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On the Minorant Sets for Univalent Functions

O zbiorach minoryzacji dla funkcji jednolistnych

MHOXKecTBa MIHOPH3ALUI OAHOJICTHRX (ymKrumi

1. Let 8 be the class of functions f(z) = 2+ a,2*+..., regular and
univalent in the unit disk K and let S* be the subclass of functions fe S
starshaped w.r.t. the origin. From the starshapedness property and from
the Cauchy-Riemann equations it follows immediately that

1 6 10 0 N:]
(1.1) 7Wa.rgf(re ) = Elog|f(re ) >0,
which means that |f| strictly increases on the segment [0, a]. Hence,
given ae¢ K, a + 0, we have: |f(z)] < |f(a)| for any ze(0,a), and any
feS*.

Thus, given a fixed subclass 8, = 8* and a fixed ae K, a # 0, we are
led to the determination of the set Z(a, §,) which is defined as the maximal
subset of K such that for any fe 8, and any z¢ 2(a, S,) we have: |f(z)]
< |f(a)|. In what follows we shall call 2(a, S,) the minorant set associated
with a and S,. By our previous remark, (0, a) c 2(a, S,). Obviously,

Z(a, 8,) = () Dy(a),
148,
where
Dy(a) = {ze K: |f(2)] < |f(a)]}.

In this paper we determine D(a, 8,) for the class S, of starshaped
functions of order a, in case a = 0,a = 1/2 (8; = §°), a8 well as for the
class 8° of convex functions. The class S, is defined by the condition:
re[zf'(2)/f(2)] > a, where 0 < a < 1.

Annales



34 Zbigniew Bogucki, Jozef Waniurski

Suppose that S, has the following property:
(1.2) if fe 8, and |5 < 1, then % f(52)e S,.

Obviously 8° and 8° have property (1.2). Moreover, for any S, with
the property (1.2) we have:

1° g(ag“, So) = ¢*2(a, 8,) for any real ¢,
20 if 0<r< R<1, then 9(r, 8,) c 2(R, 8,).

In order to determine Z(a,S.),a =0,1/2, we use the following
result [5]:

If fe 85, then for fized 1,0 < r < 1, fived ze K (2 + 0, r) and f ranging
over S the set of all values of

[7f () 2f () 120
18 the closed disk X', , with the boundary
(1.3) w(t) = (L—re)/(L —2e"), te [—n, x].
2. We now prove

Theorem 1. If ¢, 6 are polar coordinates then the boundary of ?(r, 8*)
has the equation

1 . 0 gl .0 2
21) e= —é;[r”+4rsm5 +1—l/(r’+4rsm§ +1) —4r=],o< [0, 2x].

2~
Proof. Suppose that feS8 and (eX',,. Then f(2)/f(r) =_¢_" is con-
tained in the domain enclosed by the curve 5

(2.2) u(t) = (&) [(L —re") /(1 —26%) 2, te [ —a, x].

Therefore ze 2(r,8%), iff for any te[—x,x] we have: I(z[r) x
X [(1 —re)/(1 —2¢*)]?| < 1, which is equivalent to

(2.3) 2rre(e (2 —[2))] < (r —[2) (L —7|2|), te [ —m, 7].
It follows from (2.3) that
(2.4) D(r,8*) = {2: 2rjz—|2|| < (r—l21)(1 —r|2|)}.

Putting 2 = ge* in (2.4) we easily obtain (2.1).
In an analogous way we can prove

Theorem 2. If g, 6 are polar coordinates then the boundary of D(r, Sl'l,)
has the equation

ri+o? 1 [r2—pt\® o
2.5 0 — 4b I
e iamcos[ 2rp 2?9( 2rp ’]’e€[1+2r ’r]°
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Proof. If is f ranging over Sl',, and 2, r are fixed then the set of all
values f(z)/f(r) is a closed disk whose boundary has the equation
(2.6) o(t) = (2/r)(1 —re?)(1 —ze*)"), te [—m, =],

which is a consequence of (1.3).
Hence ze Z(r, 8},,), iff for any te [—=x, n] we have: |(z/r)(1—re*)x
% (1 —2¢¥)"!| < 1, which is equivalent to

(2.7) 2rre{e ¥ (rz —|2|2)} < r2— 2|3, te [ —m, @].
Now, (2.7) implies
(2.8) P(r, 83 = {z: 2rjrz— 2|} < 72— |2[2}.
Putting 2z = ge” in (2.8) we obtain the equation of the boundary of
2(r, S;J-,).
(2.9) 2roVri 4 o1 —2rpcosf = 71 —pt,

L d J
It is easily verified thatTg < 0 for 6e (0, =), hence we can obtain

6 as a function pe [7/(1+27), 7] in the form (2.5).
Corollary.
(2.10) D(ry 8ip) = D(r, §).

Proof. Obviously 2(r, 8},) = 2(r, &) since §° = 8y,. On the other
hand, for the family of functions {57'f,(n2)}, where |5| =1 and f,(2)
= z(1+2)"?, the inequality |f(2)| < |f(r)| leads to the set on the right-hand
side of the equality (2.8). This proves the Corollary.

3. We now give an example showing that the determination of the
set 2(r, S,) provides the solution of some problems in the theory of
subordination.

Let us start with some definitions and notations.

Suppose that A is the class of functions f(z) = a,z+ag2*+...,
a, > 0, analytic in the unit disk K and let B be the subclass of A consisting
of all we A with |w(2)] < 1,z¢ K.

Suppose, moreover, that H(z) denotes for a fixed ze K the closed
convex circular triangle whose boundary consists of an arc of the circle
{¢: L] = |2/} and of two circular arcs through 2 tangent to the former
circle. The region H (z) has following properties:

() H(ze*) = ¢*H(z) for any real t,
(ii) if |2| < |{|, argz = arg{, then H(z) « H({).
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Moreover, if R,t are polar coordinates then the boundary points
of H(r) satisfy the equations

(3.1) R*4 R(1—r)gint—r? = o,ze[o,%] U[—:—n,2n],
3
(3.2) R=r2 te %,En].

It is easy to verify (cf. [3], p. 327) that the set H(z) defined above
is identical with the set {W: W = w(z), we B).

The function fe 4 is said to be subordinate to Fe S, in K (which
is denoted: f 3 F) if f = Fow with we B.

M. Biernacki was the first [1] who considered the following problem:
Given the classes A4, S, evaluate the number

(3.31) ro = r(4,8,) = infr(f, F),
where
(3.32) r(f, F) =sup{r: [(f # F)A (0 < |z} < 1)) = |f(2)| < |F(2)]},

for a fixed pair (f, F) such that fe A, FeS,,f 3 F, the infimum in
(3.31) being taken with respect to all such pairs.

In the above given notation we can state a general method of
evaluating r(4, 8,) in terms of the set 2(a, S;). We have

Theorem 3. Suppose that a fixed subclass 8, of normalized, univalent
functions has the property (1.2). Then
(3.4) r(4,8,) =sup{r: H(r) c 2(r, 8,)}.

The proof can be easily derived from the properties of the above
introduced sets H(r), 2(r, 8,) and is omitted here.

We shall apply Theorem 3 to the evaluation of r(A4, 8°*) and r(4, 8.
An alternate method was applied earlier in [4] and [2] in evaluating
these constants. We have

Theorem 4.
(3.5) r(4,8%) = 3(3-V5),
(3.6) r4, 8) = }.

Proof. We first verify (3.5). The boundary of H(r) has according
to (3.1), (3.2) the following equation

30— (1 —r2)sint +V(1—r?)2sin®t + 4r2], te [Io, %] U [% . 2,,]

® 3
rd ,te[‘é,—?" :"l']-

3.7 R(t) =
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If H(r) < 2(r, 8") then R(n)< o(n) and hence 0 < r < }(3—V5)
by (2.1). We have to show that
(3.8) R(t) < o(t), for te (0, ) and r = }(3—V5).
For a fixed r the function g(t) decreases in (0, =) and therefore (3.8) holds
obviously for te[2 , n) On the other hand, for te (0 -) the inequality

(3.8) can be written in the following form:

4 i \2
(3.9) Vbsin®t+4 —Vbsint < — [3+4sm-z——]/(3+4sin;) —4].

Leaving the functions containing square roots on the left hand side and
then squaring both sides twice we bring the inequality (3.9) to the form

t t t i
(3.10) 12+8sin§ —15¢c08 ——5sintcos—2-< 10sint, te IO, g—)

in view of the equality 1 —r2 = V5r with r = 3(3 —1/5). If the left hand
side and the right hand side in (3.10) are denoted g¢(t) and h(t), resp.,

then ¢’ (t) > 0, A''(t) < 0 for te ( ; J) g(0) < h(0), g( )< h(2) This

proves (3.10), as well as (3.8) for tc(O, %) and the equality (3.5) follows.

We now prove (3.6). Again R(n) < o(x) and in view of (2.9) we obtain
0 <r<3}. We now prove that

(3.11) R(t) < o(t) for te (0, %) and r = }.

If te (—;i,n), then (3.11) is obviously true and if te((),%), then (3.11)

takes the form
(3-12)

e e e I A
arcst R —— ]
30 40 o\ 4o | 2 2 5
The left hand side in (3.12) is obtained from (3.1) by expressing ¢ as a func-
tion of p, whereas the right hand side of (3.12) is obtained from (2.5)

by putting r = }. After some obvious transformations (3.12) takes the
form

(3.13) 3(120%—1) < 1602 ¥90? — (1 —40?%)8,

and this is easily verified by elementary calculus. This proves Theorem 4.
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STRESZCZENIE

Niech 8, oznacza ustalong podklase klasy S funkeji f(z) = z+
+a,22+..., analitycznych i jednolistnych w kole jednostkowym K.
W pracy tej zajmujemy sie problemem wyznaczenia zbioru

2(a, S,) = () Dyla),
feSy
gdzie
D/(a) = {zeK: |f(2)| < |f(a)l}, ackK,

w przypadku, gdy 8, jest klasay funkcji gwiazdzistych lub wypuklych
(twierdzenia 1 i 2). Uzywajac zbioru 2(a, S,) podajemy w twierdzeniu 3
og6lng metode rozwigzywania problemu M. Biernackiego dla funkeji pod-
porzgdkowanych i w oparciu o nia powtarzamy niektére wezesniej i na
innej drodze uzyskane rezultaty (twierdzenie 4).

PE3IOME

ITycte 8, oGosnavaer QUKCHMPOBAHHEIA MOAKIAcC Kaacca S PyRKUMI
f(2) = 2+ a,2+..., aHATUTHIECKUX H OHOIUCTHEIX B e{UHHIHOM KpyTe K.
B aroit paGore maydaercA mpoGieMa ONpeleleHNA MHOMeCTBa

D(a, 8,) =N D(a)
JeSq

rne Dy(a) = {ze K: |f(2)| < |f(a)l}, ae K, ecin 8, = 8°, § (teopemu 1, 2).

Teopema 3 comep:KMT OOWMI METOR peuleHAA mpoGaembnl M. Bep-
HAalKOro NJIA NMONYAHEHHHX yHKUMi. IIo aTomy merony momygensr Heko-
TopHe pe3ybTaTh naHHbe paHee I'. M. Tonyannerv u npyrumun asropamn
(Teopema 4).



