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Entire Functions with Gap Power Series
Funkejo calkowite z lukowym szeregiem potegowym

Ilensle QyHKIMM C JJAKYHAPHHIM CTONEHHHIM DANOM

In this talk I shall present some results on entire functions whose
power series expansion at 0 has gaps, which have been obtained some
time ago [1], but which I thought would be best suitable to report at
this conference.

1. Motivation. Assume that a series )a, with partial sums g, is given.
We say that 3, is Borel-summable to s, i.e. B— Ya, = s, if

v 8,2"
g-s___\_ “' -8 (z2=a—> +00).
d n!

Several authors, Pitt, Erdos, Meyer-Konig, Zeller, and recently Melnik
have considered the problem:

B“Zan =s, a, =0 for “many” n»:Ea,, ==3h

which is the so called high indices theorem for Borel summability.
The most difficult part in results of this type is to obtain first some

order condition on the a,, for example a, = O(K") (n — o) for some

K < oo, and this is where complex variable methods can be applied

successfully.

a,a"

Namely, the hypothesis B—Ya, = s implies that ¢ * -0

n!
(z — + o0), and the order condition a, = O(K") is equivalent to saying

a,z P .
that E——”'— is entire and of exponential type. So our problem is trans-
n!

formed into the following
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Problem: If f(z) = ) a,2" is entire, and a, = 0 for “many” n, and
if further f(z) = O(€®) (# - + o), show that f is of exponential type.

The gap condition permits us to conclude from the radial growth
of f to the growth of f in the plane.

2. Theorem. More precisely, we shall prove the following

Theorem. Let f(z) = > a,2" be entire, and a, =0 for n # 1, with
D't < oo. If then f(z) = O(exp(a°)) (€ - + oo) for some a > 0, then f
18 at most of order a, type 1.

We remark that the condition on the {2,} is best possible. According
to Macintyre there is, to any given {4} with ' 1;! = oo, an entire function
f of infinite order which is bounded for z = z > 0.

3. Proof of theorem. With V. Bernstein we consider for arbitrary
fixed T < oo the transform

T
H(z) = [ fyr>"at.

We assume, a8 we may, a, = 0, 8o that the integral converges for Rez < 1,
and H is a regular function in the halfplane Rez < 1.

To obtain its analytic continuation beyond Rez — 1, we write in
Rez< 0

z T
H(z) = f a, " dt = > a, f =144
J 2 2%
e SR« W
=2a”n—-z woind Zd"z—n'

The right hand side is a meromorphic function in the plane, and thus it
represents the analytic continuation of H beyond Rez — 1. Possible
singularities are simple poles at z = n with residues —a, (n =1, 2,...).
Thus we transformed the gap condition: Many a, are zero, to a complex
analytic condition: H has few poles.

We also notice that on the imaginary axis, z = iy,

T
H(2)| < [ If@)1dt < Crexp(T)/T° (T > 1).

Finally, if we stay away from the poles of H, |2—n| > 5 > 0, we have

|H(z)| < T* C‘f) :
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In order to remove the poles, we consider the Blaschke product

B 7 g
lk“*"z ]‘I( )k—rz)
and the new function

p(2) = H(2)B(2) in Re 2> 0

B(2). =

It is regular in Rez > 0, and on the imaginary axis
lp(2)] = |H(2)] < C,exp(T*)/T°.
Furthermore, the estimate of H outside the poles gives
p(2)] < C3(T)T* for Rez =2x=0;

in particular, ¢ is bounded in the positive half plane.
Now we apply a theorem of Phragmén-Lindelof type:
If f is regular and of erponential type in Rez >0, |f(iy) < M, and

- oglf(
11ms11pM<C, then |f(z)] < Me®® (z = z+iy, x> 0).
z

Z—+0a

Applied to ¢» we obtain

exp (T
lp(2)] < ("1—%11’"2 (z =z+1iy,x>0),

and if we put z = n for n = 4;, this gives

exp(T°)
L

P, =l
V/'n, P(l + '11) I- ’
- a -

n
if T > 0 is chosen so that 7° = 1+ — . A more detailed estimate (see [1],

L
252) now shows that |B'(4,)|"' = O(1)e”* for every &> 0. Putting
everything together, we arrive at

’a'nl :B'U‘k)‘ < 01
where the right hand side is

0(1)

ezn
—— (n — oo),

3

valid for every & > 0, which proves our theorein.

a, =0(1)
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We may remark that in the case of larger gaps

Mepr— A= 0V2, (6> 0 fixed),

our method gives (if a = 1)

Va
a, — O(1)e"™ n—"" (% > oo)

for every ¢ > 0.

In conclusion, we point out that our method was modified by Halasz
[2] to give a complex variable proof of the high indices theorem of Hardy-
Littlewood and some refinements of it.
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STRESZCZENIE

Jak wykazal Macintyre w r. 1952, funkeja calkowita f, ktorej szereg
Taylora ze srodkiem w zerze ma luki Fabry’ego i ktéra jest ograniczona
dla z = z > 0, redukuje si¢ do stalej.

Twierdzenie to mozna uogdlnié oslabiajac ograniczenie wzrostu.
Np. jeéli f ma luki Fabry’ego oraz f(x) = O(expa®) (x - +oo) dla pewnego
a > 0, to f jest rzedu conajwyzej a i typu 1. Przypadek a = 1 pozwala
na otrzymanie dowodu twierdzenia o duzych wskaznikach dla sumowal-
nosci borelowskiej.

PE3SIOML

Hak pokasaHo MakuuraiipoM, weiad (QYHKIMA, KOTOpaA MMeeT
CTeNeHHOoil pAJ B Hayaje KOOpAHHAT ¢ nakyHamu PaGpu u Kotopas orpa-
HUYeHa s 2 = & > 0, peqyulpyeT K KOHCTaHTe.

dTa TeopemMa MOMYCKaeT clenyloiee obobuienue.

Ilycrs f — ueaas ¢yukuus, f(z) = O(expa®) (x - + oo) maAA HeKo-
TOporo a > 0 I cTeleHHoii pAX umeeT JaxyHsl ®abpi, Torga f KOHEYHOro
nopsagka HeGombule a m tuna 1. Ciayyaih ¢ = 1 QmaeT HROKa3aTelabCTBO
TeopeMBl 0 GOIIBLINX IHAEKCAX NJIA Oope;TeBCKOIl CyMMIIPYeMOCTH.



