1 \frac{\exp(T^a)}{T^a} T^{-n},$$

where the right hand side is

$$O(1)\left[\sqrt{n}\,\Gamma\left(1+\frac{n}{a}\right)\right]^{-1},$$

if T>0 is chosen so that $T^a=1+\frac{n}{a}$. A more detailed estimate (see [1], p. 252) now shows that $|B'(\lambda_k)|^{-1}=O(1)e^{\epsilon\lambda_k}$ for every $\epsilon>0$. Putting everything together, we arrive at

$$a_n = O(1) \frac{e^{\epsilon n}}{\Gamma(1+\frac{n}{a})} \qquad (n \to \infty),$$

valid for every $\varepsilon > 0$, which proves our theorem.

We may remark that in the case of larger gaps

$$\lambda_{k+1} - \lambda_k \geqslant \theta \sqrt{\lambda_k}$$
 $(\theta > 0 \text{ fixed}),$

our method gives (if a = 1)

$$a_n = O(1)e^{e\sqrt{n}}\frac{\sqrt{n}}{n!} \qquad (n \to \infty)$$

for every $\varepsilon > 0$.

In conclusion, we point out that our method was modified by Halász [2] to give a complex variable proof of the high indices theorem of Hardy-Littlewood and some refinements of it.

REFERENCES

- [1] Gaier, D., On the coefficients and the growth of gap power series, J. SIAM Numer. Analysis 3 (1966), 248-265.
- [2] Halász, G., Remarks to a paper of D. Gaier on gap theorems, Acta Sci. Math. (Szeged) 28 (1967), 311-322.

Added in proof:

Further generalizations of our theorem have been obtained by Anderson and Binmore in Trans. Amer. Math. Soc. 161 (1971), 381-400.

STRESZCZENIE

Jak wykazał Macintyre w r. 1952, funkcja całkowita f, której szereg Taylora ze środkiem w zerze ma luki Fabry'ego i która jest ograniczona dla z=x>0, redukuje się do stałej.

Twierdzenie to można uogólnić osłabiając ograniczenie wzrostu. Np. jeśli f ma luki Fabry'ego oraz $f(x)=O(\exp x^a)$ $(x\to +\infty)$ dla pewnego a>0, to f jest rzędu conajwyżej a i typu 1. Przypadek a=1 pozwala na otrzymanie dowodu twierdzenia o dużych wskaźnikach dla sumowalności borelowskiej.

РЕЗЮМЕ

Как доказано Макинтайром, целая функция, которая имеет степенной ряд в начале координат с лакунами Фабри и которая ограничена для z=x>0, редуцирует к константе.

Эта теорема допускает следующее обобщение.

Пусть f — целая функция, $f(x) = O(\exp x^a)$ $(x \to +\infty)$ для некоторого a>0 и степенной ряд имеет лакуны Фабри, тогда f конечного порядка небольше a и типа 1. Случай a=1 дает доказательство теоремы о больших индексах для борелевской суммируемости.